BUILD YOUR OWN

ANGULAR

Build Your Own AngularJS

Copyright © 2016 Tero Parviainen
ISBN 978-952-93-3544-2

© Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues

How To Read This Book 2

This book is written for the working programmer, who either:

* Wants to learn AngularJS.

* Already knows AngularJS but wants to take their knowledge of its inner workings to the next
level.

* Wants to get an idea of how a substantial JavaScript application framework can be built.

AngularJS is not a small framework. It has a large surface area with many new concepts to grasp.
Its codebase is also substantial, with 35K lines of JavaScript in it. While all of those new concepts
and all of those lines of code give you powerful tools to build the apps you need, they also come
with a steep learning curve.

I hate working with technologies I don’t quite understand. Too often, it leads to code that just hap-
pens to work, not because you truly understand what it does, but because you went through a lot
of trial and error to make it work. Code like that is difficult to change and debug. You can’t reason
your way through problems. You just poke at the code until it all seems to align.

Frameworks like AngularJS, powerful as they are, are prone to this kind of code. Do you under-
stand how Angular does dependency injection? Do you know the mechanics of scope inheritance?
What exactly happens during directive transclusion? When you don’t know how these things work,
as I didn’t when I started working with Angular, you just have to go by what the documentation
tells you or what people have said on Stack Overflow. When that isn’t enough, you try different
things until you get the results you need.

The thing is, while there’s a lot of code in AngularJS, it’s all just regular JavaScript code. It’s no dif-
ferent from the code in your applications. Most of it is well-factored, readable code. You can study
it to learn how Angular does what it does. When you’ve done that, you’re much better equipped
to deal with the issues you face in your daily application development work. You’ll know not only
what features Angular provides to solve a particular problem, but also how those features work,
how to get the most out of them, and where they fall short.

The purpose of this book is to help you demystify the inner workings of AngularJS. To take it
apart and put it back together again, in order to truly understand how it works.

A true craftsman knows their tools well. So well that they could in fact make their own tools if
needed. This book will help you get there with AngularJS.

How To Read This Book

During the course of the book we will be building an implementation of AngularJS. We’ll start
from a completely blank slate, and then in each chapter extend the implementation with new capa-
bilities.

3 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues

How To Read This Book 2

Dependency Injection

Scopes Expressions

$http

Directives
(+ controllers)

$q

In we begin by implementing the dirty-checking and eventing features provided by Angular
Scopes. We'll get intimately familiar with the inner workings of $watch, $watchCollection,
$digest, $apply, $evalAsync, $emit, $broadcast et al.

In [‘Part 2"}, we extend our implementation by adding support for expressions - the strings we put
inside {{curly braces}} in templates and occasionally use with $watch. This seemingly sim-
ple feature actually involves a deep and exciting journey into the world of programming language
parsing, lexing, and abstract syntax trees. In this part we also look at filters, a feature that is inti-
mately integrated with expressions.

In [‘Part 3"}, we dive into dependency injection. Here we’ll get to know how exactly Angular providers,
services, and factories are implemented and how Angular modules work. We’ll also retrofit the code
from parts 1 and 2 to the DI system, so that we get something that resembles an integrated frame-
work.

In we write a couple of utilities that are central to almost every Angular application: The
promises implementation in $q and the HTTP client implementation in $http. These are not only
useful for application developers to understand, but also a key building block for directives.

In the final part, [‘Part 5}, we finally get into directives. This is the most advanced part of the book,
as it implements the most feature-rich and complex subsystem of AngularJS: The directive compil-
er. We'll get acquainted with DOM compilation and linking, the Attributes object, isolate scopes,
controllers, transclusion, and interpolation. In the final chapter, we’ll put everything together and see
how Angular actually bootstraps and runs an application.

While there are certain areas of functionality in Angular that are largely independent, most of the

4 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues

Source Code 2

code you’ll be writing builds on things implemented in previous chapters. That is why a sequential
reading will help you get the most out of this book.

The format of the book is simple: Each feature is introduced by discussing what it is and why it’s
needed. We will then proceed to implement the feature following test-driven development practic-
es: By writing failing tests and then writing the code to make them pass. As a result, we will pro-
duce not only the framework code, but also a test suite for it.

