
 1

1 Errata© Tero Parviainen 2016

BUILD YOUR OWN
ANGULARJS

 2

2 Errata© Tero Parviainen 2016

Build Your Own AngularJS

Copyright © 2016 Tero Parviainen

ISBN 978-952-93-3544-2

https://github.com/teropa/build-your-own-angularjs/issues

How To Read This Book 2

3 Errata© Tero Parviainen 2016

This book is written for the working programmer, who either:

• Wants to learn AngularJS.
• Already knows AngularJS but wants to take their knowledge of its inner workings to the next

level.
• Wants to get an idea of how a substantial JavaScript application framework can be built.

AngularJS is not a small framework. It has a large surface area with many new concepts to grasp.
Its codebase is also substantial, with 35K lines of JavaScript in it. While all of those new concepts
and all of those lines of code give you powerful tools to build the apps you need, they also come
with a steep learning curve.

I hate working with technologies I don’t quite understand. Too often, it leads to code that just hap-
pens to work, not because you truly understand what it does, but because you went through a lot
of trial and error to make it work. Code like that is difficult to change and debug. You can’t reason
your way through problems. You just poke at the code until it all seems to align.

Frameworks like AngularJS, powerful as they are, are prone to this kind of code. Do you under-
stand how Angular does dependency injection? Do you know the mechanics of scope inheritance?
What exactly happens during directive transclusion? When you don’t know how these things work,
as I didn’t when I started working with Angular, you just have to go by what the documentation
tells you or what people have said on Stack Overflow. When that isn’t enough, you try different
things until you get the results you need.

The thing is, while there’s a lot of code in AngularJS, it’s all just regular JavaScript code. It’s no dif-
ferent from the code in your applications. Most of it is well-factored, readable code. You can study
it to learn how Angular does what it does. When you’ve done that, you’re much better equipped
to deal with the issues you face in your daily application development work. You’ll know not only
what features Angular provides to solve a particular problem, but also how those features work,
how to get the most out of them, and where they fall short.

The purpose of this book is to help you demystify the inner workings of AngularJS. To take it
apart and put it back together again, in order to truly understand how it works.

A true craftsman knows their tools well. So well that they could in fact make their own tools if
needed. This book will help you get there with AngularJS.

How To Read This Book

During the course of the book we will be building an implementation of AngularJS. We’ll start
from a completely blank slate, and then in each chapter extend the implementation with new capa-
bilities.

https://github.com/teropa/build-your-own-angularjs/issues

How To Read This Book 2

4 Errata© Tero Parviainen 2016

Dependency Injection

Scopes Expressions

Directives
(+ controllers)

$q

$http

In “Part 1” we begin by implementing the dirty-checking and eventing features provided by Angular
Scopes. We’ll get intimately familiar with the inner workings of $watch, $watchCollection,
$digest, $apply, $evalAsync, $emit, $broadcast et al.

In “Part 2”, we extend our implementation by adding support for expressions - the strings we put
inside {{curly braces}} in templates and occasionally use with $watch. This seemingly sim-
ple feature actually involves a deep and exciting journey into the world of programming language
parsing, lexing, and abstract syntax trees. In this part we also look at filters, a feature that is inti-
mately integrated with expressions.

In “Part 3”, we dive into dependency injection. Here we’ll get to know how exactly Angular providers,
services, and factories are implemented and how Angular modules work. We’ll also retrofit the code
from parts 1 and 2 to the DI system, so that we get something that resembles an integrated frame-
work.

In “Part 4” we write a couple of utilities that are central to almost every Angular application: The
promises implementation in $q and the HTTP client implementation in $http. These are not only
useful for application developers to understand, but also a key building block for directives.

In the final part, “Part 5”, we finally get into directives. This is the most advanced part of the book,
as it implements the most feature-rich and complex subsystem of AngularJS: The directive compil-
er. We’ll get acquainted with DOM compilation and linking, the Attributes object, isolate scopes,
controllers, transclusion, and interpolation. In the final chapter, we’ll put everything together and see
how Angular actually bootstraps and runs an application.

While there are certain areas of functionality in Angular that are largely independent, most of the

https://github.com/teropa/build-your-own-angularjs/issues

Source Code 2

5 Errata© Tero Parviainen 2016

code you’ll be writing builds on things implemented in previous chapters. That is why a sequential
reading will help you get the most out of this book.

The format of the book is simple: Each feature is introduced by discussing what it is and why it’s
needed. We will then proceed to implement the feature following test-driven development practic-
es: By writing failing tests and then writing the code to make them pass. As a result, we will pro-
duce not only the framework code, but also a test suite for it.

It is highly encouraged that you not only read the code, but also actually type it in and build your
own Angular while reading the book. To really make sure you’ve grasped a concept, poke it from
different directions: Write additional test cases. Try to intentionally break it in a few ways. Refac-
tor the code to match your own style while keeping the tests passing.

If you’re only interested in certain parts of the framework, feel free to skip to the chapters that
interest you. While you may need to reference back occasionally, you should be able to poach the
best bits of Angular to your own application or framework with little difficulty.

Source Code

The source code and test suite implemented in this book can be found on GitHub, at https://
github.com/teropa/build-your-own-angularjs/.

To make following along easier, commits in the repository are ordered to match the order of
events in the book. Note that this means that during the production of the book, the history of the
code repository may change as revisions are made.

There is also a Git tag for each chapter, pointing to the state of the codebase at the end of that
chapter. You can download archives of the code corresponding to these tags from https://github.
com/teropa/build-your-own-angularjs/releases.

Contributors

Since I released the first prerelease of the book in early 2014, hundreds of GitHub issues have been
submitted by a great number of people, each one pointing out a bug, typo, or improvement idea
for the book. These have been immeasurably helpful in getting the book to the state it is in now,
and I want to thank everyone who has submitted feedback.

I would like to especially thank the following people for their valuable ideas and help during the
writing of this book:

• Iftach Bar
• Xi Chen
• Wil Pannell

https://github.com/teropa/build-your-own-angularjs/issues
https://github.com/teropa/build-your-own-angularjs/
https://github.com/teropa/build-your-own-angularjs/
https://github.com/teropa/build-your-own-angularjs/releases
https://github.com/teropa/build-your-own-angularjs/releases

Errata & Contributing 2

6 Errata© Tero Parviainen 2016

• Pavel Pomyerantsyev
• Mauricio Poppe
• Mika Ristimäki
• Jesus Rodriguez
• Scott Silvi

Errata & Contributing

Your feedback about corretions and improvement ideas is more than welcome. If you come across
errors, or just feel like something could be improved, please file an issue to the book’s Errata on
GitHub: https://github.com/teropa/build-your-own-angularjs/issues. To make this process easier,
there’s also a link to the issue tracker on the footer of each page.

Contact

Feel free to get in touch with me by sending an email to tero@teropa.info or tweeting at @teropa.

https://github.com/teropa/build-your-own-angularjs/issues
https://github.com/teropa/build-your-own-angularjs/issues
mailto:tero@teropa.info
https://twitter.com/teropa

Table of Contents 2

7 Errata© Tero Parviainen 2016

Table of Contents
How To Read This Book 3
Source Code 5
Contributors 5
Errata & Contributing 6
Contact 6
Version History 15

Setting up 19
Install Node and NPM 20
Create The Project Directories 20
Create package.json for NPM 20
“Hello, World!” 21
Enable Static Analysis With JSHint 21
Enable Unit Testing With Jasmine, Sinon, and Karma 23
Integrate Browserify 25
Include Lo-Dash And jQuery 27
Summary 28

Scopes 29
Scopes and Dirty-Checking 31

Scope Objects 32
Watching Object Properties: $watch And $digest 33
Checking for Dirty Values 35
Initializing Watch Values 38
Getting Notified Of Digests 39
Keeping The Digest Going While It Stays Dirty 40
Giving Up On An Unstable Digest 42
Short-Circuiting The Digest When The Last Watch Is Clean 44
Value-Based Dirty-Checking 48
NaNs 50
Handling Exceptions 51
Destroying A Watch 53
Summary 59

Scope Methods 60
$eval - Evaluating Code In The Context of A Scope 61
$apply - Integrating External Code With The Digest Cycle 62
$evalAsync - Deferred Execution 63
Scheduling $evalAsync from Watch Functions 66
Scope Phases 68
Coalescing $apply Invocations - $applyAsync 72
Running Code After A Digest - $$postDigest 78
Handling Exceptions 80
Watching Several Changes With One Listener: $watchGroup 83
Summary 92

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

8 Errata© Tero Parviainen 2016

Scope Inheritance 93
The Root Scope 94
Making A Child Scope 94
Attribute Shadowing 98
Separated Watches 99
Recursive Digestion 100
Digesting The Whole Tree from $apply, $evalAsync, and $applyAsync 104
Isolated Scopes 108
Substituting The Parent Scope 115
Destroying Scopes 117
Summary 119

Watching Collections 120
Setting Up The Infrastructure 122
Detecting Non-Collection Changes 123
Detecting New Arrays 127
Detecting New Or Removed Items in Arrays 129
Detecting Replaced or Reordered Items in Arrays 130
Array-Like Objects 133
Detecting New Objects 136
Detecting New Or Replaced Attributes in Objects 138
Detecting Removed Attributes in Objects 141
Preventing Unnecessary Object Iteration 143
Dealing with Objects that Have A length 145
Handing The Old Collection Value To Listeners 146
Summary 150

Scope Events 151
Publish-Subscribe Messaging 152
Setup 153
Registering Event Listeners: $on 153
The basics of $emit and $broadcast 155
Dealing with Duplication 157
Event Objects 158
Additional Listener Arguments 159
Returning The Event Object 160
Deregistering Event Listeners 161
Emitting Up The Scope Hierarchy 163
Broadcasting Down The Scope Hierarchy 165
Including The Current And Target Scopes in The Event Object 166
Stopping Event Propagation 171
Preventing Default Event Behavior 172
Broadcasting Scope Removal 174
Disabling Listeners On Destroyed Scopes 175
Handling Exceptions 176
Summary 177

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

9 Errata© Tero Parviainen 2016

Expressions and Filters 178
A Whole New Language 179
What We Will Skip 180

Literal Expressions 182
Setup 183
Parsing Integers 187
Parsing Floating Point Numbers 194
Parsing Scientific Notation 196
Parsing Strings 199
Parsing true, false, and null 207
Parsing Whitespace 210
Parsing Arrays 211
Parsing Objects 218
Summary 226

Lookup and Function Call Expressions 227
Simple Attribute Lookup 228
Parsing this 233
Non-Computed Attribute Lookup 233
Locals 238
Computed Attribute Lookup 241
Function Calls 246
Method Calls 250
Assigning Values 254
Ensuring Safety In Member Access 260
Ensuring Safe Objects 265
Ensuring Safe Functions 272
Summary 275

Operator Expressions 276
Unary Operators 277
Multiplicative Operators 285
Additive Operators 288
Relational And Equality Operators 290
Logical Operators AND and OR 295
The Ternary Operator 299
Altering The Precedence Order with Parentheses 301
Statements 303
Summary 304

Filters 306
Filter Registration 308
Filter Expressions 310
Filter Chain Expressions 318
Additional Filter Arguments 319
The Filter Filter 320

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

10 Errata© Tero Parviainen 2016

Filtering With Predicate Functions 322
Filtering With Strings 323
Filtering With Other Primitives 327
Negated Filtering With Strings 330
Filtering With Object Criteria 331
Filtering With Object Wildcards 338
Filtering With Custom Comparators 342
Summary 345

Watching Expressions 346
Integrating Expressions to Scopes 347
Literal And Constant Expressions 350
Optimizing Constant Expression Watching 361
One-Time Expressions 364
Input Tracking 370
Stateful Filters 387
External Assignment 389
Summary 394

Modules and Dependency Injection 396
Modules and The Injector 398

The angular Global 399
Initializing The Global Just Once 400
The module Method 401
Registering A Module 402
Getting A Registered Module 404
The Injector 406
Registering A Constant 407
Requiring Other Modules 412
Dependency Injection 414
Rejecting Non-String DI Tokens 416
Binding this in Injected Functions 417
Providing Locals to Injected Functions 418
Array-Style Dependency Annotation 419
Dependency Annotation from Function Arguments 421
Strict Mode 426
Integrating Annotation with Invocation 428
Instantiating Objects with Dependency Injection 429
Summary 432

Providers 434
The Simplest Possible Provider: An Object with A $get Method 435
Injecting Dependencies To The $get Method 437
Lazy Instantiation of Dependencies 438
Making Sure Everything Is A Singleton 441
Circular Dependencies 441

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

11 Errata© Tero Parviainen 2016

Provider Constructors 445
Two Injectors: The Provider Injector and The Instance Injector 447
Unshifting Constants in The Invoke Queue 457
Summary 458

High-Level Dependency Injection Features 460
Injecting The $injectors 461
Injecting $provide 463
Config Blocks 464
Run Blocks 469
Function Modules 472
Hash Keys And Hash Maps 475
Function Modules Redux 482
Factories 483
Values 486
Services 489
Decorators 492
Integrating Scopes, Expressions, and Filters with The Injector 496
Making a Configurable Provider: Digest TTL 516
Summary 519

Utilities 520
Promises 522

Promises 523
Promise Implementations 524
Promises in AngularJS 525
Further Reading 525
The $q Provider 525
Creating Deferreds 526
Accessing The Promise of A Deferred 528
Resolving A Deferred 529
Preventing Multiple Resolutions 532
Ensuring that Callbacks Get Invoked 533
Registering Multiple Promise Callbacks 534
Rejecting Deferreds And Catching Rejections 536
Cleaning Up At The End: finally 540
Promise Chaining 541
Exception Handling 545
Callbacks Returning Promises 546
Chaining Handlers on finally 548
Notifying Progress 555
Immediate Rejection - $q.reject 561
Immediate Resolution - $q.when 562
Working with Promise Collections - $q.all 565
ES2015-Style Promises 571

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

12 Errata© Tero Parviainen 2016

Promises Without $digest Integration: $$q 574
Summary 582

HTTP 584
What We Will Skip 585
The Providers 585
Sending HTTP Requests 587
Default Request Configuration 595
Request Headers 596
Response Headers 606
Allow CORS Authorization: withCredentials 609
Request Transforms 611
Response Transforms 616
JSON Serialization And Parsing 622
URL Parameters 629
Shorthand Methods 645
Interceptors 648
Promise Extensions 659
Request Timeouts 661
Pending Requests 665
Integrating $http and $applyAsync 666
Summary 668

Directives 671
DOM Compilation and Basic Directives 674

Creating The $compile Provider 675
Registering Directives 676
Compiling The DOM with Element Directives 681
Recursing to Child Elements 688
Using Prefixes with Element Directives 690
Applying Directives to Attributes 691
Applying Directives to Classes 695
Applying Directives to Comments 696
Restricting Directive Application 699
Prioritizing Directives 703
Terminating Compilation 708
Applying Directives Across Multiple Nodes 712
Summary 719

Directive Attributes 720
Passing Attributes to the compile Function 721
Introducing A Test Helper 724
Handling Boolean Attributes 725
Overriding attributes with ng-attr 727
Setting Attributes 728
Setting Boolean Properties 732

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

13 Errata© Tero Parviainen 2016

Denormalizing Attribute Names for The DOM 733
Observing Attributes 737
Providing Class Directives As Attributes 742
Adding Comment Directives As Attributes 746
Manipulating Classes 747
Summary 749

Directive Linking and Scopes 751
The Public Link Function 752
Directive Link Functions 754
Plain Directive Link Functions 761
Linking Child Nodes 762
Pre- And Post-Linking 765
Keeping The Node List Stable for Linking 770
Linking Directives Across Multiple Nodes 771
Linking And Scope Inheritance 774
Isolate Scopes 779
Isolate Attribute Bindings 786
One-Way Data Binding 791
Two-Way Data Binding 797
Expression Binding 807
Summary 811

Controllers 813
The $controller provider 814
Controller Instantiation 815
Controller Registration 818
Global Controller Lookup 821
Directive Controllers 822
Locals in Directive Controllers 827
Attaching Directive Controllers on The Scope 828
Controllers on Isolate Scope Directives 830
Requiring Controllers 846
Requiring Multiple Controllers 850
Requiring Multiple Controllers as an Object 851
Self-Requiring Directives 854
Requiring Controllers in Multi-Element Directives 855
Requiring Controllers from Parent Elements 856
Accessing Required Controllers from The Directive Controller 867
The ngController Directive 869
Attaching Controllers on The Scope 872
Looking Up A Controller Constructor from The Scope 873
Summary 874

Directive Templates 876
What We Will Skip 877
Basic Templating 877

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

14 Errata© Tero Parviainen 2016

Disallowing More Than One Template Directive Per Element 880
Template Functions 881
Isolate Scope Directives with Templates 882
Asynchronous Templates: templateUrl 883
Template URL Functions 893
Disallowing More Than One Template URL Directive Per Element 894
Linking Asynchronous Directives 897
Linking Directives that Were Compiled Earlier 904
Preserving The Isolate Scope Directive 906
Preserving Controller Directives 909
Summary 911

Directive Transclusion 912
Basic Transclusion 914
Transclusion And Scopes 920
Transclusion from Descendant Nodes 929
Transclusion in Controllers 935
The Clone Attach Function 936
Transclusion with Template URLs 943
Transclusion with Multi-Element Directives 947
The ngTransclude Directive 948
Full Element Transclusion 951
Requiring Controllers from Transcluded Directives 965
Summary 968

Interpolation 970
The $interpolate service 971
Interpolating Strings 973
Value Stringification 978
Supporting Escaped Interpolation Symbols 981
Skipping Interpolation When There Are No Expressions 982
Text Node Interpolation 984
Attribute Interpolation 990
Optimizing Interpolation Watches With A Watch Delegate 1000
Making Interpolation Symbols Configurable 1006
Summary 1012

Components 1014
Registering Components 1016
Basic Components 1017
Component Scopes and Bindings 1019
Component Templates 1024
Component Transclusion 1029
Requiring from Components 1030
The $onInit Lifecycle Hook 1031
The $onDestroy Lifecycle Hook 1033
The $postLink Lifecycle Hook 1034

https://github.com/teropa/build-your-own-angularjs/issues

Table of Contents 2

15 Errata© Tero Parviainen 2016

The $onChanges Hook 1036
Summary 1053

Bootstrapping 1056
The ngClick Directive 1057
Bootstrapping Angular Applications Manually 1061
Bootstrapping Angular Applications Automatically 1068
Building The Production Bundle 1073
Running An Example App 1075
Summary 1077

https://github.com/teropa/build-your-own-angularjs/issues

Version History 3

16 Errata© Tero Parviainen 2016

Version History

2016-05-30: Chapter 23: Components

Added the chapter for Angular 1.5 components. Fixed a few errata.

2016-05-15: Added One-way Bindings and Require as object

Shipping the first Angular 1.5 features

2016-05-01: Production Release

Added epub and mobi formats. New typeset and layout. Revised preface. A large number of other
improvements here and there.

2015-11-05: Chapter 22: Bootstrapping Angular

Added the final chapter. Migrated the project code to Browserify, and removed the dependency to
Grunt in favor of plain NPM build scripts. Switched test runner back to Karma.

Also fixed a number of errata.

2015-08-24: Maintenance Release

Added a number of Angular 1.4 updates and fixed errata.

2015-07-31: Chapter 8: Filters

Added Chapter 8 and added filter support to Chapters 9 and 12.

2015-07-23: Expression Parser Rewrite

Revisited Part 2 of the book to cover the Angular 1.4+ expression parser.

2015-06-15: Chapter 21: Interpolation

Added Chapter 21.

2015-06-08: Chapter 20: Directive Transclusion

Version History 3

17 Errata© Tero Parviainen 2016

Added Chapter 20 and fixed a few errata.

2015-04-27: Chapter 19: Directive Templates

Added Chapter 19 and fixed a few errata.

2015-04-05: Chapter 14: $http

Added Chapter 14 and fixed a number of errata.

2015-02-23: Chapter 13: Promises

Added Chapter 13.

2015-01-03: Chapter 16: Controllers

Added Chapter 16 and fixed a number of errata.

2014-12-24: Chapter 15: Directive Linking And Scopes

Added Chapter 15.

2014-11-16: Angular 1.3 updates

Added coverage of several smaller changes in Angular 1.3 across all chapters. Fixed a few errata.

2014-10-26: Added $applyAsync

Added coverage of Angular 1.3 $applyAsync to Chapters 1 and 2. Fixed a few errata.

2014-10-12: Added One-Time Binding and Input Tracking

Reworked the Expressions part of the book for Angular 1.3, with its new features - both
internal and user-facing. Fixed a few errata.

2014-09-21: Added $watchGroup

Coverage of the new Angular 1.3 $watchGroup feature in Chapter 1 and fixed a number of errata.

2014-08-16: Chapter 13: Directive Attributes

Version History 3

18 Errata© Tero Parviainen 2016

Added Chapter 13.

2014-08-09: Maintenance Release

Fixed a number of errata and introduced some features new to AngularJS.

2014-08-04: Chapter 12: DOM Compilation and Basic Directives

Added Chapter 12.

2014-06-14: Chapter 11: High-Level Dependency Injection Features.

Added Chapter 11 and fixed a number of errata.

2014-05-24: Chapter 10: Providers

Added Chapter 10.

2014-05-18: Chapter 9: Modules And The Injector

Added Chapter 9 and fixed a number of errata.

2014-04-13: Chapter 7: Operator Expressions

Added Chapter 7. Also added coverage of literal collections in expressions to Chapters 5 and 6,
and fixed some errata.

2014-03-29: Maintenance Release

Fixed a number of errata and introduced some features new to AngularJS.

2014-03-28: Chapter 6: Lookup And Function Call Expressions

Added Chapter 6.

2014-03-11: Part II Introduction and Chapter 5: Scalar Literal Expres-
sions

Added Chapter 5 and fixed some minor errata.

Version History 3

19 Errata© Tero Parviainen 2016

2014-02-25: Maintenance Release

Fixed a number of errata.

2014-02-01: Chapter 4: Scope Events

Added Chapter 4 and fixed a number of errata.

2014-01-18: Chapter 3: Watching Collections

Added Chapter 3 and fixed a number of errata.

2014-01-07: Digest Optimization in Chapter 1

Described the new short-circuiting optimization for digest.

2014-01-06: Initial Early Access Release

First public release including the Introduction, the Setup chapter, and Chapters 1-2.

 4

20 Errata© Tero Parviainen 2016

 4

20 Errata© Tero Parviainen 2016

Chapter 0

Setting up

https://github.com/teropa/build-your-own-angularjs/issues

Install Node and NPM 4

21 Errata© Tero Parviainen 2016

We are going to build a full-blown JavaScript framework. To make things much easier down the
line, it’s a good idea to spend some time setting up a project with a solid build process and auto-
mated testing. Fortunately there are excellent tools available for this purpose. We just need to pull
them in and we’ll be good to go.

In this warm-up chapter we’ll set up a JavaScript library project using NPM and Browserify. We’ll
also enable static analysis with JSHint and unit testing with Jasmine and Karma.

Install Node and NPM

Our project is going to depend heavily on Node.js. It will be the underlying JavaScript runtime
used for building and testing the project. Node.js also bundles NPM, the package manager we’re
going to use.

Fortunately, both Node and NPM are widely supported and available for Linux, Mac OS X, and
Windows. Instead of going through the installation process of Node here, I’ll just point you to the
the official installation instructions.

Before proceeding to create the project, make sure you have the node, and npm commands work-
ing in your terminal. Here’s what they look like on my machine:

node -v
v5.9.1

npm -v
3.7.3

Your output may be different depending on the versions installed. The exact versions aren’t that
important though. What’s important is that the commands are there and that they work.

Create The Project Directories

Let’s set up the basic directory structure for our library. A few directories are needed at this point:
The project root directory, a src directory for sources, and a test directory for unit tests:

mkdir myangular
cd myangular
mkdir src
mkdir test

As the project grows we will extend this directory structure, but this is enough to get going.

