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How To Read This Book 2

This book is written for the working programmer, who either:

*  Wants to learn AngularJS.

* Already knows AngularJS but wants to take their knowledge of its inner workings to the next
level.

*  Wants to get an idea of how a substantial JavaScript application framework can be built.

AngularJS is not a small framework. It has a large surface area with many new concepts to grasp.
Its codebase is also substantial, with 35K lines of JavaScript in it. While all of those new concepts
and all of those lines of code give you powerful tools to build the apps you need, they also come
with a steep learning curve.

I hate working with technologies I don’t quite understand. Too often, it leads to code that just hap-
pens to work, not because you truly understand what it does, but because you went through a lot
of trial and error to make it work. Code like that is difficult to change and debug. You can’t reason
your way through problems. You just poke at the code until it all seems to align.

Frameworks like AngularJS, powerful as they are, are prone to this kind of code. Do you under-
stand how Angular does dependency injection? Do you know the mechanics of scope inheritance?
What exactly happens during directive transclusion? When you don’t know how these things work,
as I didn’t when I started working with Angular, you just have to go by what the documentation
tells you or what people have said on Stack Overflow. When that isn’t enough, you try different
things until you get the results you need.

The thing is, while there’s a lot of code in AngularJS, it’s all just regular JavaScript code. It’s no dif-
ferent from the code in your applications. Most of it is well-factored, readable code. You can study
it to learn how Angular does what it does. When you’ve done that, you’re much better equipped
to deal with the issues you face in your daily application development work. You’ll know not only
what features Angular provides to solve a particular problem, but also how those features work,
how to get the most out of them, and where they fall short.

The purpose of this book is to help you demystify the inner workings of AngularJS. To take it
apart and put it back together again, in order to truly understand how it works.

A true craftsman knows their tools well. So well that they could in fact make their own tools if
needed. This book will help you get there with AngularJS.

How To Read This Book

During the course of the book we will be building an implementation of AngularJS. We’ll start
from a completely blank slate, and then in each chapter extend the implementation with new capa-
bilities.
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Dependency Injection

Scopes Expressions

$http

Directives
(+ controllers)

$q

In we begin by implementing the dirty-checking and eventing features provided by Angular
Scopes. We'll get intimately familiar with the inner workings of $watch, $watchCollection,
$digest, $apply, $evalAsync, $emit, $broadcast et al.

In [‘Part 2"}, we extend our implementation by adding support for expressions - the strings we put
inside {{curly braces}} in templates and occasionally use with $watch. This seemingly sim-
ple feature actually involves a deep and exciting journey into the world of programming language
parsing, lexing, and abstract syntax trees. In this part we also look at filters, a feature that is inti-
mately integrated with expressions.

In [‘Part 3"}, we dive into dependency injection. Here we’ll get to know how exactly Angular providers,
services, and factories are implemented and how Angular modules work. We’ll also retrofit the code
from parts 1 and 2 to the DI system, so that we get something that resembles an integrated frame-
work.

In we write a couple of utilities that are central to almost every Angular application: The
promises implementation in $q and the HTTP client implementation in $http. These are not only
useful for application developers to understand, but also a key building block for directives.

In the final part, [‘Part 5}, we finally get into directives. This is the most advanced part of the book,
as it implements the most feature-rich and complex subsystem of AngularJS: The directive compil-
er. We'll get acquainted with DOM compilation and linking, the Attributes object, isolate scopes,
controllers, transclusion, and interpolation. In the final chapter, we’ll put everything together and see
how Angular actually bootstraps and runs an application.

While there are certain areas of functionality in Angular that are largely independent, most of the
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code you’ll be writing builds on things implemented in previous chapters. That is why a sequential
reading will help you get the most out of this book.

The format of the book is simple: Each feature is introduced by discussing what it is and why it’s
needed. We will then proceed to implement the feature following test-driven development practic-
es: By writing failing tests and then writing the code to make them pass. As a result, we will pro-
duce not only the framework code, but also a test suite for it.

It 1s highly encouraged that you not only read the code, but also actually type it in and build your
own Angular while reading the book. To really make sure you’ve grasped a concept, poke it from
different directions: Write additional test cases. Try to intentionally break it in a few ways. Refac-
tor the code to match your own style while keeping the tests passing.

If you’re only interested in certain parts of the framework, feel free to skip to the chapters that

interest you. While you may need to reference back occasionally, you should be able to poach the
best bits of Angular to your own application or framework with little difficulty.

Source Code

The source code and test suite implemented in this book can be found on GitHub, at https://
github.com/teropa/build-your-own-angularjs/.

To make following along easier, commits in the repository are ordered to match the order of
events in the book. Note that this means that during the production of the book, the history of the
code repository may change as revisions are made.

There is also a Git tag for each chapter, pointing to the state of the codebase at the end of that
chapter. You can download archives of the code corresponding to these tags from https://github.
com/teropa/build-your-own-angularjs/releases.