It 1s highly encouraged that you not only read the code, but also actually type it in and build your
own Angular while reading the book. To really make sure you’ve grasped a concept, poke it from
different directions: Write additional test cases. Try to intentionally break it in a few ways. Refac-
tor the code to match your own style while keeping the tests passing.

If you’re only interested in certain parts of the framework, feel free to skip to the chapters that

interest you. While you may need to reference back occasionally, you should be able to poach the
best bits of Angular to your own application or framework with little difficulty.

Source Code

The source code and test suite implemented in this book can be found on GitHub, at https://
github.com/teropa/build-your-own-angularjs/.

To make following along easier, commits in the repository are ordered to match the order of
events in the book. Note that this means that during the production of the book, the history of the
code repository may change as revisions are made.

There is also a Git tag for each chapter, pointing to the state of the codebase at the end of that
chapter. You can download archives of the code corresponding to these tags from https://github.
com/teropa/build-your-own-angularjs/releases.

Contributors

Since I released the first prerelease of the book in early 2014, hundreds of GitHub issues have been
submitted by a great number of people, each one pointing out a bug, typo, or improvement idea
for the book. These have been immeasurably helpful in getting the book to the state it is in now,
and I want to thank everyone who has submitted feedback.

I would like to especially thank the following people for their valuable ideas and help during the
writing of this book:

o Iftach Bar
* XiChen
Wil Pannell

5 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues
https://github.com/teropa/build-your-own-angularjs/
https://github.com/teropa/build-your-own-angularjs/
https://github.com/teropa/build-your-own-angularjs/releases
https://github.com/teropa/build-your-own-angularjs/releases

Errata & Contributing 2

* Pavel Pomyerantsyev
* Mauricio Poppe

* Mika Ristimaki

» Jesus Rodriguez

* Scott Silvi

Errata & Contributing

Your feedback about corretions and improvement ideas is more than welcome. If you come across
errors, or just feel like something could be improved, please file an issue to the book’s Errata on
GitHub: https://github.com/teropa/build-your-own-angularjs/issues. To make this process easier,
there’s also a link to the issue tracker on the footer of each page.

Contact

Feel free to get in touch with me by sending an email to tero@teropa.info or tweeting at (@teropa.

6 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues
https://github.com/teropa/build-your-own-angularjs/issues
mailto:tero@teropa.info
https://twitter.com/teropa

Table of Contents 2

Table of Contents

How To Read This Book 3
Source Code 5
Contributors 5
Errata & Contributing 6
Contact 6
Version History 15
Setting up 19
Install Node and NPM 20
Create The Project Directories 20
Create package.json for NPM 20
“Hello, World!” 21
Enable Static Analysis With JSHint 21
Enable Unit Testing With Jasmine, Sinon, and Karma 23
Integrate Browserify 25
Include Lo-Dash And jQuery 27
Summary 28
Scopes 29
Scopes and Dirty-Checking 31
Scope Objects 32
Watching Object Properties: $watch And $digest 33
Checking for Dirty Values 35
Initializing Watch Values 38
Getting Notified Of Digests 39
Keeping The Digest Going While It Stays Dirty 40
Giving Up On An Unstable Digest 42
Short-Circuiting The Digest When The Last Watch Is Clean 44
Value-Based Dirty-Checking 48
NaNs 50
Handling Exceptions 51
Destroying A Watch 53
Summary 59
Scope Methods 60
$eval - Evaluating Code In The Context of A Scope 61
$apply - Integrating External Code With The Digest Cycle 62
$evalAsync - Deferred Execution 63
Scheduling $evalAsync from Watch Functions 66
Scope Phases 68
Coalescing $apply Invocations - $applyAsync 72
Running Code After A Digest - $$postDigest 78
Handling Exceptions 80
Watching Several Changes With One Listener: $watchGroup 83
Summary 92