Create package.json for NPM

https://npmjs.org/
http://browserify.org/
http://www.jshint.com/
http://jasmine.github.io/2.0/introduction.html
http://karma-runner.github.io/
http://nodejs.org/
http://nodejs.org/download/

“Hello, World!” 4

22 Errata© Tero Parviainen 2016

In order to use NPM, we’re going to need a file called package.json. This file is used to let NPM
know some basic things about our project and, crucially, the external NPM packages it depends
on.

Let’s create a basic package.json in the project root directory with some basic metadata - the
project name and version:

package.json
{
 "name": "my-own-angularjs",
 "version": "0.1.0"
}

We now have the directories and files necessary for a minimal JavaScript project in place.

“Hello, World!”

Before delving into static analysis and testing, let’s add a bit of JavaScript code so that we have
something to play with. The canonical “Hello, world!” will fit our purposes perfectly. Add the
following function in a file called hello.js in the src directory:

src/hello.js
function sayHello() {
 return 'Hello, world!';
}

Enable Static Analysis With JSHint

JSHint is a tool that reads in your JavaScript code and gives a report of any syntactic or structural
problems within it. This process, called linting, is very useful to us since as library authors we don’t
want to be shipping code that may cause problems for other people.

JSHint is available through NPM in the jshint package. Let’s install that package with the npm
command:

npm install --save-dev jshint

When you run this command, a couple of things will happen: A directory called node_modules
is created inside our project and the jshint package is downloaded into that directory.

Also, if you take a look at our package.json file, you’ll see it has changed a bit: It now includes
a devDependencies key and a nested jshint key. What this says is that jshint is a develop-
ment-time dependency of our project. This update to package.json was caused by the --save-

Enable Static Analysis With JSHint 4

23 Errata© Tero Parviainen 2016

dev flag.

We can now create a configuration file for JSHint. When the tool is run, it will automatically
discover a file called .jshintrc from the current directory and read configuration options from it.
Let’s create that file with the following contents:

.jshintrc
{
 "browser": true,
 "browserify": true,
 "devel": true
}

Here we are enabling the browser, browserify, and devel JSHint environments, which will
cause it to not raise errors when we refer to global variables commonly available in browsers, such
as setTimeout and console, or the module and require globals that are part of the module
system that Browserify uses.

We’re now all set to run JSHint:

./node_modules/jshint/bin/jshint src

Looks like our simple “Hello, world!” program is lint free! To ensure yourself that the tool is in
fact doing what it’s supposed to, you can break the code in hello.js intentionally (e.g. change
function to funktion) and see what JSHint then outputs.

We can make JSHint even easier to invoke by using an NPM run script. By saving the command
into package.json we don’t have to remember what it was and can instead invoke a shorthand
version:

package.json
{
 "name": "my-own-angularjs",
 "version": "0.1.0",
 "devDependencies": {
 "jshint": "^2.8.0"
 },
 "scripts": {
 "lint": "jshint src"
 }
}

From now on, whenever you want to lint the code with JSHint, you may just run this:

npm run lint

Enable Unit Testing With Jasmine, Sinon, and Karma 4

24 Errata© Tero Parviainen 2016

Enable Unit Testing With Jasmine, Sinon, and Karma

Unit testing will be absolutely central to our development process. That means we also need a
good test framework. We’re going to use one called Jasmine, because it has a nice and simple API
and does everything we need:

describe('you can group test cases in "describe" blocks...', function() {

 describe('...which can also be nested', function() {

 it('test cases are in "it" blocks', function() {
 var string = 'where we can run arbitrary JavaScript code...';
 // ...and make assertions about results using "expect":
 expect(string).toEqual('expected string');
 });

 });

});

For actually running the tests, we’ll use a popular test runner called Karma. It integrates well with
Jasmine and Browserify through plugins that we will also install.

We’re also going to use a test helper library called Sinon.JS for some of the more sophisticated
mock objects we’re going to need. Sinon will become particularly helpful when we start building
HTTP features.

Let’s install Jasmine and Sinon first:

npm install --save-dev jasmine-core sinon

Then, let’s add Karma along with some of the Karma plugins that we’ll need:

npm install --save-dev karma karma-jasmine karma-jshint-preprocessor

Let’s also install the PhantomJS headless web browser, inside which Karma will actually run the
tests:

npm install --save-dev phantomjs-prebuilt karma-phantomjs-launcher

Next, load and configure Karma and Jasmine in a Karma specific configuration file karma.conf.
js:

karma.conf.js
module.exports = function(config) {

http://jasmine.github.io/2.3/introduction.html
http://karma-runner.github.io/
http://sinonjs.org/

Enable Unit Testing With Jasmine, Sinon, and Karma 4

25 Errata© Tero Parviainen 2016

 config.set({
 frameworks: ['jasmine'],
 files: [
 'src/**/*.js',
 'test/**/*_spec.js'
],
 preprocessors: {
 'test/**/*.js': ['jshint'],
 'src/**/*.js': ['jshint']
 },
 browsers: ['PhantomJS']
 })
}

This will run tests for all JavaScript files under src. The tests themselves will be located in JavaS-
cript files under the test directory. While running, Karma will continuously watch these files for
changes and rerun the test suite automatically when there are changes.

We also define a jshint preprocessor which will cause JSHint to be run before each test suite
execution.

In test code we will be referring to a bunch of global variables defined by Jasmine. We add these
variables to JSHint’s globals object so that it will let us do that:

.jshintrc
{
 "browser": true,
 "browserify": true,
 "devel": true,
 "globals": {
 "jasmine": false,
 "describe": false,
 "it": false,
 "expect": false,
 "beforeEach": false,
 "afterEach": false
 }
}

We will be able to start Karma conveniently if we add an NPM script for it. While we’re at it, let’s
have the lint script go through files under test too:

package.json
"scripts": {
 "lint": "jshint src test",
 "test": "karma start"
}

Integrate Browserify 4

26 Errata© Tero Parviainen 2016

We’re now ready to run tests, so let’s create one. Add a file called hello_spec.js in the test
directory, with the following contents:

test/hello_spec.js
describe('Hello', function() {

 it('says hello', function() {
 expect(sayHello()).toBe('Hello, world!');
 });

});

If you’ve ever used something like Ruby’s rSpec, the format should look familiar: There’s a top-lev-
el describe block, which acts as a grouping for a number of tests. The test cases themselves are
defined in it blocks, each one defining a name and a test function.

The terminology used by Jasmine (and rSpec) comes from Behavior-Driven Development. The describe
and it blocks describe the behavior of our code. This is also where the file suffix _spec.js comes from.
The test files are specifications for our code.

Let’s run the test by starting Karma:

npm test

This launches Karma and runs the test in an invisible PhantomJS browser. Try editing src/hello.js
and test/hello_spec.js while the Karma runner is open to see that the changes are picked up and
the test suite is re-run.

As you work your way through this book, it’s recommended to keep Karma permanently running
in a terminal window. This way you won’t have to keep running the tests manually all the time,
and you’ll be sure to notice when the code breaks.

Our single test is passing and we can move forward.

Integrate Browserify

The way we’ve currently set up our code is that Karma will simply load up all JavaScript files it
finds from src and test and execute everything in them. This would mean that global variables
and functions defined in one file, such as sayHello currently, can be referred to from any other
file.

This kind of file organization is going go get difficult to track at some point, because it’s difficult
to know where things come from. The official AngularJS codebase uses this style, but it started
in 2009 when there weren’t really better alternatives. We’re starting now and luckily we do have
alternatives.

http://rspec.info/
http://en.wikipedia.org/wiki/Behavior-driven_development

Integrate Browserify 4

27 Errata© Tero Parviainen 2016

Node.js follows a packaging standard called CommonJS, where each file forms a module. A
module can load things from another using require and it can specify what it itself makes avail-
able with module.exports. This would be a fairly good system for us to use. We are not writ-
ing Node.js code though, but client-side JavaScript. That’s ok, because we can use a tool called
Browserify to bring the module capabilites to our client-side code. It will process all our files and
output a bundle that can be run in a web browser (such as the PhantomJS browser for testing).

npm install --save-dev browserify watchify karma-browserify

Let’s see how this could work in code. The sayHello function should be exported from hello.
js:

src/hello.js
module.exports = function sayHello() {
 return 'Hello, world!';
};

Then it can be required into the test case:

test/hello_spec.js
var sayHello = require('../src/hello');

describe('Hello', function() {

 it('says hello', function() {
 expect(sayHello()).toBe('Hello, world!');
 });

});

Before we’re able to run this code, we’ll need to integrate Browserify to our test setup. We already
installed the karma-browserify plugin, and we now need to enable it in the Karma configura-
tion:

karma.conf.js
module.exports = function(config) {
 config.set({
 frameworks: ['browserify', 'jasmine'],
 files: [
 'src/**/*.js',
 'test/**/*_spec.js'
],
 preprocessors: {
 'test/**/*.js': ['jshint', 'browserify'],
 'src/**/*.js': ['jshint', 'browserify']
 },

http://wiki.commonjs.org/wiki/CommonJS
http://browserify.org/

Include Lo-Dash And jQuery 4

28 Errata© Tero Parviainen 2016

 browsers: ['PhantomJS'],
 browserify: {
 debug: true
 }
 })
}

With this config, all code will be run through a browserify preprocessor before it is actually run.
At that point, Browserify will process the module imports and exports.

Note that we also enable the debug flag for Browserify. What this means is that Browserify will
output source maps for the code it processes, and we will be able to see the original file names and
line numbers in test error messages. This is a really important feature for figuring out what’s wrong
when tests don’t pass.

Try running Karma now and making changes to the code so that you can see it fail. Stylistic
problems will cause a JSHint error and test failure will cause a test error. Both can be seen in the
Karma output.

When running tests, you may occasionally see a “Some of your tests did a full page reload!” message even
though you’re doing no such thing in your tests. Though harmless, this is pretty distracting.

This is caused by tests starting to run too quickly after changes are detected. You can fix it by increasing the
bundleDelay configuration option of Browserify, by adding it to the browserify section of karma.
conf.js. It is 700 by default, and bundleDelay: 2000 fixes the issue on my machine.

Include Lo-Dash And jQuery

Angular itself does not require any third-party libraries (though it does use jQuery if it’s available).
However, in our case it makes sense to delegate some low-level details to existing libraries so that
we can concentrate on what makes Angular Angular.

There are two categories of low-level operations that we can delegate to existing libraries:

• Array and object manipulation, such as iteration, equality checking and cloning, will be dele-
gated to the Lo-Dash library.

• DOM querying and manipulation will be delegated to jQuery.

Both of these libraries are available as NPM packages. Let’s go ahead and install them:

npm install --save lodash@4 jquery

We’re installing these libraries in the same way we previously installed Browserify and Karma. The
only difference is that in this case we specify the --save flag instead of --save-dev. That means

http://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://lodash.com/
http://jquery.com/

Summary 4

29 Errata© Tero Parviainen 2016

these packages are runtime dependencies and not just development dependencies.

Let’s check that we’re actually able to use these libraries by tweaking our “Hello, world!” script a
bit. We have the LoDash NPM package so we can just require it:

src/hello.js
var _ = require('lodash');

module.exports = function sayHello(to) {
 return _.template('Hello, <%= name %>!')({name: to});
};

The function now takes the receiver of the greeting as an argument, and constructs the resulting
string using the Lo-Dash template function.

Let’s also make the corresponding change to the unit test:

test/hello_spec.js
var sayHello = require('../src/hello');

describe('Hello', function() {

 it('says hello', function() {
 expect(sayHello('Jane')).toBe('Hello, Jane!');
 });

});

Summary

In this chapter you’ve set up the project that will contain your very own implementation of Angu-
lar. You have:

• Installed Node.js, NPM, Karma, PhantomJS, and Browserify.
• Configured a project with which we can easily lint and test all our code.

You are now all set to begin making your own AngularJS. You can remove src/hello.js and
test/hello_spec.js so that you’ll have a clean slate for the next chapter, which will be all
about Angular Scopes.

http://lodash.com/docs#template

 5

30 Errata© Tero Parviainen 2016

Part 1

Scopes

Dependency Injection

Scopes Expressions

Directives
(+ controllers)

$q

$http

 5

31 Errata© Tero Parviainen 2016

We will begin our implementation of AngularJS with one of its central building blocks: Scopes.
Scopes are used for many different purposes:

• Sharing data between a controller/directive and its view template
• Sharing data between different parts of the UI
• Broadcasting and listening for events.
• Watching for changes in data.

Of these several use cases, the last one is arguably the most interesting one. Angular scopes imple-
ment a dirty-checking mechanism, using which you can get notified when a piece of data on a scope
changes. It can be used as-is, but it is also the secret sauce of data binding, one of Angular’s prima-
ry selling points.

In this first part of the book you will implement Angular scopes. We will cover four main areas of
functionality:

1. The core dirty-checking implementation itself, including $watch and $digest.
2. The different ways of starting a digest: $eval, $apply, $evalAsync, and $applyAsync, and

the $watchGroup implementation for watching multiple things at once.
3. Scope inheritance - the mechanism that makes it possible to create scope hierarchies for shar-

ing data and events.
4. Efficient dirty-checking for collections (arrays and objects).
5. The event system: $on, $emit, and $broadcast.

 6

32 Errata© Tero Parviainen 2016

Chapter 1

Scopes and Dirty-
Checking

https://github.com/teropa/build-your-own-angularjs/issues

Scope Objects 6

33 Errata© Tero Parviainen 2016

Download the code for the starting point of this chapter.

Scope Objects

Scopes can be created by applying the new operator to the Scope constructor. The result is a
plain old JavaScript object. Let’s make our very first test case for this basic behavior.

Create a test file for scopes in test/scope_spec.js and add the following test case to it:

test/scope_spec.js
'use strict';

var Scope = require('../src/scope');

describe('Scope', function() {

 it('can be constructed and used as an object', function() {
 var scope = new Scope();
 scope.aProperty = 1;

 expect(scope.aProperty).toBe(1);
 });

});

On the top of the file we enable ES5 strict mode, and require Scope, which we are expecting to
find under the src directory. The test itself creates a Scope, assigns an arbitrary property on it and
checks that it was indeed assigned.

If you have Karma running in a terminal, you will see it fail after you’ve added this test case, because we
haven’t implemented Scope yet. This is exactly what we want, since an important step in test-driven devel-
opment is seeing the test fail first.

Throughout the book I’ll assume the test suite is being continuously executed, and will not explicitly men-
tion when tests should be run.

We can make this test pass easily enough: Create src/scope.js and set the contents as:

src/scope.js
'use strict';

function Scope() {

}

https://github.com/teropa/build-your-own-angularjs/issues
https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter0-project-setup
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode

Watching Object Properties: $watch And $digest 6

34 Errata© Tero Parviainen 2016

module.exports = Scope;

In the test case we’re assigning a property (called aProperty) on the scope. This is exactly how
properties on the Scope work. They are plain JavaScript properties and there’s nothing special
about them. There are no special setters you need to call, nor restrictions on what values you
assign. Where the magic happens instead is in two very special functions: $watch and $digest.
Let’s turn our attention to them.

Watching Object Properties: $watch And $digest

$watch and $digest are two sides of the same coin. Together they form the core of what the
digest cycle is all about: Reacting to changes in data.

With $watch you can attach something called a watcher to a scope. A watcher is something that is
notified when a change occurs on the scope. You can create a watcher by calling $watch with two
arguments, both of which should be functions:

• A watch function, which specifies the piece of data you’re interested in.
• A listener function which will be called whenever that data changes.

As an Angular user, you actually usually specify a watch expression instead of a watch function. A watch
expression is a string, like “user.firstName”, that you specify in a data binding, a directive attribute, or
in JavaScript code. It is parsed and compiled into a watch function by Angular internally. We will imple-
ment this in Part 2 of the book. Until then we’ll use the slightly lower-level approach of providing watch
functions directly.

The other side of the coin is the $digest function. It iterates over all the watchers that have been
attached on the scope, and runs their watch and listener functions accordingly.

To flesh out these building blocks, let’s define a test case which asserts that you can register a
watcher using $watch, and that the watcher’s listener function is invoked when someone calls
$digest.

To make things a bit easier to manage, add the test to a nested describe block in scope_spec.
js. Also create a beforeEach function that initializes the scope, so that we won’t have to repeat it
for each test:

test/scope_spec.js
describe('Scope', function() {

 it('can be constructed and used as an object', function() {
 var scope = new Scope();
 scope.aProperty = 1;

 expect(scope.aProperty).toBe(1);

https://github.com/teropa/build-your-own-angularjs/issues

Watching Object Properties: $watch And $digest 6

35 Errata© Tero Parviainen 2016

 });

 describe('digest', function() {

 var scope;

 beforeEach(function() {
 scope = new Scope();
 });

 it('calls the listener function of a watch on first $digest', function() {
 var watchFn = function() { return 'wat'; };
 var listenerFn = jasmine.createSpy();
 scope.$watch(watchFn, listenerFn);

 scope.$digest();

 expect(listenerFn).toHaveBeenCalled();
 });

 });

});

In the test case we invoke $watch to register a watcher on the scope. We’re not interested in the
watch function just yet, so we just provide one that returns a constant value. As the listener func-
tion, we provide a Jasmine Spy. We then call $digest and check that the listener was indeed
called.

A spy is Jasmine terminology for a kind of mock function. It makes it convenient for us to answer questions
like “Was this function called?” and “What arguments was it called with?”

There are a few things we need to do to make this test case pass. First of all, the Scope needs to
have some place to store all the watchers that have been registered. Let’s add an array for them in
the Scope constructor:
src/scope.js
function Scope() {
 this.$$watchers = [];
}

The double-dollar prefix $$ signifies that this variable should be considered private to the Angular frame-
work, and should not be called from application code.

Now we can define the $watch function. It’ll take the two functions as arguments, and store them
in the $$watchers array. We want every Scope object to have this function, so let’s add it to the
prototype of Scope:

src/scope.js

https://github.com/teropa/build-your-own-angularjs/issues
http://jasmine.github.io/2.0/introduction.html#section-Spies

Checking for Dirty Values 6

36 Errata© Tero Parviainen 2016

Scope.prototype.$watch = function(watchFn, listenerFn) {
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn
 };
 this.$$watchers.push(watcher);
};

Finally there is the $digest function. For now, let’s define a very simple version of it, which just
iterates over all registered watchers and calls their listener functions:
src/scope.js
Scope.prototype.$digest = function() {
 _.forEach(this.$$watchers, function(watcher) {
 watcher.listenerFn();
 });
};

This function is using the forEach function from LoDash, so we need to require LoDash at the
top of the file:
src/scope.js
'use strict';

var _ = require('lodash');

// ...

The test passes, but this version of $digest isn’t very useful yet. What we really want is to check
if the values specified by the watch functions have actually changed, and only then call the respec-
tive listener functions. This is called dirty-checking.

Checking for Dirty Values

As described above, the watch function of a watcher should return the piece of data whose chang-
es we are interested in. Usually that piece of data is something that exists on the scope. To make
accessing the scope more convenient, we can pass it as an argument to watch functions. The watch
functions may then easily grab and return something from the scope:

function(scope) {
 return scope.firstName;
}

This is the general form that watch functions usually take: Pluck some value from the scope and
return it.

Let’s add a test case for checking that the scope is indeed provided as an argument to the watch
function:

https://github.com/teropa/build-your-own-angularjs/issues

Checking for Dirty Values 6

37 Errata© Tero Parviainen 2016

test/scope_spec.js
it('calls the watch function with the scope as the argument', function() {
 var watchFn = jasmine.createSpy();
 var listenerFn = function() { };
 scope.$watch(watchFn, listenerFn);

 scope.$digest();

 expect(watchFn).toHaveBeenCalledWith(scope);
});

This time we create a Spy for the watch function and use it to check the watch invocation.

The simplest way to make this test pass is to modify $digest to do something like this:
src/scope.js
Scope.prototype.$digest = function() {
 var self = this;
 _.forEach(this.$$watchers, function(watcher) {
 watcher.watchFn(self);
 watcher.listenerFn();
 });
};

The var self = this; pattern is something we’ll be using throughout the book to get around JavaS-
cript’s peculiar binding of this. There is a good A List Apart article that describes the problem and the
pattern.

Of course, this is not quite what we’re after. The $digest function’s job is really to call the watch
function and compare its return value to whatever the same function returned the last time. If the
values differ, the watcher is dirty and its listener function should be called. Let’s go ahead and add
a test case for that:
test/scope_spec.js
it('calls the listener function when the watched value changes', function() {
 scope.someValue = 'a';
 scope.counter = 0;

 scope.$watch(
 function(scope) { return scope.someValue; },
 function(newValue, oldValue, scope) { scope.counter++; }
);

 expect(scope.counter).toBe(0);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.someValue = 'b';

https://github.com/teropa/build-your-own-angularjs/issues
http://alistapart.com/article/getoutbindingsituations

Checking for Dirty Values 6

38 Errata© Tero Parviainen 2016

 expect(scope.counter).toBe(1);

 scope.$digest();
 expect(scope.counter).toBe(2);

});

We first plop two attributes on the scope: A string and a number. We then attach a watcher that
watches the string and increments the number when the string changes. The expectation is that the
counter is incremented once during the first $digest, and then once every subsequent $digest
if the value has changed.

Notice that we also specify the contract of the listener function: Just like the watch function, it
takes the scope as an argument. It’s also given the new and old values of the watcher. This makes
it easier for application developers to check what exactly has changed.

To make this work, $digest has to remember what the last value of each watch function was.
Since we already have an object for each watcher, we can conveniently store the last value there.
Here’s a new definition of $digest that checks for value changes for each watch function:

src/scope.js
Scope.prototype.$digest = function() {
 var self = this;
 var newValue, oldValue;
 _.forEach(this.$$watchers, function(watcher) {
 newValue = watcher.watchFn(self);
 oldValue = watcher.last;
 if (newValue !== oldValue) {
 watcher.last = newValue;
 watcher.listenerFn(newValue, oldValue, self);
 }
 });
};

For each watcher, we compare the return value of the watch function to what we’ve previously
stored in the last attribute. If the values differ, we call the listener function, passing it both the
new and old values, as well as the scope object itself. Finally, we set the last attribute of the
watcher to the new return value, so we’ll be able to compare to that next time.

We’ve now implemented the essence of Angular scopes: Attaching watches and running them in a
digest.

We can also already see a couple of important performance characteristics that Angular scopes
have:

• Attaching data to a scope does not by itself have an impact on performance. If no watcher is
watching a property, it doesn’t matter if it’s on the scope or not. Angular does not iterate over

https://github.com/teropa/build-your-own-angularjs/issues

Initializing Watch Values 6

39 Errata© Tero Parviainen 2016

the properties of a scope. It iterates over the watches.
• Every watch function is called during every $digest. For this reason, it’s a good idea to pay

attention to the number of watches you have, as well as the performance of each individual
watch function or expression.

Initializing Watch Values

Comparing a watch function’s return value to the previous one stored in last works fine most of
the time, but what does it do on the first time a watch is executed? Since we haven’t set last at
that point, it’s going to be undefined. That doesn’t quite work when the first legitimate value of the
watch is also undefined. The listener should be invoked in this case as well, but it doesn’t because
our current implementation doesn’t consider an initial undefined value as a “change”:

test/scope_spec.js
it('calls listener when watch value is first undefined', function() {
 scope.counter = 0;

 scope.$watch(
 function(scope) { return scope.someValue; },
 function(newValue, oldValue, scope) { scope.counter++; }
);

 scope.$digest();
 expect(scope.counter).toBe(1);
});

We should be calling the listener function here too. What we need is to initialize the last attribute
to something we can guarantee to be unique, so that it’s different from anything a watch function
might return, including undefined.