Contributors

Since I released the first prerelease of the book in early 2014, hundreds of GitHub issues have been
submitted by a great number of people, each one pointing out a bug, typo, or improvement idea
for the book. These have been immeasurably helpful in getting the book to the state it is in now,
and I want to thank everyone who has submitted feedback.

I would like to especially thank the following people for their valuable ideas and help during the
writing of this book:

o Iftach Bar
*  XiChen
Wil Pannell

5 © Tero Parviainen 2016 Errata


https://github.com/teropa/build-your-own-angularjs/issues
https://github.com/teropa/build-your-own-angularjs/
https://github.com/teropa/build-your-own-angularjs/
https://github.com/teropa/build-your-own-angularjs/releases
https://github.com/teropa/build-your-own-angularjs/releases

Errata & Contributing 2

* Pavel Pomyerantsyev
*  Mauricio Poppe

* Mika Ristimaki

» Jesus Rodriguez

* Scott Silvi

Errata & Contributing

Your feedback about corretions and improvement ideas is more than welcome. If you come across
errors, or just feel like something could be improved, please file an issue to the book’s Errata on
GitHub: https://github.com/teropa/build-your-own-angularjs/issues. To make this process easier,
there’s also a link to the issue tracker on the footer of each page.

Contact

Feel free to get in touch with me by sending an email to tero@teropa.info or tweeting at (@teropa.
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Version History

2016-05-30: Chapter 23: Components

Added the chapter for Angular 1.5 components. Fixed a few errata.

2016-05-15: Added One-way Bindings and Require as object

Shipping the first Angular 1.5 features

2016-05-01: Production Release

Added epub and mobi formats. New typeset and layout. Revised preface. A large number of other
improvements here and there.

2015-11-05: Chapter 22: Bootstrapping Angular

Added the final chapter. Migrated the project code to Browserify, and removed the dependency to
Grunt in favor of plain NPM build scripts. Switched test runner back to Karma.

Also fixed a number of errata.

2015-08-24: Maintenance Release

Added a number of Angular 1.4 updates and fixed errata.

2015-07-31: Chapter 8: Filters

Added Chapter 8 and added filter support to Chapters 9 and 12.

2015-07-23: Expression Parser Rewrite

Revisited Part 2 of the book to cover the Angular 1.4+ expression parser.

2015-06-15: Chapter 21: Interpolation

Added Chapter 21.

2015-06-08: Chapter 20: Directive Transclusion
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Added Chapter 20 and fixed a few errata.

2015-04-27: Chapter 19: Directive Templates

Added Chapter 19 and fixed a few errata.

2015-04-05: Chapter 14: $http

Added Chapter 14 and fixed a number of errata.

2015-02-23: Chapter 13: Promises

Added Chapter 13.

2015-01-03: Chapter 16: Controllers

Added Chapter 16 and fixed a number of errata.

2014-12-24: Chapter 15: Directive Linking And Scopes

Added Chapter 15.

2014-11-16: Angular 1.3 updates

Added coverage of several smaller changes in Angular 1.3 across all chapters. Fixed a few errata.

2014-10-26: Added $applyAsync

Added coverage of Angular 1.3 $applyAsync to Chapters 1 and 2. Fixed a few errata.

2014-10-12: Added One-Time Binding and Input Tracking

Reworked the Expressions part of the book for Angular 1.3, with its new features - both
internal and user-facing. Fixed a few errata.

2014-09-21: Added $watchGroup

Coverage of the new Angular 1.3 $watchGroup feature in Chapter 1 and fixed a number of errata.

2014-08-16: Chapter 13: Directive Attributes
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Added Chapter 13.

2014-08-09: Maintenance Release

Fixed a number of errata and introduced some features new to AngularJS.

2014-08-04: Chapter 12: DOM Compilation and Basic Directives

Added Chapter 12.

2014-06-14: Chapter 11: High-Level Dependency Injection Features.

Added Chapter 11 and fixed a number of errata.

2014-05-24: Chapter 10: Providers

Added Chapter 10.

2014-05-18: Chapter 9: Modules And The Injector

Added Chapter 9 and fixed a number of errata.

2014-04-13: Chapter 7: Operator Expressions

Added Chapter 7. Also added coverage of literal collections in expressions to Chapters 5 and 6,
and fixed some errata.

2014-03-29: Maintenance Release

Fixed a number of errata and introduced some features new to AngularJS.

2014-03-28: Chapter 6: Lookup And Function Call Expressions

Added Chapter 6.

2014-03-11: Part IT Introduction and Chapter 5: Scalar Literal Expres-
sions

Added Chapter 5 and fixed some minor errata.

18 © Tero Parviainen 2016 Errata



Version History 3

2014-02-25: Maintenance Release

Fixed a number of errata.

2014-02-01: Chapter 4: Scope Events

Added Chapter 4 and fixed a number of errata.

2014-01-18: Chapter 3: Watching Collections

Added Chapter 3 and fixed a number of errata.

2014-01-07: Digest Optimization in Chapter 1

Described the new short-circuiting optimization for digest.

2014-01-06: Initial Early Access Release

First public release including the Introduction, the Setup chapter, and Chapters 1-2.
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