7 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

Scope Inheritance 93
The Root Scope 94
Making A Child Scope 94
Attribute Shadowing 98
Separated Watches 99
Recursive Digestion 100
Digesting The Whole Tree from $apply, $evalAsync, and $applyAsync 104
Isolated Scopes 108
Substituting The Parent Scope 115
Destroying Scopes 117
Summary 119

Watching Collections 120
Setting Up The Infrastructure 122
Detecting Non-Collection Changes 123
Detecting New Arrays 127
Detecting New Or Removed Items in Arrays 129
Detecting Replaced or Reordered Items in Arrays 130
Array-Like Objects 133
Detecting New Objects 136
Detecting New Or Replaced Attributes in Objects 138
Detecting Removed Attributes in Objects 141
Preventing Unnecessary Object Iteration 143
Dealing with Objects that Have A length 145
Handing The Old Collection Value To Listeners 146
Summary 150

Scope Events 151
Publish-Subscribe Messaging 152
Setup 153
Registering Event Listeners: $on 153
The basics of $emit and $broadcast 155
Dealing with Duplication 157
Event Objects 158
Additional Listener Arguments 159
Returning The Event Object 160
Deregistering Event Listeners 161
Emitting Up The Scope Hierarchy 163
Broadcasting Down The Scope Hierarchy 165
Including The Current And Target Scopes in The Event Object 166
Stopping Event Propagation 171
Preventing Default Event Behavior 172
Broadcasting Scope Removal 174
Disabling Listeners On Destroyed Scopes 175
Handling Exceptions 176
Summary 177

8 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

Expressions and Filters 178
A Whole New Language 179
What We Will Skip 180

Literal Expressions 182
Setup 183
Parsing Integers 187
Parsing Floating Point Numbers 194
Parsing Scientific Notation 196
Parsing Strings 199
Parsing true, false, and null 207
Parsing Whitespace 210
Parsing Arrays 211
Parsing Objects 218
Summary 226

Lookup and Function Call Expressions 227
Simple Attribute Lookup 228
Parsing this 233
Non-Computed Attribute Lookup 233
Locals 238
Computed Attribute Lookup 241
Function Calls 246
Method Calls 250
Assigning Values 254
Ensuring Safety In Member Access 260
Ensuring Safe Objects 265
Ensuring Safe Functions 272
Summary 275

Operator Expressions 276
Unary Operators 277
Multiplicative Operators 285
Additive Operators 288
Relational And Equality Operators 290
Logical Operators AND and OR 295
The Ternary Operator 299
Altering The Precedence Order with Parentheses 301
Statements 303
Summary 304

Filters 306
Filter Registration 308
Filter Expressions 310
Filter Chain Expressions 318
Additional Filter Arguments 319
The Filter Filter 320

9 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents

Filtering With Predicate Functions
Filtering With Strings

Filtering With Other Primitives
Negated Filtering With Strings
Filtering With Object Criteria
Filtering With Object Wildcards
Filtering With Custom Comparators
Summary

Watching Expressions

Integrating Expressions to Scopes

Literal And Constant Expressions
Optimizing Constant Expression Watching
One-Time Expressions

Input Tracking

Stateful Filters

External Assignment

Summary

Modules and Dependency Injection

10

Modules and The Injector

The angular Global

Initializing The Global Just Once

The module Method

Registering A Module

Getting A Registered Module

The Injector

Registering A Constant

Requiring Other Modules

Dependency Injection

Rejecting Non-String DI Tokens

Binding this in Injected Functions

Providing Locals to Injected Functions
Array-Style Dependency Annotation
Dependency Annotation from Function Arguments
Strict Mode

Integrating Annotation with Invocation
Instantiating Objects with Dependency Injection
Summary

Providers

The Simplest Possible Provider: An Object with A $get Method
Injecting Dependencies To The $get Method

Lazy Instantiation of Dependencies

Making Sure Everything Is A Singleton

Circular Dependencies

© Tero Parviainen 2016

322
323
327
330
331
338
342
345

346
347
350
361
364
370
387
389
394

396

398
399
400
401
402
404
406
407
412
414
416
417
418
419
421
426
428
429
432

434
435
437
438
441
441

Errata

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents

Provider Constructors

Two Injectors: The Provider Injector and The Instance Injector
Unshifting Constants in The Invoke Queue