A function fits this purpose well, since JavaScript functions are so-called reference values - they are
not considered equal to anything but themselves. Let’s introduce a function value on the top level
of scope.js:

src/scope.js
function initWatchVal() { }

Now we can stick this function into the last attribute of new watches:

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn) {
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn,
 last: initWatchVal
 };

https://github.com/teropa/build-your-own-angularjs/issues

Getting Notified Of Digests 6

40 Errata© Tero Parviainen 2016

 this.$$watchers.push(watcher);
};
This way new watches will always have their listener functions invoked, whatever their watch func-
tions might return.

What also happens though is the initWatchVal gets handed to listeners as the old value of the
watch. We’d rather not leak that function outside of scope.js. For new watches, we should in-
stead provide the new value as the old value:

test/scope_spec.js
it('calls listener with new value as old value the first time', function() {
 scope.someValue = 123;
 var oldValueGiven;

 scope.$watch(
 function(scope) { return scope.someValue; },
 function(newValue, oldValue, scope) { oldValueGiven = oldValue; }
);

 scope.$digest();
 expect(oldValueGiven).toBe(123);
});

In $digest, as we call the listener, we just check if the old value is the initial value and replace it
if so:

src/scope.js
Scope.prototype.$digest = function() {
 var self = this;
 var newValue, oldValue;
 _.forEach(this.$$watchers, function(watcher) {
 newValue = watcher.watchFn(self);
 oldValue = watcher.last;
 if (newValue !== oldValue) {
 watcher.last = newValue;
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 self);
 }
 });
};

Getting Notified Of Digests

If you would like to be notified whenever an Angular scope is digested, you can make use of the
fact that each watch is executed during each digest: Just register a watch without a listener func-
tion. Let’s add a test case for this.

https://github.com/teropa/build-your-own-angularjs/issues

Keeping The Digest Going While It Stays Dirty 6

41 Errata© Tero Parviainen 2016

test/scope_spec.js
it('may have watchers that omit the listener function', function() {
 var watchFn = jasmine.createSpy().and.returnValue('something');
 scope.$watch(watchFn);

 scope.$digest();

 expect(watchFn).toHaveBeenCalled();
});

The watch doesn’t necessarily have to return anything in a case like this, but it can, and in this
case it does. When the scope is digested our current implementation throws an exception. That’s
because it’s trying to invoke a non-existing listener function. To add support for this use case, we
need to check if the listener is omitted in $watch, and if so, put an empty no-op function in its
place:
src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn) {
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn || function() { },
 last: initWatchVal
 };
 this.$$watchers.push(watcher);
};

If you use this pattern, do keep in mind that Angular will look at the return value of watchFn
even when there is no listenerFn. If you return a value, that value is subject to dirty-checking.
To make sure your usage of this pattern doesn’t cause extra work, just don’t return anything. In
that case the value of the watch will be constantly undefined.

Keeping The Digest Going While It Stays Dirty

The core of the implementation is now there, but we’re still far from done. For instance, there’s a
fairly typical scenario we’re not supporting yet: The listener functions themselves may also change
properties on the scope. If this happens, and there’s another watcher looking at the property that
just changed, it might not notice the change during the same digest pass:

test/scope_spec.js
it('triggers chained watchers in the same digest', function() {
 scope.name = 'Jane';

 scope.$watch(
 function(scope) { return scope.nameUpper; },
 function(newValue, oldValue, scope) {
 if (newValue) {
 scope.initial = newValue.substring(0, 1) + '.';
 }

https://github.com/teropa/build-your-own-angularjs/issues

Keeping The Digest Going While It Stays Dirty 6

42 Errata© Tero Parviainen 2016

 }
);

 scope.$watch(
 function(scope) { return scope.name; },
 function(newValue, oldValue, scope) {
 if (newValue) {
 scope.nameUpper = newValue.toUpperCase();
 }
 }
);

 scope.$digest();
 expect(scope.initial).toBe('J.');

 scope.name = 'Bob';
 scope.$digest();
 expect(scope.initial).toBe('B.');

});

We have two watchers on this scope: One that watches the nameUpper property, and assigns ini-
tial based on that, and another that watches the name property and assigns nameUpper based on
that. What we expect to happen is that when the name on the scope changes, the nameUpper and
initial attributes are updated accordingly during the digest. This, however, is not the case.

We’re deliberately ordering the watches so that the dependent one is registered first. If the order was
reversed, the test would pass right away because the watches would happen to be in just the right order.
However, dependencies between watches do not rely on their registration order, as we’re about to see.

What we need to do is to modify the digest so that it keeps iterating over all watches until the
watched values stop changing. Doing multiple passes is the only way we can get changes applied for
watchers that rely on other watchers.

First, let’s rename our current $digest function to $$digestOnce, and adjust it so that it runs all
the watchers once, and returns a boolean value that determines whether there were any changes or
not:

src/scope.js
Scope.prototype.$$digestOnce = function() {
 var self = this;
 var newValue, oldValue, dirty;
 _.forEach(this.$$watchers, function(watcher) {
 newValue = watcher.watchFn(self);
 oldValue = watcher.last;
 if (newValue !== oldValue) {
 watcher.last = newValue;
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),

https://github.com/teropa/build-your-own-angularjs/issues

Giving Up On An Unstable Digest 6

43 Errata© Tero Parviainen 2016

 self);
 dirty = true;
 }
 });
 return dirty;
};

Then, let’s redefine $digest so that it runs the “outer loop”, calling $$digestOnce as long as
changes keep occurring:

src/scope.js
Scope.prototype.$digest = function() {
 var dirty;
 do {
 dirty = this.$$digestOnce();
 } while (dirty);
};

$digest now runs all watchers at least once. If, on the first pass, any of the watched values has
changed, the pass is marked dirty, and all watchers are run for a second time. This goes on until
there’s a full pass where none of the watched values has changed and the situation is deemed sta-
ble.

Angular scopes don’t actually have a function called $$digestOnce. Instead, the digest loops are all nest-
ed within $digest. Our goal is clarity over performance, so for our purposes it makes sense to extract the
inner loop to a function.

We can now make another important observation about Angular watch functions: They may be
run many times per each digest pass. This is why people often say watches should be idempotent:
A watch function should have no side effects, or only side effects that can happen any number of
times. If, for example, a watch function fires an Ajax request, there are no guarantees about how
many requests your app is making.

Giving Up On An Unstable Digest

In our current implementation there’s one glaring omission: What happens if there are two watch-
es looking at changes made by each other? That is, what if the state never stabilizes? Such a situa-
tion is shown by the test below:

test/scope_spec.js
it('gives up on the watches after 10 iterations', function() {
 scope.counterA = 0;
 scope.counterB = 0;

 scope.$watch(
 function(scope) { return scope.counterA; },

https://github.com/teropa/build-your-own-angularjs/issues
http://en.wikipedia.org/wiki/Idempotence

Giving Up On An Unstable Digest 6

44 Errata© Tero Parviainen 2016

 function(newValue, oldValue, scope) {
 scope.counterB++;
 }
);

 scope.$watch(
 function(scope) { return scope.counterB; },
 function(newValue, oldValue, scope) {
 scope.counterA++;
 }
);

 expect((function() { scope.$digest(); })).toThrow();

});

We expect scope.$digest to throw an exception, but it never does. In fact, the test never finish-
es. That’s because the two counters are dependent on each other, so on each iteration of $$di-
gestOnce one of them is going to be dirty.

Notice that we’re not calling the scope.$digest function directly. Instead we’re passing a function to
Jasmine’s expect function. It will call that function for us, so that it can check that it throws an exception
like we expect.

Since this test will never finish running you’ll need to kill the Karma process and start it again once we’ve
fixed the issue.

What we need to do is keep running the digest for some acceptable number of iterations. If the
scope is still changing after those iterations we have to throw our hands up and declare it’s proba-
bly never going to stabilize. At that point we might as well throw an exception, since whatever the
state of the scope is it’s unlikely to be what the user intended.

This maximum amount of iterations is called the TTL (short for “Time To Live”). By default it is
set to 10. The number may seem small, but bear in mind this is a performance sensitive area since
digests happen often and each digest runs all watch functions. It’s also unlikely that a user will
have more than 10 watches chained back-to-back.

It is actually possible to adjust the TTL in Angular. We will return to this later when we discuss providers
and dependency injection.

Let’s go ahead and add a loop counter to the outer digest loop. If it reaches the TTL, we’ll throw
an exception:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;

https://github.com/teropa/build-your-own-angularjs/issues

Short-Circuiting The Digest When The Last Watch Is Clean 6

45 Errata© Tero Parviainen 2016

 var dirty;
 do {
 dirty = this.$$digestOnce();
 if (dirty && !(ttl--)) {
 throw '10 digest iterations reached';
 }
 } while (dirty);
};

This updated version causes our interdependent watch example to throw an exception, as our test
expected. This should keep the digest from running off on us.

Short-Circuiting The Digest When The Last Watch Is
Clean

In the current implementation, we keep iterating over the watch collection until we have witnessed
one full round where every watch was clean (or where the TTL was reached).

Since there can be a large amount of watches in a digest loop, it is important to execute them as
few times as possible. That is why we’re going to apply one specific optimization to the digest loop.

Consider a situation with 100 watches on a scope. When we digest the scope, only the first of
those 100 watches happens to be dirty. That single watch “dirties up” the whole digest round, and
we have to do another round. On the second round, none of the watches are dirty and the digest
ends. But we had to do 200 watch executions before we were done!

What we can do to cut the number of executions in half is to keep track of the last watch we have
seen that was dirty. Then, whenever we encounter a clean watch, we check whether it’s also the
last watch we have seen that was dirty. If so, it means a full round has passed where no watch has
been dirty. In that case there is no need to proceed to the end of the current round. We can exit
immediately instead. Here’s a test case for just that:

test/scope_spec.js
it('ends the digest when the last watch is clean', function() {

 scope.array = _.range(100);
 var watchExecutions = 0;

 _.times(100, function(i) {
 scope.$watch(
 function(scope) {
 watchExecutions++;
 return scope.array[i];
 },
 function(newValue, oldValue, scope) {
 }

https://github.com/teropa/build-your-own-angularjs/issues

Short-Circuiting The Digest When The Last Watch Is Clean 6

46 Errata© Tero Parviainen 2016

);
 });

 scope.$digest();
 expect(watchExecutions).toBe(200);

 scope.array[0] = 420;
 scope.$digest();
 expect(watchExecutions).toBe(301);

});

We first put an array of 100 items on the scope. We then attach a 100 watches, each watching a
single item in the array. We also add a local variable that’s incremented whenever a watch is run,
so that we can keep track of the total number of watch executions.

We then run the digest once, just to initialize the watches. During that digest each watch is run
twice.

Then we make a change to the very first item in the array. If the short-circuiting optimization were
in effect, that would mean the digest would short-circuit on the first watch during second iteration
and end immediately, making the number of total watch executions just 301 and not 400.

We don’t yet have LoDash available in scope_spec.js, so we need to require it in in order to use
the range and times functions:

test/scope_spec.js
'use strict';

var _ = require('lodash');
var Scope = require('../src/scope');

As mentioned, this optimization can be implemented by keeping track of the last dirty watch.
Let’s add a field for it to the Scope constructor:
src/scope.js
function Scope() {
 this.$$watchers = [];
 this.$$lastDirtyWatch = null;
}

Now, whenever a digest begins, let’s set this field to null:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$$lastDirtyWatch = null;

https://github.com/teropa/build-your-own-angularjs/issues

Short-Circuiting The Digest When The Last Watch Is Clean 6

47 Errata© Tero Parviainen 2016

 do {
 dirty = this.$$digestOnce();
 if (dirty && !(ttl--)) {
 throw '10 digest iterations reached';
 }
 } while (dirty);
};

In $$digestOnce, whenever we encounter a dirty watch, let’s assign it to this field:

src/scope.js
Scope.prototype.$$digestOnce = function() {
 var self = this;
 var newValue, oldValue, dirty;
 _.forEach(this.$$watchers, function(watcher) {
 newValue = watcher.watchFn(self);
 oldValue = watcher.last;
 if (newValue !== oldValue) {
 self.$$lastDirtyWatch = watcher;
 watcher.last = newValue;
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 self);
 dirty = true;
 }
 });
 return dirty;
};

Also in $$digestOnce, whenever we encounter a clean watch that also happens to have been the
last dirty watch we saw, let’s break out of the loop right away and return a falsy value to let the
outer $digest loop know it should also stop iterating:

src/scope.js
Scope.prototype.$$digestOnce = function() {
 var self = this;
 var newValue, oldValue, dirty;
 _.forEach(this.$$watchers, function(watcher) {
 newValue = watcher.watchFn(self);
 oldValue = watcher.last;
 if (newValue !== oldValue) {
 self.$$lastDirtyWatch = watcher;
 watcher.last = newValue;
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 self);
 dirty = true;
 } else if (self.$$lastDirtyWatch === watcher) {
 return false;
 }

https://github.com/teropa/build-your-own-angularjs/issues

Short-Circuiting The Digest When The Last Watch Is Clean 6

48 Errata© Tero Parviainen 2016

 });
 return dirty;
};

Since we won’t have seen any dirty watches this time, dirty will be undefined, and that’ll be the
return value of the function.

Explicitly returning false in a _.forEach loop causes LoDash to short-circuit the loop and exit immme-
diately.

The optimization is now in effect. There’s one corner case we need to cover though, which we can
tease out by adding a watch from the listener of another watch:

test/scope_spec.js
it('does not end digest so that new watches are not run', function() {

 scope.aValue = 'abc';
 scope.counter = 0;

 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);
});

The second watch is not being executed. The reason is that on the second digest iteration, just
before the new watch would run, we’re ending the digest because we’re detecting the first watch as
the last dirty watch that’s now clean. Let’s fix this by re-setting $$lastDirtyWatch when a watch
is added, effectively disabling the optimization:

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn) {
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn || function() { },
 last: initWatchVal
 };
 this.$$watchers.push(watcher);
 this.$$lastDirtyWatch = null;

https://github.com/teropa/build-your-own-angularjs/issues

Value-Based Dirty-Checking 6

49 Errata© Tero Parviainen 2016

};

Now our digest cycle is potentially a lot faster than before. In a typical application, this optimiza-
tion may not always eliminate iterations as effectively as in our example, but it does well enough
on average that the Angular team has decided to include it.

Now, let’s turn our attention to how we’re actually detecting that something has changed.

Value-Based Dirty-Checking

For now we’ve been comparing the old value to the new with the strict equality operator ===. This
is fine in most cases, as it detects changes to all primitives (numbers, strings, etc.) and also detects
when an object or an array changes to a new one. But there is also another way Angular can detect
changes, and that’s detecting when something inside an object or an array changes. That is, you can
watch for changes in value, not just in reference.

This kind of dirty-checking is activated by providing a third, optional boolean flag to the $watch
function. When the flag is true, value-based checking is used. Let’s add a test that expects this to
be the case:

test/scope_spec.js
it('compares based on value if enabled', function() {
 scope.aValue = [1, 2, 3];
 scope.counter = 0;

 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 },
 true
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.aValue.push(4);
 scope.$digest();
 expect(scope.counter).toBe(2);
});

The test increments a counter whenever the scope.aValue array changes. When we push an item
to the array, we’re expecting it to be noticed as a change, but it isn’t. scope.aValue is still the
same array, it just has different contents now.

Let’s first redefine $watch to take the boolean flag and store it in the watcher:

https://github.com/teropa/build-your-own-angularjs/issues

Value-Based Dirty-Checking 6

50 Errata© Tero Parviainen 2016

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn, valueEq) {
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn || function() { },
 valueEq: !!valueEq,
 last: initWatchVal
 };
 this.$$watchers.push(watcher);
 this.$$lastDirtyWatch = null;
};

All we do is add the flag to the watcher, coercing it to a real boolean by negating it twice. When a
user calls $watch without a third argument, valueEq will be undefined, which becomes false in
the watcher object.

Value-based dirty-checking implies that if the old or new values are objects or arrays we have to it-
erate through everything contained in them. If there’s any difference in the two values, the watcher
is dirty. If the value has other objects or arrays nested within, those will also be recursively com-
pared by value.

Angular ships with its own equal checking function, but we’re going to use the one provided by
Lo-Dash instead because it does everything we need in this book. Let’s define a new function that
takes two values and the boolean flag, and compares the values accordingly:

src/scope.js
Scope.prototype.$$areEqual = function(newValue, oldValue, valueEq) {
 if (valueEq) {
 return _.isEqual(newValue, oldValue);
 } else {
 return newValue === oldValue;
 }
};

In order to notice changes in value, we also need to change the way we store the old value for each
watcher. It isn’t enough to just store a reference to the current value, because any changes made
within that value will also be applied to the reference we’re holding. We would never notice any
changes since essentially $$areEqual would always get two references to the same value. For this
reason we need to make a deep copy of the value and store that instead.

Just like with the equality check, Angular ships with its own deep copying function, but we’ll in-
stead just use the one that comes with Lo-Dash.

Let’s update $digestOnce so that it uses the new $$areEqual function, and also copies the last
reference if needed:

https://github.com/teropa/build-your-own-angularjs/issues
https://github.com/angular/angular.js/blob/8d4e3fdd31eabadd87db38aa0590253e14791956/src/Angular.js#L812
http://lodash.com/docs#isEqual
http://lodash.com/docs#isEqual
https://github.com/angular/angular.js/blob/8d4e3fdd31eabadd87db38aa0590253e14791956/src/Angular.js#L725
http://lodash.com/docs#cloneDeep

NaNs 6

51 Errata© Tero Parviainen 2016

src/scope.js
Scope.prototype.$$digestOnce = function() {
 var self = this;
 var newValue, oldValue, dirty;
 _.forEach(this.$$watchers, function(watcher) {
 newValue = watcher.watchFn(self);
 oldValue = watcher.last;
 if (!self.$$areEqual(newValue, oldValue, watcher.valueEq)) {
 self.$$lastDirtyWatch = watcher;
 watcher.last = (watcher.valueEq ? _.cloneDeep(newValue) : newValue);
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 self);
 dirty = true;
 } else if (self.$$lastDirtyWatch === watcher) {
 return false;
 }
 });
 return dirty;
};

Now our code supports both kinds of equality-checking, and our test passes.

Checking by value is obviously a more involved operation than just checking a reference. Some-
times a lot more involved. Walking a nested data structure takes time, and holding a deep copy of
it also takes up memory. That’s why Angular does not do value-based dirty checking by default.
You need to explicitly set the flag to enable it.

There’s also a third dirty-checking mechanism Angular provides: Collection watching. We will implement
it in Chapter 3.

Before we’re done with value comparison, there’s one more JavaScript quirk we need to handle.

NaNs

In JavaScript, NaN (Not-a-Number) is not equal to itself. This may sound strange, and that’s be-
cause it is. If we don’t explicitly handle NaN in our dirty-checking function, a watch that has NaN as
a value will always be dirty.

The equality characteristics of NaN really come from the IEEE standard for floating point numbers, and
apply to many languages other than JavaScript too. There’s an interesting discussion about this on Stack
Overflow.

For value-based dirty-checking this case is already handled for us by the Lo-Dash isEqual func-
tion. For reference-based checking we need to handle it ourselves. This can be illustrated using a
test:

https://github.com/teropa/build-your-own-angularjs/issues
http://stackoverflow.com/questions/1565164/what-is-the-rationale-for-all-comparisons-returning-false-for-ieee754-nan-values

Handling Exceptions 6

52 Errata© Tero Parviainen 2016

test/scope_spec.js
it('correctly handles NaNs', function() {
 scope.number = 0/0; // NaN
 scope.counter = 0;

 scope.$watch(
 function(scope) { return scope.number; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.$digest();
 expect(scope.counter).toBe(1);
});

We’re watching a value that happens to be NaN and incrementing a counter when it changes. We
expect the counter to increment once on the first $digest and then stay the same. Instead, as we
run the test we’re greeted by the “TTL reached” exception. The scope isn’t stabilizing because NaN
is always considered to be different from the last value.

Let’s fix that by tweaking the $$areEqual function:

src/scope.js
Scope.prototype.$$areEqual = function(newValue, oldValue, valueEq) {
 if (valueEq) {
 return _.isEqual(newValue, oldValue);
 } else {
 return newValue === oldValue ||
 (typeof newValue === 'number' && typeof oldValue === 'number' &&
 isNaN(newValue) && isNaN(oldValue));
 }
};

Now the watch behaves as expected with NaNs as well.

Handling Exceptions

Our dirty checking implementation is becoming something that resembles the one in Angular. It
is, however, quite brittle. That’s mainly because we haven’t put much thought into exception han-
dling.

If an exception occurs in a watch function, our current implementation will just give up and stop

https://github.com/teropa/build-your-own-angularjs/issues

Handling Exceptions 6

53 Errata© Tero Parviainen 2016

whatever it’s doing. Angular’s implementation, however, is actually much more robust than that.
Exceptions thrown during a digest are caught and logged, and the operation then resumed where it
left off.

Angular actually forwards exceptions to a special $exceptionHandler service. Since such a service is
not implemented in this book, we’ll simply log the exceptions to the console.

In watches there are two points where exceptions can happen: In the watch functions and in the
listener functions. In either case, we want to log the exception and continue with the next watch as
if nothing had happened. Here are two test cases for the two functions:

test/scope_spec.js
it('catches exceptions in watch functions and continues', function() {
 scope.aValue = 'abc';
 scope.counter = 0;

 scope.$watch(
 function(scope) { throw 'Error'; },
 function(newValue, oldValue, scope) { }
);
 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);
});

it('catches exceptions in listener functions and continues', function() {
 scope.aValue = 'abc';
 scope.counter = 0;

 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 throw 'Error';
 }
);
 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);
});

https://github.com/teropa/build-your-own-angularjs/issues

Destroying A Watch 6

54 Errata© Tero Parviainen 2016

In both cases we define two watches, the first of which throws an exception. We check that the
second watch is still executed.

To make these tests pass we need to modify the $$digestOnce function and wrap the execution
of each watch in a try...catch clause:

src/scope.js
Scope.prototype.$$digestOnce = function() {
 var self = this;
 var newValue, oldValue, dirty;
 _.forEach(this.$$watchers, function(watcher) {
 try {
 newValue = watcher.watchFn(self);
 oldValue = watcher.last;
 if (!self.$$areEqual(newValue, oldValue, watcher.valueEq)) {
 self.$$lastDirtyWatch = watcher;
 watcher.last = (watcher.valueEq ? _.cloneDeep(newValue) : newValue);
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 self);
 dirty = true;
 } else if (self.$$lastDirtyWatch === watcher) {
 return false;
 }
 } catch (e) {
 console.error(e);
 }
 });
 return dirty;
};

Our digest cycle is now a lot more robust when it comes to exceptions!

Destroying A Watch

When you register a watch, most often you want it to stay active as long as the scope itself does,
so you don’t ever really explicitly remove it. There are cases, however, where you want to destroy
a particular watch while still keeping the scope operational. That means we need a removal opera-
tion for watches.