Summary

High-Level Dependency Injection Features

Injecting The $injectors

Injecting $provide

Config Blocks

Run Blocks

Function Modules

Hash Keys And Hash Maps

Function Modules Redux

Factories

Values

Services

Decorators

Integrating Scopes, Expressions, and Filters with The Injector
Making a Configurable Provider: Digest TTL
Summary

Utilities

11

Promises

Promises

Promise Implementations

Promises in AngularJS

Further Reading

The $q Provider

Creating Deferreds

Accessing The Promise of A Deferred
Resolving A Deferred

Preventing Multiple Resolutions
Ensuring that Callbacks Get Invoked
Registering Multiple Promise Callbacks
Rejecting Deferreds And Catching Rejections
Cleaning Up At The End: finally
Promise Chaining

Exception Handling

Callbacks Returning Promises
Chaining Handlers on finally

Notifying Progress

Immediate Rejection - $q.reject
Immediate Resolution - $q.when
Working with Promise Collections - $q.all
ES2015-Style Promises

© Tero Parviainen 2016

445
447
457
458

460
461
463
464
469
472
475
482
483
486
489
492
496
516
519

520

522
523
524
525
525
525
526
528
529
532
533
534
536
540
541
545
546
548
555
561
562
565
571

Errata

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

Promises Without $digest Integration: $$q 574
Summary 582
HTTP 584
What We Will Skip 585
The Providers 585
Sending HTTP Requests 587
Default Request Configuration 595
Request Headers 596
Response Headers 606
Allow CORS Authorization: withCredentials 609
Request Transforms 611
Response Transforms 616
JSON Serialization And Parsing 622
URL Parameters 629
Shorthand Methods 645
Interceptors 648
Promise Extensions 659
Request Timeouts 661
Pending Requests 665
Integrating $http and $applyAsync 666
Summary 668
Directives 671
DOM Compilation and Basic Directives 674
Creating The $compile Provider 675
Registering Directives 676
Compiling The DOM with Element Directives 681
Recursing to Child Elements 688
Using Prefixes with Element Directives 690
Applying Directives to Attributes 691
Applying Directives to Classes 695
Applying Directives to Comments 696
Restricting Directive Application 699
Prioritizing Directives 703
Terminating Compilation 708
Applying Directives Across Multiple Nodes 712
Summary 719
Directive Attributes 720
Passing Attributes to the compile Function 721
Introducing A Test Helper 724
Handling Boolean Attributes 725
Overriding attributes with ng-attr 727
Setting Attributes 728
Setting Boolean Properties 732

12 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

Denormalizing Attribute Names for The DOM 733
Observing Attributes 737
Providing Class Directives As Attributes 742
Adding Comment Directives As Attributes 746
Manipulating Classes 747
Summary 749
Directive Linking and Scopes 751
The Public Link Function 752
Directive Link Functions 754
Plain Directive Link Functions 761
Linking Child Nodes 762
Pre- And Post-Linking 765
Keeping The Node List Stable for Linking 770
Linking Directives Across Multiple Nodes 771
Linking And Scope Inheritance 774
Isolate Scopes 779
Isolate Attribute Bindings 786
One-Way Data Binding 791
Two-Way Data Binding 797
Expression Binding 807
Summary 811
Controllers 813
The $controller provider 814
Controller Instantiation 815
Controller Registration 818
Global Controller Lookup 821
Directive Controllers 822
Locals in Directive Controllers 827
Attaching Directive Controllers on The Scope 828
Controllers on Isolate Scope Directives 830
Requiring Controllers 846
Requiring Multiple Controllers 850
Requiring Multiple Controllers as an Object 851
Self-Requiring Directives 854
Requiring Controllers in Multi-Element Directives 855
Requiring Controllers from Parent Elements 856
Accessing Required Controllers from The Directive Controller 867
The ngController Directive 869
Attaching Controllers on The Scope 872
Looking Up A Controller Constructor from The Scope 873
Summary 874
Directive Templates 876
What We Will Skip 877
Basic Templating 877

13 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents

14

Disallowing More Than One Template Directive Per Element
Template Functions

Isolate Scope Directives with Templates

Asynchronous Templates: templateUrl

Template URL Functions

Disallowing More Than One Template URL Directive Per Element
Linking Asynchronous Directives

Linking Directives that Were Compiled Earlier

Preserving The Isolate Scope Directive

Preserving Controller Directives

Summary

Directive Transclusion

Basic Transclusion

Transclusion And Scopes

Transclusion from Descendant Nodes
Transclusion in Controllers

The Clone Attach Function

Transclusion with Template URLs
Transclusion with Multi-Element Directives
The ngTransclude Directive

Full Element Transclusion

Requiring Controllers from Transcluded Directives
Summary

Interpolation

The $interpolate service

Interpolating Strings

Value Stringification

Supporting Escaped Interpolation Symbols

Skipping Interpolation When There Are No Expressions
Text Node Interpolation

Attribute Interpolation

Optimizing Interpolation Watches With A Watch Delegate
Making Interpolation Symbols Configurable

Summary

Components

Registering Components

Basic Components

Component Scopes and Bindings
Component Templates
Component Transclusion
Requiring from Components
The $onlnit Lifecycle Hook

The $onDestroy Lifecycle Hook
The $postLink Lifecycle Hook

© Tero Parviainen 2016

880
881
882
883
893
894
897
904
906
909
911

912
914
920
929
935
936
943
947
948
951
965
968

970
971
973
978
981
982
984
990

1000

1006

1012

1014
1016
1017
1019
1024
1029
1030
1031
1033
1034

Errata

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

The $onChanges Hook 1036
Summary 1053
Bootstrapping 1056
The ngClick Directive 1057
Bootstrapping Angular Applications Manually 1061
Bootstrapping Angular Applications Automatically 1068
Building The Production Bundle 1073
Running An Example App 1075
Summary 1077

15 © Tero Parviainen 2016 Errata

https://github.com/teropa/build-your-own-angularjs/issues

Version History 3

Version History

2016-05-30: Chapter 23: Components

Added the chapter for Angular 1.5 components. Fixed a few errata.

2016-05-15: Added One-way Bindings and Require as object

Shipping the first Angular 1.5 features

2016-05-01: Production Release

Added epub and mobi formats. New typeset and layout. Revised preface. A large number of other
improvements here and there.

2015-11-05: Chapter 22: Bootstrapping Angular

Added the final chapter. Migrated the project code to Browserify, and removed the dependency to
Grunt in favor of plain NPM build scripts. Switched test runner back to Karma.

Also fixed a number of errata.

2015-08-24: Maintenance Release

Added a number of Angular 1.4 updates and fixed errata.

2015-07-31: Chapter 8: Filters

Added Chapter 8 and added filter support to Chapters 9 and 12.

2015-07-23: Expression Parser Rewrite

Revisited Part 2 of the book to cover the Angular 1.4+ expression parser.

2015-06-15: Chapter 21: Interpolation

Added Chapter 21.

2015-06-08: Chapter 20: Directive Transclusion

16 © Tero Parviainen 2016 Errata

Version History 3

Added Chapter 20 and fixed a few errata.

2015-04-27: Chapter 19: Directive Templates

Added Chapter 19 and fixed a few errata.

2015-04-05: Chapter 14: $http

Added Chapter 14 and fixed a number of errata.

2015-02-23: Chapter 13: Promises

Added Chapter 13.

2015-01-03: Chapter 16: Controllers

Added Chapter 16 and fixed a number of errata.

2014-12-24: Chapter 15: Directive Linking And Scopes

Added Chapter 15.

2014-11-16: Angular 1.3 updates

Added coverage of several smaller changes in Angular 1.3 across all chapters. Fixed a few errata.

2014-10-26: Added $applyAsync

Added coverage of Angular 1.3 $applyAsync to Chapters 1 and 2. Fixed a few errata.

2014-10-12: Added One-Time Binding and Input Tracking

Reworked the Expressions part of the book for Angular 1.3, with its new features - both
internal and user-facing. Fixed a few errata.