The way Angular implements this is actually quite clever: The $watch function in Angular has a
return value. It is a function that, when invoked, destroys the watch that was registered. If a user
wants to be able to remove a watch later, they just need to keep hold of the function returned
when they registered the watch, and then call it once the watch is no longer needed:

https://github.com/teropa/build-your-own-angularjs/issues

Destroying A Watch 6

55 Errata© Tero Parviainen 2016

test/scope_spec.js
it('allows destroying a $watch with a removal function', function() {
 scope.aValue = 'abc';
 scope.counter = 0;

 var destroyWatch = scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.aValue = 'def';
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.aValue = 'ghi';
 destroyWatch();
 scope.$digest();
 expect(scope.counter).toBe(2);
});

To implement this, we need to return a function that removes the watch from the $$watchers
array:

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn, valueEq) {
 var self = this;
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn,
 valueEq: !!valueEq,
 last: initWatchVal
 };
 self.$$watchers.push(watcher);
 this.$$lastDirtyWatch = null;
 return function() {
 var index = self.$$watchers.indexOf(watcher);
 if (index >= 0) {
 self.$$watchers.splice(index, 1);
 }
 };
};

While that takes care of the watch removal itself, there are a few corner cases we need to deal with
before we have a robust implementation. They all have to do with the not too uncommon use case
of removing a watch during a digest.

https://github.com/teropa/build-your-own-angularjs/issues

Destroying A Watch 6

56 Errata© Tero Parviainen 2016

First of all, a watch might remove itself in its own watch or listener function. This should not affect
other watches:

test/scope_spec.js
it('allows destroying a $watch during digest', function() {
 scope.aValue = 'abc';

 var watchCalls = [];

 scope.$watch(
 function(scope) {
 watchCalls.push('first');
 return scope.aValue;
 }
);

 var destroyWatch = scope.$watch(
 function(scope) {
 watchCalls.push('second');
 destroyWatch();
 }
);

 scope.$watch(
 function(scope) {
 watchCalls.push('third');
 return scope.aValue;
 }
);

 scope.$digest();
 expect(watchCalls).toEqual(['first', 'second', 'third', 'first', 'third']);
});

In the test we have three watches. The middlemost watch removes itself when it is first called, leav-
ing only the first and the third watch. We verify that the watches are iterated in the correct order:
During the first turn of the loop each watch is executed once. Then, since the digest was dirty,
each watch is executed again, but this time the second watch is no longer there.

What’s happening instead is that when the second watch removes itself, the watch collection gets
shifted to the left, causing $$digestOnce to skip the third watch during that round.

The trick is to reverse the $$watches array, so that new watches are added to the beginning of it
and iteration is done from the end to the beginning. When a watcher is then removed, the part of
the watch array that gets shifted has already been handled during that digest iteration and it won’t
affect the rest of it.

When adding a watch, we should use unshift instead of push:

https://github.com/teropa/build-your-own-angularjs/issues

Destroying A Watch 6

57 Errata© Tero Parviainen 2016

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn, valueEq) {
 var self = this;
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn || function() { },
 last: initWatchVal,
 valueEq: !!valueEq
 };
 this.$$watchers.unshift(watcher);
 this.$$lastDirtyWatch = null;
 return function() {
 var index = self.$$watchers.indexOf(watcher);
 if (index >= 0) {
 self.$$watchers.splice(index, 1);
 }
 };
};

Then, when iterating, we should use _.forEachRight instead of _.forEach to reverse the itera-
tion order:

src/scope.js
Scope.prototype.$$digestOnce = function() {
 var self = this;
 var newValue, oldValue, dirty;
 _.forEachRight(this.$$watchers, function(watcher) {
 try {
 newValue = watcher.watchFn(self);
 oldValue = watcher.last;
 if (!self.$$areEqual(newValue, oldValue, watcher.valueEq)) {
 self.$$lastDirtyWatch = watcher;
 watcher.last = (watcher.valueEq ? _.cloneDeep(newValue) : newValue);
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 self);
 dirty = true;
 } else if (self.$$lastDirtyWatch === watcher) {
 return false;
 }
 } catch (e) {
 console.error(e);
 }
 });
 return dirty;
};

The next case is a watch removing another watch. Observe the following test case:

test/scope_spec.js
it('allows a $watch to destroy another during digest', function() {

https://github.com/teropa/build-your-own-angularjs/issues

Destroying A Watch 6

58 Errata© Tero Parviainen 2016

 scope.aValue = 'abc';
 scope.counter = 0;

 scope.$watch(
 function(scope) {
 return scope.aValue;
 },
 function(newValue, oldValue, scope) {
 destroyWatch();
 }
);

 var destroyWatch = scope.$watch(
 function(scope) { },
 function(newValue, oldValue, scope) { }
);

 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);
});

This test case fails. The culprit is our short-circuiting optimization. Recall that in $$digestOnce
we see whether the current watch was the last dirty one seen and is now clean. If so, we end the
digest. What happens in this test case is:

1. The first watch is executed. It is dirty, so it is stored in $$lastDirtyWatch and its listener is
executed. The listener destroys the second watch.

2. The first watch is executed again, because it has moved one position down in the watcher array.
This time it is clean, and since it is also in $$lastDirtyWatch, the digest ends. We never get
to the third watch.

We should eliminate the short-circuiting optimization on watch removal so that this does not hap-
pen:

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn, valueEq) {
 var self = this;
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn,
 valueEq: !!valueEq,
 last: initWatchVal

https://github.com/teropa/build-your-own-angularjs/issues

Destroying A Watch 6

59 Errata© Tero Parviainen 2016

 };
 self.$$watchers.unshift(watcher);
 this.$$lastDirtyWatch = null;
 return function() {
 var index = self.$$watchers.indexOf(watcher);
 if (index >= 0) {
 self.$$watchers.splice(index, 1);
 self.$$lastDirtyWatch = null;
 }
 };
};

The final case to consider is when one watch removes several watches:

test/scope_spec.js
it('allows destroying several $watches during digest', function() {
 scope.aValue = 'abc';
 scope.counter = 0;

 var destroyWatch1 = scope.$watch(
 function(scope) {
 destroyWatch1();
 destroyWatch2();
 }
);

 var destroyWatch2 = scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(0);
});

The first watch destroys not only itself, but also a second watch that would have been executed
next. While we don’t expect that second watch to execute, we don’t expect an exception to be
thrown either, which is what actually happens.

What we need to do is check that the current watch actually exists while we’re iterating:

Scope.prototype.$$digestOnce = function() {
 var self = this;
 var newValue, oldValue, dirty;
 _.forEachRight(this.$$watchers, function(watcher) {
 try {
 if (watcher) {
 newValue = watcher.watchFn(self);

https://github.com/teropa/build-your-own-angularjs/issues

Summary 6

60 Errata© Tero Parviainen 2016

 oldValue = watcher.last;
 if (!self.$$areEqual(newValue, oldValue, watcher.valueEq)) {
 self.$$lastDirtyWatch = watcher;
 watcher.last = (watcher.valueEq ? _.cloneDeep(newValue) : newValue);
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 self);
 dirty = true;
 } else if (self.$$lastDirtyWatch === watcher) {
 return false;
 }
 }
 } catch (e) {
 console.error(e);
 }
 });
 return dirty;
};

And now we can rest assured our digest will keep on running regardless of watches being re-
moved.

Summary

We’ve already come a long way, and have a perfectly usable implementation of an Angular-style
dirty-checking scope system. In the process you have learned about:

• The two-sided process underlying Angular’s dirty-checking: $watch and $digest.
• The dirty-checking loop and the TTL mechanism for short-circuiting it.
• The difference between reference-based and value-based comparison.
• Exception handling in the Angular digest.
• Destroying watches so they won’t get executed again.

https://github.com/teropa/build-your-own-angularjs/issues

 7

61 Errata© Tero Parviainen 2016

Chapter 2

Scope Methods

$eval - Evaluating Code In The Context of A Scope 7

62 Errata© Tero Parviainen 2016

We now have a basic dirty-checking system implemented in terms of $watch and $digest, but
this is far from everything that scopes have to offer.

In this chapte we’ll add several ways one can access scopes to evaluate code and to cause
dirty-checking to be triggered. We’ll also see how to implement $watchGroup, which enables
watching several expressions at the same time.

Download the code for the starting point of this chapter.

$eval - Evaluating Code In The Context of A Scope

There are a few ways in which Angular lets you execute some code in the context of a scope.
The simplest of these is $eval. It takes a function as an argument and immediately executes that
function giving it the scope itself as an argument. It then returns whatever the function returned.
$eval also takes an optional second argument, which it just passes as-is to the function.

Here are a couple of unit tests showing how one can use $eval. We can put them in a new de-
scribe block:

test/scope_spec.js
describe('$eval', function() {

 var scope;

 beforeEach(function() {
 scope = new Scope();
 });

 it('executes $evaled function and returns result', function() {
 scope.aValue = 42;

 var result = scope.$eval(function(scope) {
 return scope.aValue;
 });

 expect(result).toBe(42);
 });

 it('passes the second $eval argument straight through', function() {
 scope.aValue = 42;

 var result = scope.$eval(function(scope, arg) {
 return scope.aValue + arg;
 }, 2);

 expect(result).toBe(44);
 });

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter1-scopes-and-digest

$apply - Integrating External Code With The Digest Cycle 7

63 Errata© Tero Parviainen 2016

});

Implementing $eval is straightforward:

src/scope.js
Scope.prototype.$eval = function(expr, locals) {
 return expr(this, locals);
};

So what is the purpose of such a roundabout way to invoke a function? One could argue that
$eval makes it just slightly more explicit that some piece of code is dealing specifically with the
contents of a scope. $eval is also a building block for $apply, which is what we’ll be looking at
next.

However, probably the most interesting use of $eval only comes when we start discussing expres-
sions instead of raw functions. Just like with $watch, you can give $eval a string expression. It
will compile that expression and execute it within the context of the scope. We will implement this
in the second part of the book.

$apply - Integrating External Code With The Digest Cycle

Perhaps the best known of all functions on Scope is $apply. It is considered the standard way to
integrate external libraries to Angular. There’s a good reason for this.

$apply takes a function as an argument. It executes that function using $eval, and then kick-
starts the digest cycle by invoking $digest. Here’s a test case for this:

test/scope_spec.js
describe('$apply', function() {

 var scope;

 beforeEach(function() {
 scope = new Scope();
 });

 it('executes the given function and starts the digest', function() {
 scope.aValue = 'someValue';
 scope.counter = 0;

 scope.$watch(
 function(scope) {
 return scope.aValue;
 },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }

$evalAsync - Deferred Execution 7

64 Errata© Tero Parviainen 2016

);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.$apply(function(scope) {
 scope.aValue = 'someOtherValue';
 });
 expect(scope.counter).toBe(2);
 });

});

We have a watch that’s watching scope.aValue and incrementing a counter. We test that the
watch is executed immediately when $apply is invoked.

Here is a simple implementation that makes the test pass:

src/scope.js
Scope.prototype.$apply = function(expr) {
 try {
 return this.$eval(expr);
 } finally {
 this.$digest();
 }
};

The $digest call is done in a finally block to make sure the digest will happen even if the sup-
plied function throws an exception.

The big idea of $apply is that we can execute some code that isn’t aware of Angular. That code
may still change things on the scope, and as long as we wrap the code in $apply we can be sure
that any watches on the scope will pick up on those changes. When people talk about integrating
code to the “Angular lifecycle” using $apply, this is essentially what they mean. There really isn’t
much more to it than that.

$evalAsync - Deferred Execution

In JavaScript it’s very common to execute a piece of code “later” - to defer its execution to some
point in the future when the current execution context has finished. The usual way to do this is by
calling setTimeout() with a zero (or very small) delay parameter.

This pattern applies to Angular applications as well, though the preferred way to do it is by using
the $timeout service that, among other things, integrates the delayed function to the digest cycle
with $apply.

https://developer.mozilla.org/en/docs/Web/API/window.setTimeout
https://goo.gl/7tRW2g

$evalAsync - Deferred Execution 7

65 Errata© Tero Parviainen 2016

But there is also another way to defer code in Angular, and that’s the $evalAsync function
on scopes. $evalAsync takes a function and schedules it to run later but still during the ongoing
digest. You can, for example, defer some code from within a watch listener function, knowing that
while that code is deferred, it’ll still be invoked within the current digest iteration.

The reason why $evalAsync is often preferable to a $timeout with zero delay has to do with
the browser event loop. When you use $timeout to schedule some work, you relinquish control
to the browser, and let it decide when to run the scheduled work. The browser may then choose
to execute other work before it gets to your timeout. It may, for example, render the UI, run click
handlers, or process Ajax responses. $evalAsync, on the other hand, is much more strict about
when the scheduled work is executed. Since it’ll happen during the ongoing digest, it’s guaranteed
to run before the browser decides to do anything else. This difference between $timeout and
$evalAsync is particularly significant when you want to prevent unnecessary rendering: Why let
the browser render DOM changes that are going to be immediately overridden anyway?

Here’s the contract of $evalAsync expressed as a unit test:

test/scope_spec.js
describe('$evalAsync', function() {

 var scope;

 beforeEach(function() {
 scope = new Scope();
 });

 it('executes given function later in the same cycle', function() {
 scope.aValue = [1, 2, 3];
 scope.asyncEvaluated = false;
 scope.asyncEvaluatedImmediately = false;

 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.$evalAsync(function(scope) {
 scope.asyncEvaluated = true;
 });
 scope.asyncEvaluatedImmediately = scope.asyncEvaluated;
 }
);

 scope.$digest();
 expect(scope.asyncEvaluated).toBe(true);
 expect(scope.asyncEvaluatedImmediately).toBe(false);
 });

});

We call $evalAsync in the watcher’s listener function, and then check that the function was exe-

$evalAsync - Deferred Execution 7

66 Errata© Tero Parviainen 2016

cuted during the same digest, but after the listener function had finished executing.

The first thing we need is a way to store the $evalAsync jobs that have been scheduled. We can
do this with an array, which we initialize in the Scope constructor:

src/scope.js
function Scope() {
 this.$$watchers = [];
 this.$$lastDirtyWatch = null;
 this.$$asyncQueue = [];
}

Let’s next define $evalAsync, so that it adds the function to execute on this queue:

src/scope.js
Scope.prototype.$evalAsync = function(expr) {
 this.$$asyncQueue.push({scope: this, expression: expr});
};

The reason we explicitly store the current scope in the queued object is related to scope inheritance, which
we’ll discuss in the next chapter.

We’ve added bookkeeping for the functions that are to be executed, but we still need to actually
execute them. That will happen in $digest: The first thing we do in $digest is consume every-
thing from this queue and invoke all the deferred functions using $eval on the scope that was
attached to the async task:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$$lastDirtyWatch = null;
 do {
 while (this.$$asyncQueue.length) {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 }
 dirty = this.$$digestOnce();
 if (dirty && !(ttl--)) {
 throw '10 digest iterations reached';
 }
 } while (dirty);
};

The implementation guarantees that if you defer a function while the scope is still dirty, the func-
tion will be invoked later but still during the same digest. That satisfies our unit test.

Scheduling $evalAsync from Watch Functions 7

67 Errata© Tero Parviainen 2016

Scheduling $evalAsync from Watch Functions

In the previous section we saw how a function scheduled from a listener function using $eva-
lAsync will be executed in the same digest loop. But what happens if you schedule an $eva-
lAsync from a watch function? Granted, this is something one should not do, since watch function
are supposed to be side-effect free. But it is still possible to do it, so we should make sure it doesn’t
wreak havoc on the digest.

If we consider a situation where a watch function schedules an $evalAsync once, everything
seems to be in order. The following test case passes with our current implementation:

test/scope_spec.js
it('executes $evalAsynced functions added by watch functions', function() {
 scope.aValue = [1, 2, 3];
 scope.asyncEvaluated = false;

 scope.$watch(
 function(scope) {
 if (!scope.asyncEvaluated) {
 scope.$evalAsync(function(scope) {
 scope.asyncEvaluated = true;
 });
 }
 return scope.aValue;
 },
 function(newValue, oldValue, scope) { }
);

 scope.$digest();

 expect(scope.asyncEvaluated).toBe(true);
});

So what’s the problem? As we have seen, we keep running the digest loop as long as there is at
least one watch that is dirty. In the test case above, this is the case in the first iteration, when we
first return scope.aValue from the watch function. That causes the digest to go into the next
iteration, during which it also runs the function we scheduled using $evalAsync. But what if we
schedule an $evalAsync when no watch is actually dirty?

test/scope_spec.js
it('executes $evalAsynced functions even when not dirty', function() {
 scope.aValue = [1, 2, 3];
 scope.asyncEvaluatedTimes = 0;

 scope.$watch(
 function(scope) {
 if (scope.asyncEvaluatedTimes < 2) {
 scope.$evalAsync(function(scope) {

Scheduling $evalAsync from Watch Functions 7

68 Errata© Tero Parviainen 2016

 scope.asyncEvaluatedTimes++;
 });
 }
 return scope.aValue;
 },
 function(newValue, oldValue, scope) { }
);

 scope.$digest();

 expect(scope.asyncEvaluatedTimes).toBe(2);
});

This version does the $evalAsync twice. On the second time, the watch function won’t be dirty
since scope.aValue hasn’t changed. That means the $evalAsync also doesn’t run since the
$digest has terminated. While it would be run on the next digest, we really want it to run during
this one. That means we need to tweak the termination condition in $digest to also see whether
there’s something in the async queue:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$$lastDirtyWatch = null;
 do {
 while (this.$$asyncQueue.length) {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 }
 dirty = this.$$digestOnce();
 if (dirty && !(ttl--)) {
 throw '10 digest iterations reached';
 }
 } while (dirty || this.$$asyncQueue.length);
};

The test passes, but now we’ve introduced another problem. What if a watch function always
schedules something using $evalAsync? We might expect it to cause the iteration limit to be
reached, but it does not:

test/scope_spec.js
it('eventually halts $evalAsyncs added by watches', function() {
 scope.aValue = [1, 2, 3];

 scope.$watch(
 function(scope) {
 scope.$evalAsync(function(scope) { });
 return scope.aValue;
 },

Scope Phases 7

69 Errata© Tero Parviainen 2016

 function(newValue, oldValue, scope) { }
);

 expect(function() { scope.$digest(); }).toThrow();
});

This test case will run forever, since the while loop in $digest never terminates. What we need
to do is also check the status of the async queue in our TTL check:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$$lastDirtyWatch = null;
 do {
 while (this.$$asyncQueue.length) {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 }
 dirty = this.$$digestOnce();
 if ((dirty || this.$$asyncQueue.length) && !(ttl--)) {
 throw '10 digest iterations reached';
 }
 } while (dirty || this.$$asyncQueue.length);
};

Now we can be sure the digest will terminate, regardless of whether it’s running because it’s dirty
or because there’s something in its async queue.

Scope Phases

Another thing $evalAsync does is to schedule a $digest if one isn’t already ongoing. That
means, whenever you call $evalAsync you can be sure the function you’re deferring will be in-
voked “very soon” instead of waiting for something else to trigger a digest.

Though $evalAsync does schedule a $digest, the preferred way to asynchronously execute code within
a digest is using $applyAsync, introduced in the next section.

For this to work there needs to be some way for $evalAsync to check whether a $digest is
already ongoing, because in that case it won’t bother scheduling one. For this purpose, Angular
scopes implement something called a phase, which is simply a string attribute in the scope that
stores information about what’s currently going on.

As a unit test, let’s make an expectation about a field called $$phase, which should be “$di-
gest” during a digest, “$apply” during an apply function invocation, and null at all other
times. Add the unit test to the describe(‘$digest’) test block.

Scope Phases 7

70 Errata© Tero Parviainen 2016

test/scope_spec.js
it('has a $$phase field whose value is the current digest phase', function() {
 scope.aValue = [1, 2, 3];
 scope.phaseInWatchFunction = undefined;
 scope.phaseInListenerFunction = undefined;
 scope.phaseInApplyFunction = undefined;

 scope.$watch(
 function(scope) {
 scope.phaseInWatchFunction = scope.$$phase;
 return scope.aValue;
 },
 function(newValue, oldValue, scope) {
 scope.phaseInListenerFunction = scope.$$phase;
 }
);

 scope.$apply(function(scope) {
 scope.phaseInApplyFunction = scope.$$phase;
 });

 expect(scope.phaseInWatchFunction).toBe('$digest');
 expect(scope.phaseInListenerFunction).toBe('$digest');
 expect(scope.phaseInApplyFunction).toBe('$apply');

});

We don’t need to explicitly call $digest here to digest the scope, because invoking $apply does it for us.

In the Scope constructor, let’s introduce the $$phase field, setting it initially as null:

src/scope.js
function Scope() {
 this.$$watchers = [];
 this.$$lastDirtyWatch = null;
 this.$$asyncQueue = [];
 this.$$phase = null;
}

Next, let’s define a couple of functions for controlling the phase: One for setting it and one for
clearing it. Let’s also add an additional check to make sure we’re not trying to set a phase when
one is already active:

src/scope.js
Scope.prototype.$beginPhase = function(phase) {
 if (this.$$phase) {
 throw this.$$phase + ' already in progress.';
 }
 this.$$phase = phase;

Scope Phases 7

71 Errata© Tero Parviainen 2016

};

Scope.prototype.$clearPhase = function() {
 this.$$phase = null;
};

In $digest, let’s now set the phase as ”$digest” for the duration of the outer digest loop:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$$lastDirtyWatch = null;
 this.$beginPhase(‘$digest’);
 do {
 while (this.$$asyncQueue.length) {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 }
 dirty = this.$$digestOnce();
 if ((dirty || this.$$asyncQueue.length) && !(ttl--)) {
 this.$clearPhase();
 throw '10 digest iterations reached';
 }
 } while (dirty || this.$$asyncQueue.length);
 this.$clearPhase();
};

Let’s also tweak $apply so that it also sets the phase for itself:

src/scope.js
Scope.prototype.$apply = function(expr) {
 try {
 this.$beginPhase(‘$apply’);
 return this.$eval(expr);
 } finally {
 this.$clearPhase();
 this.$digest();
 }
};

And finally we can add the scheduling of the $digest into $evalAsync. Let’s first define the
requirement as a unit test, in the describe(‘$evalAsync’) test block:

test/scope_spec.js
it('schedules a digest in $evalAsync', function(done) {
 scope.aValue = 'abc';
 scope.counter = 0;

Scope Phases 7

72 Errata© Tero Parviainen 2016

 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$evalAsync(function(scope) {
 });

 expect(scope.counter).toBe(0);
 setTimeout(function() {
 expect(scope.counter).toBe(1);
 done();
 }, 50);
});

We check that the digest is indeed run, not immediately during the $evalAsync call but just
slightly after it. Our definition of “slightly after” here is after a 50 millisecond timeout. To make
setTimeout work with Jasmine, we use its asynchronous test support: The test case function
takes an optional done callback argument, and will only finish once we have called it, which we
do after the timeout.

The $evalAsync function can now check the current phase of the scope, and if there isn’t one,
schedule the digest.

src/scope.js
Scope.prototype.$evalAsync = function(expr) {
 var self = this;
 if (!self.$$phase && !self.$$asyncQueue.length) {
 setTimeout(function() {
 if (self.$$asyncQueue.length) {
 self.$digest();
 }
 }, 0);
 }
 self.$$asyncQueue.push({scope: self, expression: expr});
};

Note that we also check the length of the current async queue in two places here:

• Before calling setTimeout, we make sure that the queue is empty. That’s because we don’t
want to call setTimeout more than we need to. If there’s something in the queue, we already
have a timeout set and it will eventually drain the queue.

• Inside the setTimeout function we make sure that the queue is not empty. The queue may
have been drained for some other reason before the timeout function was executed, and we
don’t want to kick off a digest unnecessarily, if we have nothing to do.

Coalescing $apply Invocations - $applyAsync 7

73 Errata© Tero Parviainen 2016

With this implementation, when you invoke $evalAsync you can be sure a digest will happen in
the near future, regardless of when or where you invoke it.

If you call $evalAsync when a digest is already running, your function will be evaluated during
that digest. If there is no digest running, one is started. We use setTimeout to defer the beginning
of the digest slightly. This way callers of $evalAsync can be ensured the function will always
return immediately instead of evaluating the expression synchronously, regardless of the current
status of the digest cycle.

Coalescing $apply Invocations - $applyAsync

While $evalAsync can be used to defer work either from inside a digest or from outside one, it is
really designed for the former use case. The digest-launching setTimeout call is there mostly just to
prevent confusion if someone was to call $evalAsync from outside a digest.

For the use case of $applying a function from outside a digest loop asynchronously, there is also a
specialized function called $applyAsync. It is designed to be used like $apply is - for integrating code
that’s not aware of the Angular digest cycle. But unlike $apply, it does not evaluate the given function
immediately nor does it launch a digest immediately. Instead, it schedules both of these things to happen
after a short period of time.

The original motivation for adding $applyAsync to the framework was handling HTTP responses:
Whenever the $http service receives a response, any response handlers are invoked and a digest is
launched. That means a digest is run for each HTTP response. This may cause performance problems
with applications that have a lot of HTTP traffic (as many apps do when they start up) and/or an
expensive digest cycle. The $http service can now be configured to use $applyAsync instead, in
which case HTTP responses arriving very close to each other will be coalesced into a single digest.
However, $applyAsync is in no way tied to the $http service, and you can use it for anything that
might benefit from coalescing digests.

As we see in our first test for it, when we $applyAsync a function, it does not immediately cause
anything to happen, but 50 milliseconds later it will have:

test/scope_spec.js
describe('$applyAsync', function() {

 var scope;

 beforeEach(function() {
 scope = new Scope();
 });

 it('allows async $apply with $applyAsync', function(done) {
 scope.counter = 0;

Coalescing $apply Invocations - $applyAsync 7

74 Errata© Tero Parviainen 2016

 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.$applyAsync(function(scope) {
 scope.aValue = 'abc';
 });
 expect(scope.counter).toBe(1);

 setTimeout(function() {
 expect(scope.counter).toBe(2);
 done();
 }, 50);
 });

});

So far this is no different from $evalAsync, but we start to see the difference when we call
$applyAsync from a listener function. If we used $evalAsync, the function would still be
called during the same digest. But $applyAsync always defers the invocation:

test/scope_spec.js
it('never executes $applyAsynced function in the same cycle', function(done) {
 scope.aValue = [1, 2, 3];
 scope.asyncApplied = false;

 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.$applyAsync(function(scope) {
 scope.asyncApplied = true;
 });
 }
);

 scope.$digest();
 expect(scope.asyncApplied).toBe(false);
 setTimeout(function() {
 expect(scope.asyncApplied).toBe(true);
 done();
 }, 50);
});

Let’s begin the implementation of $applyAsync by introducing another queue in the Scope con-

Coalescing $apply Invocations - $applyAsync 7

75 Errata© Tero Parviainen 2016

structor. This is for work that has been scheduled with $applyAsync:

src/scope.js
function Scope() {
 this.$$watchers = [];
 this.$$lastDirtyWatch = null;
 this.$$asyncQueue = [];
 this.$$applyAsyncQueue = [];
 this.$$phase = null;
}

When someone calls $applyAsync, we’ll push a function to the queue. The function will later
evaluate the given expression in the context of the scope, just like $apply does:

src/scope.js
Scope.prototype.$applyAsync = function(expr) {
 var self = this;
 self.$$applyAsyncQueue.push(function() {
 self.$eval(expr);
 });
};

What we should also do here is actually schedule the function application. We can do this with
setTimeout and a delay of 0. In that timeout, we $apply a function which drains the queue and
invokes all the functions in it:

src/scope.js
Scope.prototype.$applyAsync = function(expr) {
 var self = this;
 self.$$applyAsyncQueue.push(function() {
 self.$eval(expr);
 });
 setTimeout(function() {
 self.$apply(function() {
 while (self.$$applyAsyncQueue.length) {
 self.$$applyAsyncQueue.shift()();
 }
 });
 }, 0);
};

Note that we do not $apply each individual item in the queue. We only $apply once, outside the loop.
We only want to digest once here.

As we discussed, the main point of $applyAsync is to optimize things that happen in quick
succession so that they only need a single digest. We haven’t got this exactly right yet. Each call to
$applyAsync currently schedules a new digest, which is plain to see if we increment a counter in
a watch function:

Coalescing $apply Invocations - $applyAsync 7

76 Errata© Tero Parviainen 2016

test/scope_spec.js
it('coalesces many calls to $applyAsync', function(done) {
 scope.counter = 0;

 scope.$watch(
 function(scope) {
 scope.counter++;
 return scope.aValue;
 },
 function(newValue, oldValue, scope) { }
);

 scope.$applyAsync(function(scope) {
 scope.aValue = 'abc';
 });
 scope.$applyAsync(function(scope) {
 scope.aValue = 'def';
 });

 setTimeout(function() {
 expect(scope.counter).toBe(2);
 done();
 }, 50);
});

We want the counter to be 2 (the watch is executed twice on the first digest), not any more than that.

What we need to do is keep track of whether a setTimeout to drain the queue has already been
scheduled. We’ll keep this information in a private scope attribute called $$applyAsyncId:

src/scope.js
function Scope() {
 this.$$watchers = [];
 this.$$lastDirtyWatch = null;
 this.$$asyncQueue = [];
 this.$$applyAsyncQueue = [];
 this.$$applyAsyncId = null;
 this.$$phase = null;
}

We can then check this attribute when scheduling the job, and maintain its state when the job is
scheduled and when it finishes:

src/scope.js
Scope.prototype.$applyAsync = function(expr) {
 var self = this;
 self.$$applyAsyncQueue.push(function() {
 self.$eval(expr);
 });

Coalescing $apply Invocations - $applyAsync 7

77 Errata© Tero Parviainen 2016

 if (self.$$applyAsyncId === null) {
 self.$$applyAsyncId = setTimeout(function() {
 self.$apply(function() {
 while (self.$$applyAsyncQueue.length) {
 self.$$applyAsyncQueue.shift()();
 }
 self.$$applyAsyncId = null;
 });
 }, 0);
 }
};

Another aspect of $applyAsync is that it should not do a digest if one happens to be launched for
some other reason before the timeout triggers. In those cases the digest should drain the queue and
the $applyAsync timeout should be cancelled:

test/scope_spec.js
it('cancels and flushes $applyAsync if digested first', function(done) {
 scope.counter = 0;

 scope.$watch(
 function(scope) {
 scope.counter++;
 return scope.aValue;
 },
 function(newValue, oldValue, scope) { }
);

 scope.$applyAsync(function(scope) {
 scope.aValue = 'abc';
 });
 scope.$applyAsync(function(scope) {
 scope.aValue = 'def';
 });

 scope.$digest();
 expect(scope.counter).toBe(2);
 expect(scope.aValue).toEqual('def');

 setTimeout(function() {
 expect(scope.counter).toBe(2);
 done();
 }, 50);
});

Here we test that everything we have scheduled with $applyAsync happens immediately if we
call $digest. That leaves nothing to be done later.

Let’s first extract the flushing of the queue out of the inner function in $applyAsync itself, so that we
can call it from multiple locations:

Coalescing $apply Invocations - $applyAsync 7

78 Errata© Tero Parviainen 2016

Scope.prototype.$$flushApplyAsync = function() {
 while (this.$$applyAsyncQueue.length) {
 this.$$applyAsyncQueue.shift()();
 }
 this.$$applyAsyncId = null;
};

Scope.prototype.$applyAsync = function(expr) {
 var self = this;
 self.$$applyAsyncQueue.push(function() {
 self.$eval(expr);
 });
 if (self.$$applyAsyncId === null) {
 self.$$applyAsyncId = setTimeout(function() {
 self.$apply(_.bind(self.$$flushApplyAsync, self));
 }, 0);
 }
};

The LoDash _.bind function is equivalent to ECMAScript 5 Function.prototype.bind, and is used to
make sure the this receiver of the function is a known value.

Now we can also call this function from $digest - if there’s an $applyAsync flush timeout cur-
rently pending, we cancel it and flush the work immediately:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$$lastDirtyWatch = null;
 this.$beginPhase('$digest');

 if (this.$$applyAsyncId) {
 clearTimeout(this.$$applyAsyncId);
 this.$$flushApplyAsync();
 }

 do {
 while (this.$$asyncQueue.length) {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 }
 dirty = this.$$digestOnce();
 if ((dirty || this.$$asyncQueue.length) && !(ttl--)) {
 throw '10 digest iterations reached';
 }
 } while (dirty || this.$$asyncQueue.length);

Running Code After A Digest - $$postDigest 7

79 Errata© Tero Parviainen 2016

 this.$clearPhase();
};

And that’s it for $applyAsync. It is a useful little optimization for situations where you need to
$apply, but know you’ll be doing it several times within a short period of time.

Running Code After A Digest - $$postDigest

There’s one more way you can attach some code to run in relation to the digest cycle, and that’s by
scheduling a $$postDigest function.

The double dollar sign in the name of the function hints that this is really an internal facility for
Angular, rather than something application developers should use. But it is there, so we’ll also
implement it.

Just like $evalAsync and $applyAsync, $$postDigest schedules a function to run “later”.
Specifically, the function will be run after the next digest has finished. Similarly to $evalAsync,
a function scheduled with $$postDigest is executed just once. Unlike $evalAsync or $ap-
plyAsync, scheduling a $$postDigest function does not cause a digest to be scheduled, so the
function execution is delayed until the digest happens for some other reason. Here’s a unit test the
specifies these requirements:

test/scope_spec.js
describe('$postDigest', function() {

 var scope;

 beforeEach(function() {
 scope = new Scope();
 });

 it('runs after each digest', function() {
 scope.counter = 0;
 scope.$$postDigest(function() {
 scope.counter++;
 });

 expect(scope.counter).toBe(0);
 scope.$digest();

 expect(scope.counter).toBe(1);
 scope.$digest();

 expect(scope.counter).toBe(1);
 });

});

Running Code After A Digest - $$postDigest 7

80 Errata© Tero Parviainen 2016

As the name implies, $$postDigest functions run after the digest, so if you make changes to the
scope from within $$postDigest they won’t be immediately picked up by the dirty-checking
mechanism. If that’s what you want, you should call $digest or $apply manually:

test/scope_spec.js
it('does not include $$postDigest in the digest', function() {
 scope.aValue = 'original value';

 scope.$$postDigest(function() {
 scope.aValue = 'changed value';
 });
 scope.$watch(
 function(scope) {
 return scope.aValue;
 },
 function(newValue, oldValue, scope) {
 scope.watchedValue = newValue;
 }
);

 scope.$digest();
 expect(scope.watchedValue).toBe('original value');

 scope.$digest();
 expect(scope.watchedValue).toBe('changed value');

});

To implement $$postDigest let’s first initialize one more array in the Scope constructor:

src/scope.js
function Scope() {
 this.$$watchers = [];
 this.$$lastDirtyWatch = null;
 this.$$asyncQueue = [];
 this.$$applyAsyncQueue = [];
 this.$$applyAsyncId = null;
 this.$$postDigestQueue = [];
 this.$$phase = null;
}

Next, let’s implement $$postDigest itself. All it does is add the given function to the queue:

src/scope.js
Scope.prototype.$$postDigest = function(fn) {
 this.$$postDigestQueue.push(fn);
};

Handling Exceptions 7

81 Errata© Tero Parviainen 2016

Finally, in $digest, let’s drain the queue and invoke all those functions once the digest has fin-
ished:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$$lastDirtyWatch = null;
 this.$beginPhase('$digest');

 if (this.$$applyAsyncId) {
 clearTimeout(this.$$applyAsyncId);
 this.$$flushApplyAsync();
 }

 do {
 while (this.$$asyncQueue.length) {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 }
 dirty = this.$$digestOnce();
 if ((dirty || this.$$asyncQueue.length) && !(ttl--)) {
 this.$clearPhase();
 throw '10 digest iterations reached';
 }
 } while (dirty || this.$$asyncQueue.length);
 this.$clearPhase();

 while (this.$$postDigestQueue.length) {
 this.$$postDigestQueue.shift()();
 }
};

We consume the queue by removing functions from the beginning of the array using Array.shift()
until the array is empty, and by immediately executing those functions. $$postDigest functions are
not given any arguments.

Handling Exceptions

The implementations we now have for $evalAsync, $applyAsync, and $$postDigest have an
issue which is that when there’s an exception somewhere, they will just give up and stop the digest
loop prematurely. Angular’s implementations, however, are actually much more robust than that.
Exceptions thrown before, during, or after a digest are caught and logged.

For $evalAsync we can define a test case (in the describe(‘$evalAsync’) test block) that
checks that a watch is run even when an exception is thrown from one of the functions scheduled
for $evalAsync:

Handling Exceptions 7

82 Errata© Tero Parviainen 2016

test/scope_spec.js
it('catches exceptions in $evalAsync', function(done) {
 scope.aValue = 'abc';
 scope.counter = 0;

 scope.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$evalAsync(function(scope) {
 throw 'Error';
 });

 setTimeout(function() {
 expect(scope.counter).toBe(1);
 done();
 }, 50);

});

For $applyAsync, we’ll define a test case checking that a function scheduled with $ap-
plyAsync is invoked even if it has functions before it that throw exceptions. This goes in the
describe(‘$applyAsync’) test block.

test/scope_spec.js
it('catches exceptions in $applyAsync', function(done) {
 scope.$applyAsync(function(scope) {
 throw 'Error';
 });
 scope.$applyAsync(function(scope) {
 throw 'Error';
 });
 scope.$applyAsync(function(scope) {
 scope.applied = true;
 });

 setTimeout(function() {
 expect(scope.applied).toBe(true);
 done();
 }, 50);
});

We use two error-throwing functions, because if we used just one, the second function would indeed run.
That’s because $apply launches $digest, and the $applyAsync queue is drained from a finally
block therein.

Handling Exceptions 7

83 Errata© Tero Parviainen 2016

For $$postDigest the digest will already be over, so it doesn’t make sense to test it with a watch. We
can test it with a second $$postDigest function instead, making sure it also executes. This test we add
to the describe(‘$$postDigest’) test block.

test/scope_spec.js
it('catches exceptions in $$postDigest', function() {
 var didRun = false;

 scope.$$postDigest(function() {
 throw 'Error';
 });
 scope.$$postDigest(function() {
 didRun = true;
 });

 scope.$digest();
 expect(didRun).toBe(true);
});

Fixing both $evalAsync and $$postDigest involves changing the $digest function. In both
cases we wrap the function execution in try...catch:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$$lastDirtyWatch = null;
 this.$beginPhase('$digest');

 if (this.$$applyAsyncId) {
 clearTimeout(this.$$applyAsyncId);
 this.$$flushApplyAsync();
 }

 do {
 while (this.$$asyncQueue.length) {
 try {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 } catch (e) {
 console.error(e);
 }
 }
 dirty = this.$$digestOnce();
 if ((dirty || this.$$asyncQueue.length) && !(ttl--)) {
 throw '10 digest iterations reached';
 }
 } while (dirty || this.$$asyncQueue.length);
 this.$clearPhase();

Watching Several Changes With One Listener: $watchGroup 7

84 Errata© Tero Parviainen 2016

 while (this.$$postDigestQueue.length) {
 try {
 this.$$postDigestQueue.shift()();
 } catch (e) {
 console.error(e);
 }
 }
};

Fixing $applyAsync, on the other hand, is done in the loop that drains the queue in $$flushAp-
plyAsync:

src/scope.js
Scope.prototype.$$flushApplyAsync = function() {
 while (this.$$applyAsyncQueue.length) {
 try {
 this.$$applyAsyncQueue.shift()();
 } catch (e) {
 console.error(e);
 }
 }
 this.$$applyAsyncId = null;
};

Our digest cycle is now a lot more robust when it comes to exceptions.

Watching Several Changes With One Listener: $watch-
Group

So far we have been looking at watches and listeners as simple cause-and-effect pairs: When this
changes, do that. It is not unusual, however, to want to watch several pieces of state and execute
some code when any one of them changes.

Since Angular watches are just normal JavaScript functions, this is perfectly doable with the watch
implementation we already have: Just craft a watch function that runs multiple checks and returns
some combined value of them that causes the listener to fire.

As it happens, from Angular 1.3 onwards it is not necessary to craft these kinds of functions man-
ually. Instead, you can use a built-in Scope feature called $watchGroup.

The $watchGroup function takes several watch functions wrapped in an array, and a single listen-
er function. The idea is that when any of the watch functions given in the array detects a change,
the listener function is invoked. The listener function is given the new and old values of the watch-
es wrapped in arrays, in the order of the original watch functions.

Watching Several Changes With One Listener: $watchGroup 7

85 Errata© Tero Parviainen 2016

Here’s the first test case for this, wrapped in a new describe block:

test/scope_spec.js
describe('$watchGroup', function() {

 var scope;
 beforeEach(function() {
 scope = new Scope();
 });

 it('takes watches as an array and calls listener with arrays', function() {
 var gotNewValues, gotOldValues;

 scope.aValue = 1;
 scope.anotherValue = 2;

 scope.$watchGroup([
 function(scope) { return scope.aValue; },
 function(scope) { return scope.anotherValue; }
], function(newValues, oldValues, scope) {
 gotNewValues = newValues;
 gotOldValues = oldValues;
 });
 scope.$digest();

 expect(gotNewValues).toEqual([1, 2]);
 expect(gotOldValues).toEqual([1, 2]);
 });

});

In the test we grab the newValues and oldValues arguments received by the listener, and check
that they are arrays containing the return values of the watch functions.

Let’s take a first stab at implementing $watchGroup. We could try to just register each watch indi-
vidually, reusing the listener for each one:

src/scope.js
Scope.prototype.$watchGroup = function(watchFns, listenerFn) {
 var self = this;
 _.forEach(watchFns, function(watchFn) {
 self.$watch(watchFn, listenerFn);
 });
};

This doesn’t quite cut it though. We expect the listener to receive arrays of all the watch values, but
now it just gets called with each watch value individually.

Watching Several Changes With One Listener: $watchGroup 7

86 Errata© Tero Parviainen 2016

We’ll need to define a separate internal listener function for each watch, and inside those internal
listeners collect the values into arrays. We can then give those arrays to the original listener func-
tion. We’ll use one array for the new values and another for the old values:

src/scope.js
Scope.prototype.$watchGroup = function(watchFns, listenerFn) {
 var self = this;
 var newValues = new Array(watchFns.length);
 var oldValues = new Array(watchFns.length);
 _.forEach(watchFns, function(watchFn, i) {
 self.$watch(watchFn, function(newValue, oldValue) {
 newValues[i] = newValue;
 oldValues[i] = oldValue;
 listenerFn(newValues, oldValues, self);
 });
 });
};

$watchGroup always uses reference watches for change detection.

The problem with our first implementation is that it calls the listener a bit too eagerly: If there
are several changes in the watch array, the listener will get called several times, and we’d like for
it to get called just once. Even worse, since we’re calling the listener immediately upon noticing
a change, it’s likely that we have a mixture of new and previous values in our oldValues and
newValues arrays, causing the user to see an inconsistent combination of values.

Let’s test that the listener is called just once even in the presence of multiple changes:

test/scope_spec.js
it('only calls listener once per digest', function() {
 var counter = 0;

 scope.aValue = 1;
 scope.anotherValue = 2;

 scope.$watchGroup([
 function(scope) { return scope.aValue; },
 function(scope) { return scope.anotherValue; }
], function(newValues, oldValues, scope) {
 counter++;
 });
 scope.$digest();

 expect(counter).toEqual(1);
});

How can we defer the listener call to a moment when all watches will have been checked? Since in

Watching Several Changes With One Listener: $watchGroup 7

87 Errata© Tero Parviainen 2016

$watchGroup we’re not in charge of running the digest, there’s no obvious place for us to put the
listener call. But what we can do is use the $evalAsync function we implemented earlier in the
chapter. Its purpose is to do some work later but still during the same digest - just the ticket for us!

We’ll create a new internal function in $watchGroup, called watchGroupListener. This is the
function that’s in charge of calling the original listener with the two arrays. Then, in each individu-
al listener we schedule a call to this function unless one has been scheduled already:

src/scope.js
Scope.prototype.$watchGroup = function(watchFns, listenerFn) {
 var self = this;
 var oldValues = new Array(watchFns.length);
 var newValues = new Array(watchFns.length);
 var changeReactionScheduled = false;

 function watchGroupListener() {
 listenerFn(newValues, oldValues, self);
 changeReactionScheduled = false;
 }

 _.forEach(watchFns, function(watchFn, i) {
 self.$watch(watchFn, function(newValue, oldValue) {
 newValues[i] = newValue;
 oldValues[i] = oldValue;
 if (!changeReactionScheduled) {
 changeReactionScheduled = true;
 self.$evalAsync(watchGroupListener);
 }
 });
 });
};

That takes care of the basic behavior of $watchGroup, and we can turn our attention to a couple
of special cases.

One issue is related to the requirement that when a listener is called for the very first time, both the
new and old values should be the same. Now, our $watchGroup already does something like this,
because it’s built on the $watch function that implements this behavior. On the first invocation,
the contents of the newValues and oldValues arrays will be exactly the same.

However, while the contents of those two arrays are the same, they are currently still two separate
array objects. That breaks the contract of using the same exact value twice. It also means that if a
user wants to compare the two values, they cannot use reference equality (===), but instead have to
iterate the array contents and see if they match.

We want to do better, and have both the old and new values be the same exact value on the first invo-
cation:

Watching Several Changes With One Listener: $watchGroup 7

88 Errata© Tero Parviainen 2016

test/scope_spec.js
it('uses the same array of old and new values on first run', function() {
 var gotNewValues, gotOldValues;

 scope.aValue = 1;
 scope.anotherValue = 2;

 scope.$watchGroup([
 function(scope) { return scope.aValue; },
 function(scope) { return scope.anotherValue; }
], function(newValues, oldValues, scope) {
 gotNewValues = newValues;
 gotOldValues = oldValues;
 });
 scope.$digest();

 expect(gotNewValues).toBe(gotOldValues);
});

While doing this, let’s also make sure we won’t break what we already have, by adding a test that
ensures we still get different arrays on subsequent listener invocations:

test/scope_spec.js
it('uses different arrays for old and new values on subsequent runs', function() {
 var gotNewValues, gotOldValues;

 scope.aValue = 1;
 scope.anotherValue = 2;

 scope.$watchGroup([
 function(scope) { return scope.aValue; },
 function(scope) { return scope.anotherValue; }
], function(newValues, oldValues, scope) {
 gotNewValues = newValues;
 gotOldValues = oldValues;
 });
 scope.$digest();

 scope.anotherValue = 3;
 scope.$digest();

 expect(gotNewValues).toEqual([1, 3]);
 expect(gotOldValues).toEqual([1, 2]);
});

We can implement this requirement by checking in the watch group listener whether it’s being
called for the first time. If it is, we’ll just pass the newValues array to the original listener twice:

Scope.prototype.$watchGroup = function(watchFns, listenerFn) {

Watching Several Changes With One Listener: $watchGroup 7

89 Errata© Tero Parviainen 2016

 var self = this;
 var oldValues = new Array(watchFns.length);
 var newValues = new Array(watchFns.length);
 var changeReactionScheduled = false;
 var firstRun = true;

 function watchGroupListener() {
 if (firstRun) {
 firstRun = false;
 listenerFn(newValues, newValues, self);
 } else {
 listenerFn(newValues, oldValues, self);
 }
 changeReactionScheduled = false;
 }

 _.forEach(watchFns, function(watchFn, i) {
 self.$watch(watchFn, function(newValue, oldValue) {
 newValues[i] = newValue;
 oldValues[i] = oldValue;
 if (!changeReactionScheduled) {
 changeReactionScheduled = true;
 self.$evalAsync(watchGroupListener);
 }
 });
 });
};

The other special case is a situation where the array of watches happens to be empty. It is not com-
pletely obvious what to do in this situation. Our current implementation does nothing - if there are
no watches, no listeners will get fired. What Angular actually does though is make sure the listener
gets called exactly once, with empty arrays as the values:

test/scope_spec.js
it('calls the listener once when the watch array is empty', function() {
 var gotNewValues, gotOldValues;

 scope.$watchGroup([], function(newValues, oldValues, scope) {
 gotNewValues = newValues;
 gotOldValues = oldValues;
 });
 scope.$digest();

 expect(gotNewValues).toEqual([]);
 expect(gotOldValues).toEqual([]);
});

What we’ll do is check for the empty case in $watchGroup, schedule a call to the listener, and
then return without bothering to do any further setup:

Watching Several Changes With One Listener: $watchGroup 7

90 Errata© Tero Parviainen 2016

src/scope.js
Scope.prototype.$watchGroup = function(watchFns, listenerFn) {
 var self = this;
 var oldValues = new Array(watchFns.length);
 var newValues = new Array(watchFns.length);
 var changeReactionScheduled = false;
 var firstRun = true;

 if (watchFns.length === 0) {
 self.$evalAsync(function() {
 listenerFn(newValues, newValues, self);
 });
 return;
 }

 function watchGroupListener() {
 if (firstRun) {
 firstRun = false;
 listenerFn(newValues, newValues, self);
 } else {
 listenerFn(newValues, oldValues, self);
 }
 changeReactionScheduled = false;
 }

 _.forEach(watchFns, function(watchFn, i) {
 self.$watch(watchFn, function(newValue, oldValue) {
 newValues[i] = newValue;
 oldValues[i] = oldValue;
 if (!changeReactionScheduled) {
 changeReactionScheduled = true;
 self.$evalAsync(watchGroupListener);
 }
 });
 });
};

The final feature we’ll need for $watchGroups is deregistration. One should be able to deregister
a watch group in exactly the same way as they deregister an individual watch: By using a removal
function returned by $watchGroup.

test/scope_spec.js
it('can be deregistered', function() {
 var counter = 0;

 scope.aValue = 1;
 scope.anotherValue = 2;

 var destroyGroup = scope.$watchGroup([
 function(scope) { return scope.aValue; },
 function(scope) { return scope.anotherValue; }

Watching Several Changes With One Listener: $watchGroup 7

91 Errata© Tero Parviainen 2016

], function(newValues, oldValues, scope) {
 counter++;
 });
 scope.$digest();

 scope.anotherValue = 3;
 destroyGroup();
 scope.$digest();

 expect(counter).toEqual(1);
});

Here we test that once the deregistration function has been called, further changes do not cause the
listener to fire.