2014-09-21: Added $watchGroup

Coverage of the new Angular 1.3 $watchGroup feature in Chapter 1 and fixed a number of errata.

2014-08-16: Chapter 13: Directive Attributes

17 © Tero Parviainen 2016 Errata

Version History 3

Added Chapter 13.

2014-08-09: Maintenance Release

Fixed a number of errata and introduced some features new to AngularJS.

2014-08-04: Chapter 12: DOM Compilation and Basic Directives

Added Chapter 12.

2014-06-14: Chapter 11: High-Level Dependency Injection Features.

Added Chapter 11 and fixed a number of errata.

2014-05-24: Chapter 10: Providers

Added Chapter 10.

2014-05-18: Chapter 9: Modules And The Injector

Added Chapter 9 and fixed a number of errata.

2014-04-13: Chapter 7: Operator Expressions

Added Chapter 7. Also added coverage of literal collections in expressions to Chapters 5 and 6,
and fixed some errata.

2014-03-29: Maintenance Release

Fixed a number of errata and introduced some features new to AngularJS.

2014-03-28: Chapter 6: Lookup And Function Call Expressions

Added Chapter 6.

2014-03-11: Part IT Introduction and Chapter 5: Scalar Literal Expres-
sions

Added Chapter 5 and fixed some minor errata.

18 © Tero Parviainen 2016 Errata

Version History 3

2014-02-25: Maintenance Release

Fixed a number of errata.

2014-02-01: Chapter 4: Scope Events

Added Chapter 4 and fixed a number of errata.

2014-01-18: Chapter 3: Watching Collections

Added Chapter 3 and fixed a number of errata.

2014-01-07: Digest Optimization in Chapter 1

Described the new short-circuiting optimization for digest.

2014-01-06: Initial Early Access Release

First public release including the Introduction, the Setup chapter, and Chapters 1-2.

19 © Tero Parviainen 2016 Errata

	How To Read This Book
	Source Code
	Contributors
	Errata & Contributing
	Contact
	Version History

	Setting up
	Install Node and NPM
	Create The Project Directories
	Create package.json for NPM
	“Hello, World!”
	Enable Static Analysis With JSHint
	Enable Unit Testing With Jasmine, Sinon, and Karma
	Integrate Browserify
	Include Lo-Dash And jQuery
	Summary

	Scopes
	Scopes and Dirty-Checking
	Scope Objects
	Watching Object Properties: $watch And $digest
	Checking for Dirty Values
	Initializing Watch Values
	Getting Notified Of Digests
	Keeping The Digest Going While It Stays Dirty
	Giving Up On An Unstable Digest
	Short-Circuiting The Digest When The Last Watch Is Clean
	Value-Based Dirty-Checking
	NaNs
	Handling Exceptions
	Destroying A Watch
	Summary

	Scope Methods
	$eval - Evaluating Code In The Context of A Scope
	$apply - Integrating External Code With The Digest Cycle
	$evalAsync - Deferred Execution
	Scheduling $evalAsync from Watch Functions
	Scope Phases
	Coalescing $apply Invocations - $applyAsync
	Running Code After A Digest - $$postDigest
	Handling Exceptions
	Watching Several Changes With One Listener: $watchGroup
	Summary

	Scope Inheritance
	The Root Scope
	Making A Child Scope
	Attribute Shadowing
	Separated Watches
	Recursive Digestion
	Digesting The Whole Tree from $apply, $evalAsync, and $applyAsync
	Isolated Scopes
	Substituting The Parent Scope
	Destroying Scopes
	Summary

	Watching Collections
	Setting Up The Infrastructure
	Detecting Non-Collection Changes
	Detecting New Arrays
	Detecting New Or Removed Items in Arrays
	Detecting Replaced or Reordered Items in Arrays
	Array-Like Objects
	Detecting New Objects
	Detecting New Or Replaced Attributes in Objects
	Detecting Removed Attributes in Objects
	Preventing Unnecessary Object Iteration
	Dealing with Objects that Have A length
	Handing The Old Collection Value To Listeners
	Summary