Since the individual watch registrations already return removal functions, all we really need to do
is collect them, and then create a deregistration function that invokes all of them:

src/scope.js
Scope.prototype.$watchGroup = function(watchFns, listenerFn) {
 var self = this;
 var oldValues = new Array(watchFns.length);
 var newValues = new Array(watchFns.length);
 var changeReactionScheduled = false;
 var firstRun = true;

 if (watchFns.length === 0) {
 self.$evalAsync(function() {
 listenerFn(newValues, newValues, self);
 });
 return;
 }

 function watchGroupListener() {
 if (firstRun) {
 firstRun = false;
 listenerFn(newValues, newValues, self);
 } else {
 listenerFn(newValues, oldValues, self);
 }
 changeReactionScheduled = false;
 }

 var destroyFunctions = _.map(watchFns, function(watchFn, i) {
 return self.$watch(watchFn, function(newValue, oldValue) {
 newValues[i] = newValue;
 oldValues[i] = oldValue;
 if (!changeReactionScheduled) {
 changeReactionScheduled = true;
 self.$evalAsync(watchGroupListener);
 }

Watching Several Changes With One Listener: $watchGroup 7

92 Errata© Tero Parviainen 2016

 });
 });

 return function() {
 _.forEach(destroyFunctions, function(destroyFunction) {
 destroyFunction();
 });
 };
};

Since we have a special case for the situation where the watch array is empty, it needs its own
watch deregistration function as well. The listener is only called once anyway in that situation, but
one could still invoke the deregistration function before even the first digest occurs, in which case
even that single call should be skipped:

test/scope_spec.js
it('does not call the zero-watch listener when deregistered first', function() {
 var counter = 0;

 var destroyGroup = scope.$watchGroup([], function(newValues, oldValues, scope) {
 counter++;
 });
 destroyGroup();
 scope.$digest();

 expect(counter).toEqual(0);
});

The deregistration function for this case just sets a boolean flag, which is checked before invoking
the listener:

src/scope.js
Scope.prototype.$watchGroup = function(watchFns, listenerFn) {
 var self = this;
 var oldValues = new Array(watchFns.length);
 var newValues = new Array(watchFns.length);
 var changeReactionScheduled = false;
 var firstRun = true;

 if (watchFns.length === 0) {
 var shouldCall = true;
 self.$evalAsync(function() {
 if (shouldCall) {
 listenerFn(newValues, newValues, self);
 }
 });
 return function() {
 shouldCall = false;
 };
 }

Summary 7

93 Errata© Tero Parviainen 2016

 function watchGroupListener() {
 if (firstRun) {
 firstRun = false;
 listenerFn(newValues, newValues, self);
 } else {
 listenerFn(newValues, oldValues, self);
 }
 changeReactionScheduled = false;
 }

 var destroyFunctions = _.map(watchFns, function(watchFn, i) {
 return self.$watch(watchFn, function(newValue, oldValue) {
 newValues[i] = newValue;
 oldValues[i] = oldValue;
 if (!changeReactionScheduled) {
 changeReactionScheduled = true;
 self.$evalAsync(watchGroupListener);
 }
 });
 });

 return function() {
 _.forEach(destroyFunctions, function(destroyFunction) {
 destroyFunction();
 });
 };
};

Summary

In this chapter we’ve augmented our basic dirty-checking system with several useful access point
methods. In the chapter you’ve learned about:

• Executing functions on the digest loop in different ways: Immediately with $eval and $apply
and time-shifted with $evalAsync, $applyAsync, and $$postDigest.

• Exception handling in these functions
• Watching several things with a single effect using the $watchGroup function.

There is, of course, a lot more to Angular scopes than this. In the next chapter we’ll start looking
at how scopes can inherit from other scopes, and how watches can watch things not only on the scope
they are attached to, but also on that scope’s parents.

 8

94 Errata© Tero Parviainen 2016

Chapter 3

Scope Inheritance

The Root Scope 8

95 Errata© Tero Parviainen 2016

In this chapter we’ll look into the way scopes connect to each other using inheritance. This is the
mechanism that allows an Angular scope to access properties on its parents, all the way up to the
root scope.

Angular’s scope inheritance is implemented on top of regular JavaScript prototypal object inheri-
tance, and only adds a few additional things on top of it. This means that you’ll understand An-
gular’s scope inheritance best when you understand JavaScript’s prototype chains, and it is recom-
mended to spend some time learning it. It also means that to implement scope inheritance, there
actually isn’t a huge amount of code for us to write.

Scope inheritance is a powerful tool but it is one that can also be tricky to work with. It is easy
to lose track of where a certain scope attribute comes from and who else might be accessing it,
because these kinds of things are not explicitly specified anywhere. A scope has access to all the
members of all its ancestors. For this reason, it is usually a good idea to minimize scope inheri-
tance in applications and use scope isolation instead.

In this chapter we will see how scope inheritance actually works, in both its regular and isolated
forms. It lays the groundwork that we will later build on as we implement the directive system.

Download the code for the starting point of this chapter.

The Root Scope

So far we have been working with a single scope object, which we created using the Scope con-
structor:

var scope = new Scope();

A scope created like this is a root scope. It’s called that because it has no parent, and it is typically
the root of a whole tree of child scopes.

In reality you will never create a scope in this way. In an Angular application, there is exactly one
root scope (available by injecting $rootScope). All other scopes are its descendants, created for
controllers and directives.

Making A Child Scope

Though you can make as many root scopes as you want, what usually happens instead is you cre-
ate a child scope for an existing scope (or let Angular do it for you). This can be done by invoking
a function called $new on an existing scope.

Let’s test-drive the implementation of $new. Before we start, first add a new nested describe block in
test/scope_spec.js for all our tests related to inheritance. The test file should have a structure like

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_prototype_chain
https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter2-scope-methods

Making A Child Scope 8

96 Errata© Tero Parviainen 2016

the following:

test/scope_spec.js
describe('Scope', function() {

 describe('digest', function() {

 // Tests from the previous chapter...

 });

 describe('$watchGroup', function() {

 // Tests from the previous chapter...

 });

 describe('inheritance', function() {

 // Tests for this chapter

 });

});

The first thing about a child scope is that it shares the properties of its parent scope:

test/scope_spec.js
it('inherits the parent's properties', function() {
 var parent = new Scope();
 parent.aValue = [1, 2, 3];

 var child = parent.$new();

 expect(child.aValue).toEqual([1, 2, 3]);
});

The same is not true the other way around. A property defined on the child doesn’t exist on the
parent:

test/scope_spec.js
it('does not cause a parent to inherit its properties', function() {
 var parent = new Scope();

 var child = parent.$new();
 child.aValue = [1, 2, 3];

 expect(parent.aValue).toBeUndefined();
});

Making A Child Scope 8

97 Errata© Tero Parviainen 2016

The sharing of the properties has nothing to do with when the properties are defined. When a
property is defined on a parent scope, all of the scope’s existing child scopes also get the property:

test/scope_spec.js
it('inherits the parents properties whenever they are defined', function() {
 var parent = new Scope();
 var child = parent.$new();

 parent.aValue = [1, 2, 3];

 expect(child.aValue).toEqual([1, 2, 3]);
});

You can also manipulate a parent scope’s properties from the child scope, since both scopes actually
point to the same value:

test/scope_spec.js
it('can manipulate a parent scopes property', function() {
 var parent = new Scope();
 var child = parent.$new();
 parent.aValue = [1, 2, 3];

 child.aValue.push(4);

 expect(child.aValue).toEqual([1, 2, 3, 4]);
 expect(parent.aValue).toEqual([1, 2, 3, 4]);
});

It also follows from this that you can watch a parent scope’s properties from a child scope:

test/scope_spec.js
it('can watch a property in the parent', function() {
 var parent = new Scope();
 var child = parent.$new();
 parent.aValue = [1, 2, 3];
 child.counter = 0;

 child.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 },
 true
);

 child.$digest();
 expect(child.counter).toBe(1);

 parent.aValue.push(4);
 child.$digest();

Making A Child Scope 8

98 Errata© Tero Parviainen 2016

 expect(child.counter).toBe(2);

});

You may have noticed the child scope also has the $watch function, which we defined for Scope.pro-
totype. This happens through exactly the same inheritance mechanism as what we use for the user-de-
fined attributes: Since the parent scope inherits Scope.prototype, and the child scope inherits the
parent scope, everything defined in Scope.prototype is available in every scope!

Finally, everything discussed above applies to scope hierarchies of arbitrary depths:

test/scope_spec.js
it('can be nested at any depth', function() {
 var a = new Scope();
 var aa = a.$new();
 var aaa = aa.$new();
 var aab = aa.$new();
 var ab = a.$new();
 var abb = ab.$new();

 a.value = 1;

 expect(aa.value).toBe(1);
 expect(aaa.value).toBe(1);
 expect(aab.value).toBe(1);
 expect(ab.value).toBe(1);
 expect(abb.value).toBe(1);

 ab.anotherValue = 2;

 expect(abb.anotherValue).toBe(2);
 expect(aa.anotherValue).toBeUndefined();
 expect(aaa.anotherValue).toBeUndefined();
});

For everything we’ve specified so far, the implementation is actually very straightforward. We just
need to tap into JavaScript’s object inheritance, since Angular scopes are deliberately modeled
closely on how JavaScript itself works. Essentially, when you create a child scope, its parent will be
made its prototype.

We won’t spend much time discussing what prototypes in JavaScript mean. If you feel like taking a refresh-
er on them, DailyJS has very good articles on prototypes and inheritance.

Let’s create the $new function on our Scope prototype. It creates a child scope for the current scope,
and returns it:

src/scope.js
Scope.prototype.$new = function() {
 var ChildScope = function() { };

http://dailyjs.com/2012/05/20/js101-prototype/
http://dailyjs.com/2012/05/27/js101-prototype-chains/

Attribute Shadowing 8

99 Errata© Tero Parviainen 2016

 ChildScope.prototype = this;
 var child = new ChildScope();
 return child;
};

In the function we first create a constructor function for the child and put it in a local variable called
ChildScope. The constructor doesn’t really need to do anything, so we just make it an empty
function. We then set Scope as the prototype of ChildScope. Finally we create a new object us-
ing the ChildScope constructor and return it.

This short function is enough to make all our test cases pass!

You could also use the ES5 shorthand function Object.create() to construct the child scope.

Attribute Shadowing

One aspect of scope inheritance that commonly trips up Angular newcomers is the shadowing of
attributes. While this is a direct consequence of using JavaScript prototype chains, it is worth dis-
cussing.

It is clear from our existing test cases that when you read an attribute from a scope, it will look
it up on the prototype chain, finding it from a parent scope if it doesn’t exist on the current one.
Then again, when you assign an attribute on a scope, it is only available on that scope and its chil-
dren, not its parents.

The key realization is that this rule also applies when we reuse an attribute name on a child scope:

test/scope_spec.js
it('shadows a parents property with the same name', function() {

 var parent = new Scope();
 var child = parent.$new();

 parent.name = 'Joe';
 child.name = 'Jill';

 expect(child.name).toBe('Jill');
 expect(parent.name).toBe('Joe');

});

When we assign an attribute on a child that already exists on a parent, this does not change the
parent. In fact, we now have two different attributes on the scope chain, both called name. This is
commonly referred to as shadowing: From the child’s perspective, the name attribute of the parent
is shadowed by the name attribute of the child.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create

Separated Watches 8

100 Errata© Tero Parviainen 2016

This is a common source of confusion, and there are of course genuine use cases for mutating
state on a parent scope. To get around this, a common pattern is to wrap the attribute in an object.
The contents of that object can be mutated (just like in the array manipulation example from the
last section):

test/scope_spec.js
it('does not shadow members of parent scopes attributes', function() {

 var parent = new Scope();
 var child = parent.$new();

 parent.user = {name: 'Joe'};
 child.user.name = 'Jill';

 expect(child.user.name).toBe('Jill');
 expect(parent.user.name).toBe('Jill');

});

The reason this works is that we don’t assign anything on the child scope. We merely read the user
attribute from the scope and assign something within that object. Both scopes have a reference to
the same user object, which is a plain JavaScript object that has nothing to do with scope inheri-
tance.

This pattern can be rephrased as the Dot Rule, referring to the amount of property access dots you have in
an expression that makes changes to the scope. As phrased by Miško Hevery, “Whenever you use ngModel,
there’s got to be a dot in there somewhere. If you don’t have a dot, you’re doing it wrong.”

Separated Watches

We have already seen that we can attach watches on child scopes, since a child scope inherits all
the parent’s methods, including $watch and $digest. But where are the watches actually stored
and on which scope are they executed?

In our current implementation, all the watches are in fact stored on the root scope. That’s because
we define the $$watchers array in Scope, the root scope constructor. When any child scope
accesses the $$watchers array (or any other property initialized in the constructor), they get the
root scope’s copy of it through the prototype chain.

This has one significant implication: Regardless of what scope we call $digest on, we will execute all
the watches in the scope hierarchy. That’s because there’s just one watch array: The one in the root
scope. This isn’t exactly what we want.

What we really want to happen when we call $digest is to digest the watches attached to the
scope we called, and its children. Not the watches attached to its parents or any other children they
might have, which is what currently happens:

http://www.youtube.com/watch?feature=player_detailpage&v=ZhfUv0spHCY#t=1758s

Recursive Digestion 8

101 Errata© Tero Parviainen 2016

test/scope_spec.js
it('does not digest its parent(s)', function() {
 var parent = new Scope();
 var child = parent.$new();

 parent.aValue = 'abc';
 parent.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.aValueWas = newValue;
 }
);

 child.$digest();
 expect(child.aValueWas).toBeUndefined();
});

This test fails because when we call child.$digest(), we are in fact executing the watch at-
tached to parent. Let’s fix this.

The trick is to assign each child scope its own $$watchers array:

src/scope.js
Scope.prototype.$new = function() {
 var ChildScope = function() { };
 ChildScope.prototype = this;
 var child = new ChildScope();
 child.$$watchers = [];
 return child;
};

You may have noticed that we’re doing attribute shadowing here, as discussed in the previous
section. The $$watchers array of each scope shadows the one in its parent. Every scope in the
hierarchy has its own watchers. When we call $digest on a scope, it is the watchers from that
exact scope that get executed.

Recursive Digestion

In the previous section we discussed how calling $digest should not run watches up the hierar-
chy. It should, however, run watches down the hierarchy, on the children of the scope we’re calling.
This makes sense because some of those watches down the hierarchy could be watching our prop-
erties through the prototype chain.

Since we now have a separate watcher array for each scope, as it stands child scopes are not being
digested when we call $digest on the parent. We need to fix that by changing $digest to work
not only on the scope itself, but also its children.

Recursive Digestion 8

102 Errata© Tero Parviainen 2016

The first problem we have is that a scope doesn’t currently have any idea if it has children or not,
or who those children might be. We need each scope to keep a record of its child scopes. This
needs to happen both for root scopes and child scopes. Let’s keep the scopes in an array attribute
called $$children:

test/scope_spec.js
it('keeps a record of its children', function() {
 var parent = new Scope();
 var child1 = parent.$new();
 var child2 = parent.$new();
 var child2_1 = child2.$new();

 expect(parent.$$children.length).toBe(2);
 expect(parent.$$children[0]).toBe(child1);
 expect(parent.$$children[1]).toBe(child2);

 expect(child1.$$children.length).toBe(0);

 expect(child2.$$children.length).toBe(1);
 expect(child2.$$children[0]).toBe(child2_1);

});

We need to initialize the $$children array in the root scope constructor:

src/scope.js
function Scope() {
 this.$$watchers = [];
 this.$$lastDirtyWatch = null;
 this.$$asyncQueue = [];
 this.$$applyAsyncQueue = [];
 this.$$applyAsyncId = null;
 this.$$postDigestQueue = [];
 this.$$children = [];
 this.$$phase = null;
}

Then we need to add new children to this array as they are created. We also need to assign those
children their own $$children array (which shadows the one in the parent), so that we don’t run
into the same problem we had with $$watchers. Both of these changes go into $new:

Scope.prototype.$new = function() {
 var ChildScope = function() { };
 ChildScope.prototype = this;
 var child = new ChildScope();
 this.$$children.push(child);
 child.$$watchers = [];
 child.$$children = [];
 return child;

Recursive Digestion 8

103 Errata© Tero Parviainen 2016

};

Now that we have bookkeeping for the children, we can discuss digesting them. We want a $di-
gest call on a parent to execute watches in a child:

test/scope_spec.js
it('digests its children', function() {
 var parent = new Scope();
 var child = parent.$new();

 parent.aValue = 'abc';
 child.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.aValueWas = newValue;
 }
);

 parent.$digest();
 expect(child.aValueWas).toBe('abc');
});

Notice how this test is basically a mirror image of the test in the last section, where we asserted
that calling $digest on a child should not run watches on the parent.

To make this work, we need to change $$digestOnce to run watches throughout the hierarchy.
To make that easier, let’s first add a helper function $$everyScope (named after JavaScript’s
Array.every) that executes an arbitrary function once for each scope in the hierarchy until the
function returns a falsy value:

src/scope.js
Scope.prototype.$$everyScope = function(fn) {
 if (fn(this)) {
 return this.$$children.every(function(child) {
 return child.$$everyScope(fn);
 });
 } else {
 return false;
 }
};

The function invokes fn once for the current scope, and then recursively calls itself on each child.

We can now use this function in $$digestOnce to form an outer loop for the whole operation:
src/scope.js
Scope.prototype.$$digestOnce = function() {
 var dirty;
 var continueLoop = true;

Recursive Digestion 8

104 Errata© Tero Parviainen 2016

 var self = this;
 this.$$everyScope(function(scope) {
 var newValue, oldValue;
 _.forEachRight(scope.$$watchers, function(watcher) {
 try {
 if (watcher) {
 newValue = watcher.watchFn(scope);
 oldValue = watcher.last;
 if (!scope.$$areEqual(newValue, oldValue, watcher.valueEq)) {
 self.$$lastDirtyWatch = watcher;
 watcher.last = (watcher.valueEq ? _.cloneDeep(newValue) : newValue);
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 scope);
 dirty = true;
 } else if (self.$$lastDirtyWatch === watcher) {
 continueLoop = false;
 return false;
 }
 }
 } catch (e) {
 console.error(e);
 }
 });
 return continueLoop;
 });
 return dirty;
};

The $$digestOnce function now runs through the whole hierarchy and returns a boolean indi-
cating whether any watch anywhere in the hierarchy was dirty.

The inner loop iterates over the scope hierarchy until all scopes have been visited or until the
short-circuiting optimization kicks in. The optimization is tracked with the continueLoop vari-
able. If it becomes false, we escape from both of the loops and the $$digestOnce function.

Notice that we’ve replaced the references to this in the inner loop to the particular scope vari-
able being worked on. The watch functions must be passed the scope object they were originally attached to,
not the scope object we happen to call $digest on.

Notice also that with the $$lastDirtyWatch attribute we are always referring to the topmost
scope. The short-circuiting optimization needs to account for all watches in the scope hierarchy. If
we would set $$lastDirtyWatch on the current scope it would shadow the parent’s attribute.

Angular.js does not actually have an array called $$children on the scope. Instead, if you look at
the source, you’ll see that it maintains the children in a bespoke linked list style group of variables:
$$nextSibling, $$prevSibling, $$childHead, and $$childTail. This is an optimization for
making it cheaper to add and remove scopes by not having to manipulate an array. Functionally it does the
same as our array of $$children does.

Digesting The Whole Tree from $apply, $evalAsync, and $applyAsync 8

105 Errata© Tero Parviainen 2016

Digesting The Whole Tree from $apply, $evalAsync, and
$applyAsync

As we saw in the previous sections, $digest works only from the current scope down. This is not
the case with $apply. When you call $apply in Angular, that goes directly to the root and digests
the whole scope hierarchy. Our implementation does not do that yet, as the following test illustrates:

test/scope_spec.js
it('digests from root on $apply', function() {
 var parent = new Scope();
 var child = parent.$new();
 var child2 = child.$new();

 parent.aValue = 'abc';
 parent.counter = 0;
 parent.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 child2.$apply(function(scope) { });

 expect(parent.counter).toBe(1);
});

When we call $apply on a child, it doesn’t currently trigger a watch in its grandparent.

To make this work, we first of all need scopes to have a reference to their root so that they can
trigger the digestion on it. We could find the root by walking up the prototype chain, but it’s much
more straightforward to just have an explicit $root attribute available. We can set one up in the
root scope constructor:

src/scope.js
function Scope() {
 this.$$watchers = [];
 this.$$lastDirtyWatch = null;
 this.$$asyncQueue = [];
 this.$$applyAsyncQueue = [];
 this.$$applyAsyncId = null;
 this.$$postDigestQueue = [];
 this.$root = this;
 this.$$children = [];
 this.$$phase = null;
}

Digesting The Whole Tree from $apply, $evalAsync, and $applyAsync 8

106 Errata© Tero Parviainen 2016

This alone makes $root available to every scope in the hierarchy, thanks to the prototypal inheri-
tance chain.

The change we still need to make in $apply is straightforward. Instead of calling $digest on the
current scope, we do so on the root scope:

src/scope.js
Scope.prototype.$apply = function(expr) {
 try {
 this.$beginPhase('$apply');
 return this.$eval(expr);
 } finally {
 this.$clearPhase();
 this.$root.$digest();
 }
};

Note that we still evaluate the given function on the current scope, not the root scope, by virtue of
calling $eval on this. It’s just the digest that we want to run from the root down.

The fact that $apply digests all the way from the root is one of the reasons it is the preferred
method for integrating external code to Angular in favor of plain $digest: If you don’t know
exactly what scopes are relevant to the change you’re making, it’s a safe bet to just involve all of
them.

It is notable that since Angular applications have just one root scope, $apply does cause every
watch on every scope in the whole application to be executed. Armed with the knowledge about
this difference between digest and $apply, you may sometimes call $digest instead of $apply
when you need that extra bit of performance.

Having covered $digest and $apply - and by association, $applyAsync - we have one more
digest-triggering function to discuss, and that’s $evalAsync. As it happens, it works just like $ap-
ply in that it schedules a digest on the root scope, not the scope being called. Expressing this as a
unit test:

test/scope_spec.js
it('schedules a digest from root on $evalAsync', function(done) {
 var parent = new Scope();
 var child = parent.$new();
 var child2 = child.$new();

 parent.aValue = 'abc';
 parent.counter = 0;
 parent.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {

Digesting The Whole Tree from $apply, $evalAsync, and $applyAsync 8

107 Errata© Tero Parviainen 2016

 scope.counter++;
 }
);

 child2.$evalAsync(function(scope) { });

 setTimeout(function() {
 expect(parent.counter).toBe(1);
 done();
 }, 50);
});

This test is very similar to the previous one: We check that calling $evalAsync on a scope causes
a watch on its grandparent to execute.

Since we already have the root scope readily available, the change to $evalAsync is very simple.
We just call $digest on the root scope instead of this:

src/scope.js
Scope.prototype.$evalAsync = function(expr) {
 var self = this;
 if (!self.$$phase && !self.$$asyncQueue.length) {
 setTimeout(function() {
 if (self.$$asyncQueue.length) {
 self.$root.$digest();
 }
 }, 0);
 }
 this.$$asyncQueue.push({scope: this, expression: expr});
};

Armed with the $root attribute we can also now revisit our digest code to really make sure we are
always referring to the correct $$lastDirtyWatch for checking the state of the short-circuiting
optimization. We should always refer to the $$lastDirtyWatch of root, no matter which scope
$digest was called on.

We should refer to $root.$$lastDirtyWatch in $watch:

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn, valueEq) {
 var self = this;
 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn || function() { },
 last: initWatchVal,
 valueEq: !!valueEq
 };
 this.$$watchers.unshift(watcher);
 this.$root.$$lastDirtyWatch = null;

Digesting The Whole Tree from $apply, $evalAsync, and $applyAsync 8

108 Errata© Tero Parviainen 2016

 return function() {
 var index = self.$$watchers.indexOf(watcher);
 if (index >= 0) {
 self.$$watchers.splice(index, 1);
 self.$root.$$lastDirtyWatch = null;
 }
 };
};

We should also do so in $digest:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$root.$$lastDirtyWatch = null;
 this.$beginPhase('$digest');

 if (this.$$applyAsyncId) {
 clearTimeout(this.$$applyAsyncId);
 this.$$flushApplyAsync();
 }

 do {
 while (this.$$asyncQueue.length) {
 try {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 } catch (e) {
 console.error(e);
 }
 }
 dirty = this.$$digestOnce();
 if ((dirty || this.$$asyncQueue.length) && !(ttl--)) {
 throw '10 digest iterations reached';
 }
 } while (dirty || this.$$asyncQueue.length);
 this.$clearPhase();

 while (this.$$postDigestQueue.length) {
 try {
 this.$$postDigestQueue.shift()();
 } catch (e) {
 console.error(e);
 }
 }
};

And finally, we should do so in $$digestOnce:

src/scope.js

Isolated Scopes 8

109 Errata© Tero Parviainen 2016

Scope.prototype.$$digestOnce = function() {
 var dirty;
 this.$$everyScope(function(scope) {
 var newValue, oldValue;
 _.forEachRight(scope.$$watchers, function(watcher) {
 try {
 if (watcher) {
 newValue = watcher.watchFn(scope);
 oldValue = watcher.last;
 if (!scope.$$areEqual(newValue, oldValue, watcher.valueEq)) {
 scope.$root.$$lastDirtyWatch = watcher;
 watcher.last = (watcher.valueEq ? _.cloneDeep(newValue) : newValue);
 watcher.listenerFn(newValue,
 (oldValue === initWatchVal ? newValue : oldValue),
 scope);
 dirty = true;
 } else if (scope.$root.$$lastDirtyWatch === watcher) {
 dirty = false;
 return false;
 }
 }
 } catch (e) {
 console.error(e);
 }
 });
 return dirty !== false;
 });
 return dirty;
};

Isolated Scopes

We’ve seen how the relationship between a parent scope and a child scope is very intimate when
prototypal inheritance is involved. Whatever attributes the parent has, the child can access. If they
happen to be object or array attributes the child can also change their contents.

Sometimes we don’t want quite this much intimacy. At times it would be convenient to have a
scope be a part of the scope hierarchy, but not give it access to everything its parents contain. This
is what isolated scopes are for.

The idea behind scope isolation is simple: We make a scope that’s part of the scope hierarchy just
like we’ve seen before, but we do not make it prototypally inherit from its parent. It is cut off - or
isolated - from its parent’s prototype chain.

An isolated scope can be created by passing a boolean value to the $new function. When it is true
the scope will be isolated. When it is false (or omitted/undefined), prototypal inheritance will be
used. When a scope is isolated, it doesn’t have access to the attributes of its parent:

Isolated Scopes 8

110 Errata© Tero Parviainen 2016

test/scope_spec.js
it('does not have access to parent attributes when isolated', function() {
 var parent = new Scope();
 var child = parent.$new(true);

 parent.aValue = 'abc';

 expect(child.aValue).toBeUndefined();
});

And since there is no access to the parent’s attributes, there is of course no way to watch them
either:

test/scope_spec.js
it('cannot watch parent attributes when isolated', function() {
 var parent = new Scope();
 var child = parent.$new(true);

 parent.aValue = 'abc';
 child.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.aValueWas = newValue;
 }
);

 child.$digest();
 expect(child.aValueWas).toBeUndefined();
});

Scope isolation is set up in $new. Based on the boolean argument given, we either make a child
scope as we’ve been doing so far, or create an independent scope using the Scope constructor. In
both cases the new scope is added to the current scope’s children:

src/scope.js
Scope.prototype.$new = function(isolated) {
 var child;
 if (isolated) {
 child = new Scope();
 } else {
 var ChildScope = function() { };
 ChildScope.prototype = this;
 child = new ChildScope();
 }
 this.$$children.push(child);
 child.$$watchers = [];
 child.$$children = [];
 return child;
};

Isolated Scopes 8

111 Errata© Tero Parviainen 2016

If you’ve used isolated scopes with Angular directives, you’ll know that an isolated scope is usually notcom-
pletely cut off from its parent. Instead you can explicitly define a mapping of attributes the scope will get
from its parent.

However, this mechanism is not built into scopes. It is part of the implementation of directives. We will
return to this discussion when we implement directive scope linking.

Since we’ve now broken the prototypal inheritance chain, we need to revisit the discussions about
$digest, $apply, $evalAsync, and $applyAsync from earlier in this chapter.

Firstly, we want $digest to walk down the inheritance hierarchy. This one we’re already han-
dling, since we include isolated scopes in their parent’s $$children. That means the following
test also passes already:

test/scope_spec.js
it('digests its isolated children', function() {
 var parent = new Scope();
 var child = parent.$new(true);

 child.aValue = 'abc';
 child.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.aValueWas = newValue;
 }
);

 parent.$digest();
 expect(child.aValueWas).toBe('abc');
});

In the case of $apply, $evalAsync, and $applyAsync we’re not quite there yet. We wanted
those operations to begin digestion from the root, but isolated scopes in the middle of the hierar-
chy break this assumption, as the following two failing test cases illustrate:

test/scope_spec.js
it('digests from root on $apply when isolated', function() {
 var parent = new Scope();
 var child = parent.$new(true);
 var child2 = child.$new();

 parent.aValue = 'abc';
 parent.counter = 0;
 parent.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

Isolated Scopes 8

112 Errata© Tero Parviainen 2016

 child2.$apply(function(scope) { });

 expect(parent.counter).toBe(1);
});

it('schedules a digest from root on $evalAsync when isolated', function(done) {
 var parent = new Scope();
 var child = parent.$new(true);
 var child2 = child.$new();

 parent.aValue = 'abc';
 parent.counter = 0;
 parent.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 child2.$evalAsync(function(scope) { });

 setTimeout(function() {
 expect(parent.counter).toBe(1);
 done();
 }, 50);
});

Since $applyAsync is implemented in terms of $apply, it is susceptible to the same problem, and will
be fixed when we fix $apply.

Notice that these are basically the same test cases we wrote earlier when discussing $apply and
$evalAsync, only in this case we make one of the scopes an isolated one.

The reason the tests fail is that we’re relying on the $root attribute to point to the root of the
hierarchy. Non-isolated scopes have that attribute inherited from the actual root. Isolated scopes
do not. In fact, since we use the Scope constructor to create isolated scopes, and that constructor
assigns $root, each isolated scope has a $root attribute that points to itself. This is not what we
want.

The fix is simple enough. All we need to do is to modify $new to reassign $root to the actual root
scope:

src/scope.js
Scope.prototype.$new = function(isolated) {
 var child;
 if (isolated) {
 child = new Scope();
 child.$root = this.$root;

Isolated Scopes 8

113 Errata© Tero Parviainen 2016

 } else {
 var ChildScope = function() { };
 ChildScope.prototype = this;
 child = new ChildScope();
 }
 this.$$children.push(child);
 child.$$watchers = [];
 child.$$children = [];
 return child;
};

Before we’ve got everything about inheritance covered, there’s one more thing we need to fix in the
context of isolated scopes, and that is the queues in which we store $evalAsync, $applyAsync,
and $$postDigest functions. Recall that we drain the $$asyncQueue and the $$postDigest-
Queue in $digest, and $$applyAsyncQueue in $$flushApplyAsync. In neither do we take any
extra measures related to child or parent scopes. We simply assume there is one instance of each
queue that represents all the queued tasks in the whole hierarchy.

For non-isolated scopes this is exactly the case: Whenever we access one of the queues from any
scope, we’re accessing the same queue because it’s inherited by every scope. Not so for isolated
scopes. Just like $root earlier, $$asyncQueue, $$applyAsyncQueue, and $$postDigestQueue
are shadowed in isolated scopes by local versions created in the Scope constructor. This has the
unfortunate effect that a function scheduled on an isolated scope with $evalAsync or $$postDi-
gest is never executed:

test/scope_spec.js
it('executes $evalAsync functions on isolated scopes', function(done) {
 var parent = new Scope();
 var child = parent.$new(true);

 child.$evalAsync(function(scope) {
 scope.didEvalAsync = true;
 });

 setTimeout(function() {
 expect(child.didEvalAsync).toBe(true);
 done();
 }, 50);
});

it('executes $$postDigest functions on isolated scopes', function() {
 var parent = new Scope();
 var child = parent.$new(true);

 child.$$postDigest(function() {
 child.didPostDigest = true;
 });
 parent.$digest();

Isolated Scopes 8

114 Errata© Tero Parviainen 2016

 expect(child.didPostDigest).toBe(true);
});

Just like with $root, what we want is each and every scope in the hierarchy to share the same
copy of $$asyncQueue and $$postDigestQueue, regardless of whether they’re isolated or not.
When a scope is not isolated, they get a copy automatically. When it is isolated, we need to explic-
itly assign it:

src/scope.js
Scope.prototype.$new = function(isolated) {
 var child;
 if (isolated) {
 child = new Scope();
 child.$root = this.$root;
 child.$$asyncQueue = this.$$asyncQueue;
 child.$$postDigestQueue = this.$$postDigestQueue;
 } else {
 var ChildScope = function() { };
 ChildScope.prototype = this;
 child = new ChildScope();
 }
 this.$$children.push(child);
 child.$$watchers = [];
 child.$$children = [];
 return child;
};

For $$applyAsyncQueue the problem is a bit different: Since the flushing of the queue is con-
trolled with the $$applyAsyncId attribute, and each scope in the hierachy may now have its own
instance of this attribute, we have effectively several $applyAsync processes, one per isolated
scope. This goes against the whole purpose of $applyAsync, which is to coalesce $apply invoca-
tions together.

We can test this by relying on the fact that the apply async queue should be flushed during $di-
gest. If we call $digest on a child scope, an $applyAsync call scheduled on the parent should
be flushed, but it currently isn’t:

test/scope_spec.js
it("executes $applyAsync functions on isolated scopes", function() {
 var parent = new Scope();
 var child = parent.$new(true);
 var applied = false;

 parent.$applyAsync(function() {
 applied = true;
 });
 child.$digest();

Isolated Scopes 8

115 Errata© Tero Parviainen 2016

 expect(applied).toBe(true);
});

First of all, we should share the queue between scopes, just like we did with the $evalAsync and
$postDigest queues:

src/scope.js
Scope.prototype.$new = function(isolated) {
 var child;
 if (isolated) {
 child = new Scope();
 child.$root = this.$root;
 child.$$asyncQueue = this.$$asyncQueue;
 child.$$postDigestQueue = this.$$postDigestQueue;
 child.$$applyAsyncQueue = this.$$applyAsyncQueue;
 } else {
 var ChildScope = function() { };
 ChildScope.prototype = this;
 child = new ChildScope();
 }
 this.$$children.push(child);
 child.$$watchers = [];
 child.$$children = [];
 return child;
};

Secondly, we need to share the $$applyAsyncId attribute. We cannot simply copy this in $new
because we also need to be able to assign it. But what we can do is explicitly access it through
$root:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = 10;
 var dirty;
 this.$root.$$lastDirtyWatch = null;
 this.$beginPhase('$digest');

 if (this.$root.$$applyAsyncId) {
 clearTimeout(this.$root.$$applyAsyncId);
 this.$$flushApplyAsync();
 }

 do {
 while (this.$$asyncQueue.length) {
 try {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 } catch (e) {
 console.error(e);
 }

Substituting The Parent Scope 8

116 Errata© Tero Parviainen 2016

 }
 dirty = this.$$digestOnce();
 if ((dirty || this.$$asyncQueue.length) && !(ttl--)) {
 throw '10 digest iterations reached';
 }
 } while (dirty || this.$$asyncQueue.length);
 this.$clearPhase();

 while (this.$$postDigestQueue.length) {
 try {
 this.$$postDigestQueue.shift()();
 } catch (e) {
 console.error(e);
 }
 }
};

Scope.prototype.$applyAsync = function(expr) {
 var self = this;
 self.$$applyAsyncQueue.push(function() {
 self.$eval(expr);
 });
 if (self.$root.$$applyAsyncId === null) {
 self.$root.$$applyAsyncId = setTimeout(function() {
 self.$apply(_.bind(self.$$flushApplyAsync, self));
 }, 0);
 }
};

Scope.prototype.$$flushApplyAsync = function() {
 while (this.$$applyAsyncQueue.length) {
 try {
 this.$$applyAsyncQueue.shift()();
 } catch (e) {
 console.error(e);
 }
 }
 this.$root.$$applyAsyncId = null;
};

And finally we have everything set up properly!

Substituting The Parent Scope

In some situations it is useful to pass in some other scope as the parent of a new scope, while still
maintaining the normal prototypical inheritance chain:

test/scope_spec.js
it('can take some other scope as the parent', function() {

Substituting The Parent Scope 8

117 Errata© Tero Parviainen 2016

 var prototypeParent = new Scope();
 var hierarchyParent = new Scope();
 var child = prototypeParent.$new(false, hierarchyParent);

 prototypeParent.a = 42;
 expect(child.a).toBe(42);

 child.counter = 0;
 child.$watch(function(scope) {
 scope.counter++;
 });

 prototypeParent.$digest();
 expect(child.counter).toBe(0);

 hierarchyParent.$digest();
 expect(child.counter).toBe(2);
});

Here we construct two “parent” scopes and then create the child. One of the parents is the normal,
prototypical parent of the new scope. The other parent is the “hierarchical” parent, passed in as
the second argument to $new.

We test that the prototypal inheritance between the prototype parent and the child works as usual,
but we also test that launching a digest on the prototype parent does not cause a watch on the child
to run. Instead, this happens when we launch a digest on the hierarchical parent.

We’ll introduce an optional second argument to $new, which defaults to the current scope, this.
We then use that scope’s children to store the new child:

src/scope.js
Scope.prototype.$new = function(isolated, parent) {
 var child;
 parent = parent || this;
 if (isolated) {
 child = new Scope();
 child.$root = parent.$root;
 child.$$asyncQueue = parent.$$asyncQueue;
 child.$$postDigestQueue = parent.$$postDigestQueue;
 child.$$applyAsyncQueue = parent.$$applyAsyncQueue;
 } else {
 var ChildScope = function() { };
 ChildScope.prototype = this;
 child = new ChildScope();
 }
 parent.$$children.push(child);
 child.$$watchers = [];
 child.$$children = [];
 return child;
};

Destroying Scopes 8

118 Errata© Tero Parviainen 2016

We also use parent to access the various queues in the isolate scope construction. Since they are all
shared between all scopes anyway, it doesn’t really matter whether we use this or parent, but we use the
latter for clarity. The important part is the scope whose $$children we push the new scope into.

This feature introduces a subtle difference between the prototypal and hierarchical inheritance
chains in your scope hierarchy. It is arguably of little value in most cases, and not worth the men-
tal overhead of tracking two subtly different scope hierarchies. But, as we implement directive
transclusion later in the book, we will see how it can sometimes be useful.

Destroying Scopes

In the lifetime of a typical Angular application, page elements come and go as the user is pre-
sented with different views and data. This also means that the scope hierarchy grows and shrinks
during the lifetime of the application, with controller and directive scopes being added and re-
moved.

In our implementation we can create child scopes, but we don’t have a mechanism for removing
them yet. An ever-growing scope hierarchy is not very convenient when it comes to performance
- not least because of all the watches that come with it! So we obviously need a way to destroy
scopes.

Destroying a scope means that all of its watchers are removed and that the scope itself is removed
from the $$children of its parent. Since the scope will no longer be referenced from anywhere, it
will at some point just cease to exist as the garbage collector of the JavaScript environment re-
claims it. (This of course only works as long as you don’t have external references to the scope or
its watches from within application code.)

The destroy operation is implemented in a scope function called $destroy. When called, it de-
stroys the scope:

test/scope_spec.js
it('is no longer digested when $destroy has been called', function() {
 var parent = new Scope();
 var child = parent.$new();

 child.aValue = [1, 2, 3];
 child.counter = 0;
 child.$watch(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 },
 true
);

Destroying Scopes 8

119 Errata© Tero Parviainen 2016

 parent.$digest();
 expect(child.counter).toBe(1);

 child.aValue.push(4);
 parent.$digest();
 expect(child.counter).toBe(2);

 child.$destroy();
 child.aValue.push(5);
 parent.$digest();
 expect(child.counter).toBe(2);
});

In $destroy we will need a reference to the scope’s parent. We don’t have one yet, so let’s just add
one to $new. Whenever a child scope is created, its direct (or substituted) parent will be assigned to
the $parent attribute:

src/scope.js
Scope.prototype.$new = function(isolated, parent) {
 var child;
 parent = parent || this;
 if (isolated) {
 child = new Scope();
 child.$root = parent.$root;
 child.$$asyncQueue = parent.$$asyncQueue;
 child.$$postDigestQueue = parent.$$postDigestQueue;
 child.$$applyAsyncQueue = parent.$$applyAsyncQueue;
 } else {
 var ChildScope = function() { };
 ChildScope.prototype = this;
 child = new ChildScope();
 }
 parent.$$children.push(child);
 child.$$watchers = [];
 child.$$children = [];
 child.$parent = parent;
 return child;
};

Notice that $parent is prefixed with just one dollar sign instead of two. That means it’s deemed by the
makers of Angular to be something that’s OK to reference from application code. However, using it is usu-
ally considered an anti-pattern because of the tight coupling between scopes that it introduces.

Now we’re ready to implement $destroy. It will find the current scope from its parent’s $$chil-
dren array and then remove it - as long as the scope is not the root scope and has a parent. It will
also remove the watchers of the scope:

src/scope.js

Summary 8

120 Errata© Tero Parviainen 2016

Scope.prototype.$destroy = function() {
 if (this.$parent) {
 var siblings = this.$parent.$$children;
 var indexOfThis = siblings.indexOf(this);
 if (indexOfThis >= 0) {
 siblings.splice(indexOfThis, 1);
 }
 }
 this.$$watchers = null;
};

Summary

In this chapter we’ve taken our Scope implementation from mere individual scope objects to whole
hierarchies of interconnected scopes that inherit attributes from their parents. With this implementation
we can support the kind of scope hierarchy that’s built into every AngularJS application.

You have learned about:

• How child scopes are created.
• The relationship between scope inheritance and JavaScript’s native prototypal inheritance.
• Attribute shadowing and its implications.
• Recursive digestion from a parent scope to its child scopes.
• The difference between $digest and $apply when it comes to the starting point of digestion.
• Isolated scopes and how they differ from normal child scopes.
• How child scopes are destroyed.

In the next chapter we’ll cover one more thing related to watchers: Angular’s built-in
$watchCollection mechanism for efficiently watching for changes in objects and arrays.

 9

121 Errata© Tero Parviainen 2016

Chapter 4

Watching Collections

 9

122 Errata© Tero Parviainen 2016

In Chapter 1 we implemented two different strategies for identifying changes in watches: By refer-
ence and by value. We saw that the way you choose between the two is by passing a boolean flag
to the $watch function.

In this chapter we are going implement the third and final strategy for identifying changes. This
one you enable by registering your watch using a separate function, called $watchCollection.

The use case for $watchCollection is that you want to know when something in an array or an
object has changed: When items or attributes have been added, removed, or reordered.

As we saw in Chapter 1, doing this is already possible by registering a value-based watch, by
passing true as the third argument to $watch. That strategy, however, does way more work than
is actually needed in our use case. It deep-watches the whole object graph that is reachable from the
return value of the watch function. Not only does it notice when items are added or removed, but
it also notices when anything within those items, at any depth, changes. This means it needs to also
keep full deep copies of old values and inspect them to arbitrary depths during the digest.

$watchCollection is basically an optimization of this value-based version of $watch that we
already have. Because it only watches collections on the shallow level, it can get away with an im-
plementation that’s faster and uses less memory than full-blown deep watches do.

This chapter is all about $watchCollection. While conceptually simple, the function packs a
punch. By knowing how it works you’ll be able to use it to full effect. Implementing $watchCol-
lection also serves as a case study for writing watches that specialize in certain kinds of data
structures, which is something you may need to do when building Angular applications.

Download the code for the starting point of this chapter.

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter3-scope-inheritance

Setting Up The Infrastructure 9

123 Errata© Tero Parviainen 2016

Setting Up The Infrastructure

Let’s create a stub for the $watchCollection function on Scope.

The function’s signature will be very similar to that of $watch: It takes a watch function that
should return the value we want to watch, and a listener function that will be called when the
watched value changes. Internally, the function delegates to the $watch function by supplying with
its own, locally created versions of a watch function and a listener function:

src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {

 var internalWatchFn = function(scope) {
 };

 var internalListenerFn = function() {
 };

 return this.$watch(internalWatchFn, internalListenerFn);

users

object object object

0 1 2

"name" "age"

"Joe" 30

Reference Watches

Collection Watches

Equality Watches

$scope.users7=7newUsers;

$scope.users.push(newUser);

✔

✔

✔

✔

✔

✘

$scope.users[0].age7=731;✘

✔

✘

$scope.users7=7[
77{name:7"Joe",7age:730},
77{name:7"Jill",7age:729},
77{name:7"Bob",7age:731}
];

$scope.users7=7newUsers;

$scope.users.push(newUser);

$scope.users[0].age7=731;

$scope.users7=7newUsers;

$scope.users.push(newUser);

$scope.users[0].age7=731;

Detecting Non-Collection Changes 9

124 Errata© Tero Parviainen 2016

};

As you may recall, the $watch function returns a function with which the watch can be removed.
By returning that function directly to the original caller, we also enable this possibility for $watch-
Collection.