	Scope Events
	Publish-Subscribe Messaging
	Setup
	Registering Event Listeners: $on
	The basics of $emit and $broadcast
	Dealing with Duplication
	Event Objects
	Additional Listener Arguments
	Returning The Event Object
	Deregistering Event Listeners
	Emitting Up The Scope Hierarchy
	Broadcasting Down The Scope Hierarchy
	Including The Current And Target Scopes in The Event Object
	Stopping Event Propagation
	Preventing Default Event Behavior
	Broadcasting Scope Removal
	Disabling Listeners On Destroyed Scopes
	Handling Exceptions
	Summary

	Expressions and Filters
	A Whole New Language
	What We Will Skip

	Literal Expressions
	Setup
	Parsing Integers
	Parsing Floating Point Numbers
	Parsing Scientific Notation
	Parsing Strings
	Parsing true, false, and null
	Parsing Whitespace
	Parsing Arrays
	Parsing Objects
	Summary

	Lookup and Function Call Expressions
	Simple Attribute Lookup
	Parsing this
	Non-Computed Attribute Lookup
	Locals
	Computed Attribute Lookup
	Function Calls
	Method Calls
	Assigning Values
	Ensuring Safety In Member Access
	Ensuring Safe Objects
	Ensuring Safe Functions
	Summary

	Operator Expressions
	Unary Operators
	Multiplicative Operators
	Additive Operators
	Relational And Equality Operators
	Logical Operators AND and OR
	The Ternary Operator
	Altering The Precedence Order with Parentheses
	Statements
	Summary

	Filters
	Filter Registration
	Filter Expressions
	Filter Chain Expressions
	Additional Filter Arguments
	The Filter Filter
	Filtering With Predicate Functions
	Filtering With Strings
	Filtering With Other Primitives
	Negated Filtering With Strings
	Filtering With Object Criteria
	Filtering With Object Wildcards
	Filtering With Custom Comparators
	Summary

	Watching Expressions
	Integrating Expressions to Scopes
	Literal And Constant Expressions
	Optimizing Constant Expression Watching
	One-Time Expressions
	Input Tracking
	Stateful Filters
	External Assignment
	Summary

	Modules and Dependency Injection
	Modules and The Injector
	The angular Global
	Initializing The Global Just Once
	The module Method
	Registering A Module
	Getting A Registered Module
	The Injector
	Registering A Constant
	Requiring Other Modules
	Dependency Injection
	Rejecting Non-String DI Tokens
	Binding this in Injected Functions
	Providing Locals to Injected Functions
	Array-Style Dependency Annotation
	Dependency Annotation from Function Arguments
	Strict Mode
	Integrating Annotation with Invocation
	Instantiating Objects with Dependency Injection
	Summary

	Providers
	The Simplest Possible Provider: An Object with A $get Method
	Injecting Dependencies To The $get Method
	Lazy Instantiation of Dependencies
	Making Sure Everything Is A Singleton
	Circular Dependencies
	Provider Constructors
	Two Injectors: The Provider Injector and The Instance Injector
	Unshifting Constants in The Invoke Queue
	Summary

	High-Level Dependency Injection Features
	Injecting The $injectors
	Injecting $provide
	Config Blocks
	Run Blocks
	Function Modules
	Hash Keys And Hash Maps
	Function Modules Redux
	Factories
	Values
	Services
	Decorators
	Integrating Scopes, Expressions, and Filters with The Injector
	Making a Configurable Provider: Digest TTL
	Summary

	Utilities
	Promises
	Promises
	Promise Implementations
	Promises in AngularJS
	Further Reading
	The $q Provider
	Creating Deferreds
	Accessing The Promise of A Deferred
	Resolving A Deferred
	Preventing Multiple Resolutions
	Ensuring that Callbacks Get Invoked
	Registering Multiple Promise Callbacks
	Rejecting Deferreds And Catching Rejections
	Cleaning Up At The End: finally
	Promise Chaining
	Exception Handling
	Callbacks Returning Promises
	Chaining Handlers on finally
	Notifying Progress
	Immediate Rejection - $q.reject
	Immediate Resolution - $q.when
	Working with Promise Collections - $q.all
	ES2015-Style Promises
	Promises Without $digest Integration: $$q
	Summary

	HTTP
	What We Will Skip
	The Providers
	Sending HTTP Requests
	Default Request Configuration
	Request Headers
	Response Headers
	Allow CORS Authorization: withCredentials
	Request Transforms
	Response Transforms
	JSON Serialization And Parsing
	URL Parameters
	Shorthand Methods
	Interceptors
	Promise Extensions
	Request Timeouts
	Pending Requests
	Integrating $http and $applyAsync
	Summary

	Directives
	DOM Compilation and Basic Directives
	Creating The $compile Provider
	Registering Directives
	Compiling The DOM with Element Directives
	Recursing to Child Elements
	Using Prefixes with Element Directives
	Applying Directives to Attributes
	Applying Directives to Classes
	Applying Directives to Comments
	Restricting Directive Application
	Prioritizing Directives
	Terminating Compilation
	Applying Directives Across Multiple Nodes
	Summary

	Directive Attributes
	Passing Attributes to the compile Function
	Introducing A Test Helper
	Handling Boolean Attributes
	Overriding attributes with ng-attr
	Setting Attributes
	Setting Boolean Properties
	Denormalizing Attribute Names for The DOM
	Observing Attributes
	Providing Class Directives As Attributes
	Adding Comment Directives As Attributes
	Manipulating Classes
	Summary

	Directive Linking and Scopes
	The Public Link Function
	Directive Link Functions
	Plain Directive Link Functions
	Linking Child Nodes
	Pre- And Post-Linking
	Keeping The Node List Stable for Linking
	Linking Directives Across Multiple Nodes
	Linking And Scope Inheritance
	Isolate Scopes
	Isolate Attribute Bindings
	One-Way Data Binding
	Two-Way Data Binding
	Expression Binding
	Summary

	Controllers
	The $controller provider
	Controller Instantiation
	Controller Registration
	Global Controller Lookup
	Directive Controllers
	Locals in Directive Controllers
	Attaching Directive Controllers on The Scope
	Controllers on Isolate Scope Directives
	Requiring Controllers
	Requiring Multiple Controllers
	Requiring Multiple Controllers as an Object
	Self-Requiring Directives
	Requiring Controllers in Multi-Element Directives
	Requiring Controllers from Parent Elements
	Accessing Required Controllers from The Directive Controller
	The ngController Directive
	Attaching Controllers on The Scope
	Looking Up A Controller Constructor from The Scope
	Summary

	Directive Templates
	What We Will Skip
	Basic Templating
	Disallowing More Than One Template Directive Per Element
	Template Functions
	Isolate Scope Directives with Templates
	Asynchronous Templates: templateUrl
	Template URL Functions
	Disallowing More Than One Template URL Directive Per Element
	Linking Asynchronous Directives
	Linking Directives that Were Compiled Earlier
	Preserving The Isolate Scope Directive
	Preserving Controller Directives
	Summary

	Directive Transclusion
	Basic Transclusion
	Transclusion And Scopes
	Transclusion from Descendant Nodes
	Transclusion in Controllers
	The Clone Attach Function
	Transclusion with Template URLs
	Transclusion with Multi-Element Directives
	The ngTransclude Directive
	Full Element Transclusion
	Requiring Controllers from Transcluded Directives
	Summary

	Interpolation
	The $interpolate service
	Interpolating Strings
	Value Stringification
	Supporting Escaped Interpolation Symbols
	Skipping Interpolation When There Are No Expressions
	Text Node Interpolation
	Attribute Interpolation
	Optimizing Interpolation Watches With A Watch Delegate
	Making Interpolation Symbols Configurable
	Summary

	Components
	Registering Components
	Basic Components
	Component Scopes and Bindings
	Component Templates
	Component Transclusion
	Requiring from Components
	The $onInit Lifecycle Hook
	The $onDestroy Lifecycle Hook
	The $postLink Lifecycle Hook
	The $onChanges Hook
	Summary

	Bootstrapping
	The ngClick Directive
	Bootstrapping Angular Applications Manually
	Bootstrapping Angular Applications Automatically
	Building The Production Bundle
	Running An Example App
	Summary