Let’s also set up a describe block for our tests, in a similar fashion as we did in the previous
chapter. It should be a nested describe block within the top-level describe block for Scope:

test/scope_spec.js
describe('$watchCollection', function() {

 var scope;

 beforeEach(function() {
 scope = new Scope();
 });

});

Detecting Non-Collection Changes

The purpose of $watchCollection is to watch arrays and objects. However, it does also work
when the value returned by the watch function is a non-collection. In that case it falls back to
working as if you’d just called $watch instead. While this is possibly the least interesting aspect of
$watchCollection, implementing it first will let us conveniently flesh out the function’s struc-
ture.

Here’s a test for verifying this basic behavior:

test/scope_spec.js
it('works like a normal watch for non-collections', function() {
 var valueProvided;

 scope.aValue = 42;
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 valueProvided = newValue;
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

Detecting Non-Collection Changes 9

125 Errata© Tero Parviainen 2016

 expect(valueProvided).toBe(scope.aValue);

 scope.aValue = 43;
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

We’re using $watchCollection to watch a number on the scope. In the listener function we in-
crement a counter, and also capture a local variable new value. We then assert that the watch calls
the listener with the new value as a normal, non-collection watch would.

We’re ignoring the oldValue argument for now. It needs some special care in the context of $watch-
Collection and we will return to it later in this chapter.

During the watch function invocation, $watchCollection first invokes the original watch func-
tion to obtain the value we want to watch. It then checks for changes in that value compared to
what it was previously and stores the value for the next digest cycle:

src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {
 var newValue;
 var oldValue;

 var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 // Check for changes

 oldValue = newValue;
 };

 var internalListenerFn = function() {
 };

 return this.$watch(internalWatchFn, internalListenerFn);
};

By keeping the newValue and oldValue variable declarations outside of the internal watch
function body, we can share them between the internal watch and listener functions. They will also
persist between digest cycles in the closure formed by the $watchCollection function. This is
particularly important for the old value, since we need to compare to it across digest cycles.

The listener function just delegates to the original listener function, passing it the new and old
values, as well as the scope:

Detecting Non-Collection Changes 9

126 Errata© Tero Parviainen 2016

src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {
 var self = this;
 var newValue;
 var oldValue;

 var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 // Check for changes

 oldValue = newValue;
 };

 var internalListenerFn = function() {
 listenerFn(newValue, oldValue, self);
 };

 return this.$watch(internalWatchFn, internalListenerFn);
};

Recall that the way $digest determines whether the listener should be called or not is by compar-
ing successive return values of the watch function. Our internal watch function, however, is not
currently returning anything, so the listener function will never be called.

What should the internal watch function return? Since nothing outside of $watchCollection
will ever see it, it doesn’t make that much difference. The only important thing is that it is different
between successive invocations if there have been changes. That is what will cause the listener to get
called.

The way Angular implements this is by introducing an integer counter and incrementing it when-
ever a change is detected. Each watch registered with $watchCollection gets its own counter
that keeps incrementing for the lifetime of that watch. By then having the internal watch function
return this counter, we ensure that the contract of the watch function is fulfilled.

In the non-collection case, we can just compare the new and old values by reference:

src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {
 var self = this;
 var newValue;
 var oldValue;
 var changeCount = 0;

 var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (newValue !== oldValue) {
 changeCount++;

Detecting Non-Collection Changes 9

127 Errata© Tero Parviainen 2016

 }
 oldValue = newValue;

 return changeCount;
 };

 var internalListenerFn = function() {
 listenerFn(newValue, oldValue, self);
 };

 return this.$watch(internalWatchFn, internalListenerFn);
};

With that, the non-collection test case passes. But what about if the non-collection value happens
to be NaN?

test/scope_spec.js
it('works like a normal watch for NaNs', function() {
 scope.aValue = 0/0;
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.$digest();
 expect(scope.counter).toBe(1);
});

The reason this test fails is the same as we had with NaN in Chapter 1: NaNs are not equal to each
other. Instead of using !== for (in)equality comparison, let’s just use the existing helper function
$$areEqual since we already know how to handle NaNs there:

src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {
 var self = this;
 var newValue;
 var oldValue;
 var changeCount = 0;

 var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (!self.$$areEqual(newValue, oldValue, false)) {

Detecting New Arrays 9

128 Errata© Tero Parviainen 2016

 changeCount++;
 }
 oldValue = newValue;

 return changeCount;
 };

 var internalListenerFn = function() {
 listenerFn(newValue, oldValue, self);
 };

 return this.$watch(internalWatchFn, internalListenerFn);
};

The final argument, false explicitly tells $$areEqual not to use value comparison. In this case
we just want to compare references.

Now we have the basic structure for $watchCollection in place. We can turn our attention to
collection change detection.

Detecting New Arrays

The internal watch function will have two top-level conditional branches: One that deals with
objects and one that deals with things other than objects. Since JavaScript arrays are also objects,
they will be handled in the first branch, but within that branch we’ll need to have nested condition-
al branches for arrays and other objects since they need to be handled differently.

For now we can just determine the object-ness or array-ness of the value by using Lo-Dash’s
_.isObject and _.isArray functions:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (_.isObject(newValue)) {
 if (_.isArray(newValue)) {

 } else {

 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;

Detecting New Arrays 9

129 Errata© Tero Parviainen 2016

};

The first thing we can check if we have an array value is to see if the value was also an array previ-
ously. If it wasn’t, it has obviously changed:

test/scope_spec.js
it('notices when the value becomes an array', function() {
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.arr; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.arr = [1, 2, 3];
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

Since our array-branch in the internal watch function is currently empty, we don’t notice this
change. Let’s change that by simply checking the type of the old value:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (_.isObject(newValue)) {
 if (_.isArray(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];
 }
 } else {

 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

Detecting New Or Removed Items in Arrays 9

130 Errata© Tero Parviainen 2016

 return changeCount;
};

If the old value isn’t an array, we record a change. We also initialize the old value as an empty
array. In a moment we will start to mirror the contents of the array we’re watching in this internal
array, but for now this passes our test.

Detecting New Or Removed Items in Arrays

The next thing that may happen with an array is that its length may change when items are added
or removed. Let’s add a couple of tests for that, one for each operation:

test/scope_spec.js
it('notices an item added to an array', function() {
 scope.arr = [1, 2, 3];
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.arr; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.arr.push(4);
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

it('notices an item removed from an array', function() {
 scope.arr = [1, 2, 3];
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.arr; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

Detecting Replaced or Reordered Items in Arrays 9

131 Errata© Tero Parviainen 2016

 scope.arr.shift();
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

In both cases we have an array that we’re watching on the scope and we manipulate the contents
of that array. We then check that the changes are picked up during the next digest.

These kinds of changes can be detected by simply looking at the length of the array and compar-
ing it to the length of the old array. We must also sync the new length to our internal oldValue
array, which we can do just by assigning its length:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (_.isObject(newValue)) {
 if (_.isArray(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];
 }
 if (newValue.length !== oldValue.length) {
 changeCount++;
 oldValue.length = newValue.length;
 }
 } else {

 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;
};

Detecting Replaced or Reordered Items in Arrays

There’s one more kind of change that we must detect with arrays, and that’s when items are re-
placed or reordered without the array’s length changing:
test/scope_spec.js
it('notices an item replaced in an array', function() {

Detecting Replaced or Reordered Items in Arrays 9

132 Errata© Tero Parviainen 2016

 scope.arr = [1, 2, 3];
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.arr; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.arr[1] = 42;
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

it('notices items reordered in an array', function() {
 scope.arr = [2, 1, 3];
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.arr; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.arr.sort();
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

To detect changes like this, we actually need to iterate over the array, at each index comparing the
items in the old and new arrays. Doing that will pick up both replaced values and reordered values.
While we’re iterating, we also sync up the internal oldValue array with the new array’s contents:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

Detecting Replaced or Reordered Items in Arrays 9

133 Errata© Tero Parviainen 2016

 if (_.isObject(newValue)) {
 if (_.isArray(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];
 }
 if (newValue.length !== oldValue.length) {
 changeCount++;
 oldValue.length = newValue.length;
 }
 _.forEach(newValue, function(newItem, i) {
 if (newItem !== oldValue[i]) {
 changeCount++;
 oldValue[i] = newItem;
 }
 });
 } else {

 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;
};

We iterate the new array with the _.forEach function from Lo-Dash. It provides us with both the
item and the index for each iteration. We use the index to get the corresponding item from the old
array.

In Chapter 1 we saw how NaNs can be problematic because NaN is not equal to NaN. We had to
handle them specially in normal watches, and the following test case illustrates we also have to do
so for collection watches:

test/scope_spec.js
it('does not fail on NaNs in arrays', function() {
 scope.arr = [2, NaN, 3];
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.arr; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();

Array-Like Objects 9

134 Errata© Tero Parviainen 2016

 expect(scope.counter).toBe(1);
});

The test throws an exception because NaN is always triggering a change, causing an infinite digest.
We can fix this by checking whether both old and the new value are NaN:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (_.isObject(newValue)) {
 if (_.isArray(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];
 }
 if (newValue.length !== oldValue.length) {
 changeCount++;
 oldValue.length = newValue.length;
 }
 _.forEach(newValue, function(newItem, i) {
 var bothNaN = _.isNaN(newItem) && _.isNaN(oldValue[i]);
 if (!bothNaN && newItem !== oldValue[i]) {
 changeCount++;
 oldValue[i] = newItem;
 }
 });
 } else {

 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;
};

With this implementation we can detect any changes that might happen to an array, without actu-
ally having to copy or even traverse any nested data structures *within* that array.

Array-Like Objects

We’ve got arrays covered but there’s one more special case we need to think about.

In addition to proper arrays - things that inherit the Array prototype - JavaScript environments
have a few objects that behave like arrays without actually being arrays. Angular’s $watchCol-

Array-Like Objects 9

135 Errata© Tero Parviainen 2016

lection treats these kinds of objects as arrays, so we will also want to do so.

One array-like object is the arguments local variable that every function has, and that contains
the arguments given to that function invocation. Let’s check whether we currently support that by
adding a test case.

test/scope_spec.js
it('notices an item replaced in an arguments object', function() {
 (function() {
 scope.arrayLike = arguments;
 })(1, 2, 3);
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.arrayLike; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.arrayLike[1] = 42;
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

We construct an anonymous function that we immediately call with a few arguments, and store
those arguments on the scope. That gives us the array-like arguments object. We then check
whether changes in that object are picked up by our $watchCollection implementation.

Another array-like object is the DOM NodeList, which you get from certain operations on the
DOM, such as querySelectorAll and getElementsByTagName. Let’s test that too.

test/scope_spec.js
it('notices an item replaced in a NodeList object', function() {
 document.documentElement.appendChild(document.createElement('div'));
 scope.arrayLike = document.getElementsByTagName('div');

 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.arrayLike; },
 function(newValue, oldValue, scope) {
 scope.counter++;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/arguments
https://developer.mozilla.org/en/docs/Web/API/NodeList

Array-Like Objects 9

136 Errata© Tero Parviainen 2016

 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 document.documentElement.appendChild(document.createElement('div'));
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

Here we first add a <div> element to the DOM, and then obtain a NodeList object by calling
getElementsByTagName on document. We place the list on the scope and attach a watch for it.
When we want to cause a change to the list, we just append another <div> to the DOM. Being a
so-called “live collection”, the list will immediately be augmented with the new element. We check
that our $watchCollection also detects this.

As it turns out, both of these test cases fail. The problem is with the Lo-Dash _.isArray func-
tion, which only checks for proper arrays and not other kinds of array-like objects. We need to
create our own predicate function that is more appropriate for our use case:

src/scope.js
function isArrayLike(obj) {
 if (_.isNull(obj) || _.isUndefined(obj)) {
 return false;
 }
 var length = obj.length;
 return _.isNumber(length);
}

The function takes an object and returns a boolean value indicating whether that object is ar-
ray-like. We check for array-likeness by just checking that the object exists and that it has a length
attribute with a numeric value. This isn’t perfect, but it’ll do for now.

Now all we need to do is call this new predicate instead of _isArray in $watchCollection:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (_.isObject(newValue)) {
 if (isArrayLike(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];

Detecting New Objects 9

137 Errata© Tero Parviainen 2016

 }
 if (newValue.length !== oldValue.length) {
 changeCount++;
 oldValue.length = newValue.length;
 }
 _.forEach(newValue, function(newItem, i) {
 var bothNaN = _.isNaN(newItem) && _.isNaN(oldValue[i]);
 if (!bothNaN && newItem !== oldValue[i]) {
 changeCount++;
 oldValue[i] = newItem;
 }
 });
 } else {

 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;
};

Note that while we deal with any kind of array-like objects, the internal oldValue array is always
a proper array, not any other array-like object.

Strings also match our definition of array-likeness since they have a length attribute and provide indexed
attributes for individual characters. However, a JavaScript String is not a JavaScript Object, so our
outer _.isObject guard prevents it from being treated as a collection. That means $watchCollection
treats Strings as non-collections.

Since JavaScript Strings are immutable and you cannot change their contents, watching them as collections
would not be very useful anyway.

Detecting New Objects

Let’s turn our attention to objects, or more precisely, objects other than arrays and array-like ob-
jects. This basically means dictionaries such as this:

{
 aKey: 'aValue',
 anotherKey: 42
}
The way we detect changes in objects will be similar to what we just did with arrays. The imple-
mentation for objects will be simplified a bit by the fact that there are no “object-like objects” to
complicate things. On the other hand, we will need to do a bit more work in the change detection
since objects don’t have the handy length property that we used with arrays.

Detecting New Objects 9

138 Errata© Tero Parviainen 2016

To begin with, just like with arrays, let’s make sure we’re covering the case where a value becomes
an object when it previously wasn’t one:

test/scope_spec.js
it('notices when the value becomes an object', function() {
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.obj; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.obj = {a: 1};
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

We can handle this case in the same manner as we did with arrays. If the old value wasn’t an ob-
ject, make it one and record a change:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (_.isObject(newValue)) {
 if (isArrayLike(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];
 }
 if (newValue.length !== oldValue.length) {
 changeCount++;
 oldValue.length = newValue.length;
 }
 _.forEach(newValue, function(newItem, i) {
 var bothNaN = _.isNaN(newItem) && _.isNaN(oldValue[i]);
 if (!bothNaN && newItem !== oldValue[i]) {
 changeCount++;
 oldValue[i] = newItem;
 }
 });

Detecting New Or Replaced Attributes in Objects 9

139 Errata© Tero Parviainen 2016

 } else {
 if (!_.isObject(oldValue) || isArrayLike(oldValue)) {
 changeCount++;
 oldValue = {};
 }
 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;
};

Note that since arrays are also objects, we can’t just check the old value with _.isObject. We
also need to exclude arrays and array-like objects with isArrayLike.

Detecting New Or Replaced Attributes in Objects

We want a new attribute added to an object to trigger a change:

test/scope_spec.js
it('notices when an attribute is added to an object', function() {
 scope.counter = 0;
 scope.obj = {a: 1};

 scope.$watchCollection(
 function(scope) { return scope.obj; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.obj.b = 2;
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

We also want to trigger a change when the value of an existing attribute changes:

test/scope_spec.js

Detecting New Or Replaced Attributes in Objects 9

140 Errata© Tero Parviainen 2016

it('notices when an attribute is changed in an object', function() {
 scope.counter = 0;
 scope.obj = {a: 1};

 scope.$watchCollection(
 function(scope) { return scope.obj; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 scope.obj.a = 2;
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

Both of these cases can be dealt with in the same way. We will iterate over all the attributes in the
new object, and check whether they have the same values in the old object:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (_.isObject(newValue)) {
 if (isArrayLike(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];
 }
 if (newValue.length !== oldValue.length) {
 changeCount++;
 oldValue.length = newValue.length;
 }
 _.forEach(newValue, function(newItem, i) {
 var bothNaN = _.isNaN(newItem) && _.isNaN(oldValue[i]);
 if (!bothNaN && newItem !== oldValue[i]) {
 changeCount++;
 oldValue[i] = newItem;
 }
 });
 } else {
 if (!_.isObject(oldValue) || isArrayLike(oldValue)) {
 changeCount++;
 oldValue = {};
 }

Detecting New Or Replaced Attributes in Objects 9

141 Errata© Tero Parviainen 2016

 _.forOwn(newValue, function(newVal, key) {
 if (oldValue[key] !== newVal) {
 changeCount++;
 oldValue[key] = newVal;
 }
 });
 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;
};

While we’re iterating, we also sync the old object with the attributes of the new object, so that we
have them for the next digest.

The LoDash _.forOwn function iterates over an object’s members, but only the ones defined for the object
itself. Members inherited through the prototype chain are excluded. $watchCollection does not watch
inherited properties in objects.

Just like with arrays, NaNs need special care here. When an object has an attribute with a NaN val-
ue, that causes an infinite digest:

test/scope_spec.js
it('does not fail on NaN attributes in objects', function() {
 scope.counter = 0;
 scope.obj = {a: NaN};

 scope.$watchCollection(
 function(scope) { return scope.obj; },
 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);
});

We need to check if both the old and new value are NaN, and if so, consider them to be the same
value:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

Detecting Removed Attributes in Objects 9

142 Errata© Tero Parviainen 2016

 if (_.isObject(newValue)) {
 if (isArrayLike(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];
 }
 if (newValue.length !== oldValue.length) {
 changeCount++;
 oldValue.length = newValue.length;
 }
 _.forEach(newValue, function(newItem, i) {
 var bothNaN = _.isNaN(newItem) && _.isNaN(oldValue[i]);
 if (!bothNaN && newItem !== oldValue[i]) {
 changeCount++;
 oldValue[i] = newItem;
 }
 });
 } else {
 if (!_.isObject(oldValue) || isArrayLike(oldValue)) {
 changeCount++;
 oldValue = {};
 }
 _.forOwn(newValue, function(newVal, key) {
 var bothNaN = _.isNaN(newVal) && _.isNaN(oldValue[key]);
 if (!bothNaN && oldValue[key] !== newVal) {
 changeCount++;
 oldValue[key] = newVal;
 }
 });
 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;
};

Detecting Removed Attributes in Objects

The remaining operation to discuss in the context of objects is the removal of attributes:
test/scope_spec.js
it('notices when an attribute is removed from an object', function() {
 scope.counter = 0;
 scope.obj = {a: 1};

 scope.$watchCollection(
 function(scope) { return scope.obj; },

Detecting Removed Attributes in Objects 9

143 Errata© Tero Parviainen 2016

 function(newValue, oldValue, scope) {
 scope.counter++;
 }
);

 scope.$digest();
 expect(scope.counter).toBe(1);

 delete scope.obj.a;
 scope.$digest();
 expect(scope.counter).toBe(2);

 scope.$digest();
 expect(scope.counter).toBe(2);
});

With arrays we were able to handle removed items by just truncating our internal array (by assign-
ing its length) and then iterating over both arrays simultaneously, checking that all items are the
same. With objects we cannot do this. To check whether attributes have been removed from an
object, we need a second loop. This time we’ll loop over the attributes of the old object and see if
they’re still present in the new one. If they’re not, they no longer exist and we also remove them
from our internal object:

src/scope.js
var internalWatchFn = function(scope) {
 newValue = watchFn(scope);

 if (_.isObject(newValue)) {
 if (isArrayLike(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];
 }
 if (newValue.length !== oldValue.length) {
 changeCount++;
 oldValue.length = newValue.length;
 }
 _.forEach(newValue, function(newItem, i) {
 var bothNaN = _.isNaN(newItem) && _.isNaN(oldValue[i]);
 if (!bothNaN && newItem !== oldValue[i]) {
 changeCount++;
 oldValue[i] = newItem;
 }
 });
 } else {
 if (!_.isObject(oldValue) || isArrayLike(oldValue)) {
 changeCount++;
 oldValue = {};
 }
 _.forOwn(newValue, function(newVal, key) {
 var bothNaN = _.isNaN(newVal) && _.isNaN(oldValue[key]);

Preventing Unnecessary Object Iteration 9

144 Errata© Tero Parviainen 2016

 if (!bothNaN && oldValue[key] !== newVal) {
 changeCount++;
 oldValue[key] = newVal;
 }
 });
 _.forOwn(oldValue, function(oldVal, key) {
 if (!newValue.hasOwnProperty(key)) {
 changeCount++;
 delete oldValue[key];
 }
 });
 }
 } else {
 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;
};

Preventing Unnecessary Object Iteration

We are now iterating over object keys twice. For very large objects this can be expensive. Since
we’re working within a watch function that gets executed in every single digest, we need to take
care not to do too much work.

For this reason we will apply one important optimization to the object change detection.

Firstly, we are going to keep track of the sizes of the old and new objects:

• For the old object, we keep a variable around that we increment whenever an attribute is added
and decrement whenever an attribute is removed.

• For the new object, we calculate its size during the first loop in the internal watch function.

By the time we’re done with the first loop we know the current sizes of the two objects. Then, we
only launch into the second loop if the size of the old collection is larger than the size of the new
one. If the sizes are equal, there cannot have been any removals and we can skip the second loop
entirely. Here’s the $watchCollection implementation after we’ve applied this optimization:
src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {
 var self = this;
 var newValue;
 var oldValue;
 var oldLength;
 var changeCount = 0;

Preventing Unnecessary Object Iteration 9

145 Errata© Tero Parviainen 2016

 var internalWatchFn = function(scope) {
 var newLength;
 newValue = watchFn(scope);

 if (_.isObject(newValue)) {
 if (isArrayLike(newValue)) {
 if (!_.isArray(oldValue)) {
 changeCount++;
 oldValue = [];
 }
 if (newValue.length !== oldValue.length) {
 changeCount++;
 oldValue.length = newValue.length;
 }
 _.forEach(newValue, function(newItem, i) {
 var bothNaN = _.isNaN(newItem) && _.isNaN(oldValue[i]);
 if (!bothNaN && newItem !== oldValue[i]) {
 changeCount++;
 oldValue[i] = newItem;
 }
 });
 } else {
 if (!_.isObject(oldValue) || isArrayLike(oldValue)) {
 changeCount++;
 oldValue = {};
 oldLength = 0;
 }
 newLength = 0;
 _.forOwn(newValue, function(newVal, key) {
 newLength++;
 if (oldValue.hasOwnProperty(key)) {
 var bothNaN = _.isNaN(newVal) && _.isNaN(oldValue[key]);
 if (!bothNaN && oldValue[key] !== newVal) {
 changeCount++;
 oldValue[key] = newVal;
 }
 } else {
 changeCount++;
 oldLength++;
 oldValue[key] = newVal;
 }
 });
 if (oldLength > newLength) {
 changeCount++;
 _.forOwn(oldValue, function(oldVal, key) {
 if (!newValue.hasOwnProperty(key)) {
 oldLength--;
 delete oldValue[key];
 }
 });
 }
 }
 } else {

Dealing with Objects that Have A length 9

146 Errata© Tero Parviainen 2016

 if (!self.$$areEqual(newValue, oldValue, false)) {
 changeCount++;
 }
 oldValue = newValue;
 }

 return changeCount;
 };

 var internalListenerFn = function() {
 listenerFn(newValue, oldValue, self);
 };

 return this.$watch(internalWatchFn, internalListenerFn);
};

Note that we now have to handle new and changed attributes differently, since with new attributes
we need to increment the oldLength variable.

Dealing with Objects that Have A length

We’re almost done covering different kinds collections, but there’s still one special kind of object
that we’d better consider.

Recall that we determine the array-likeness of an object by checking whether it has a numeric
length attribute. How, then, do we handle the following object?

{
 length: 42,
 otherKey: 'abc'
}

This is not an array-like object. It just happens to have an attribute called length. Since it is not
that difficult to think of a situation where such an object might exist in an application, we need to
deal with this.

Let’s add a test where we check that changes in an object that happens to have a length property
are actually detected:

test/scope_spec.js
it('does not consider any object with a length property an array', function() {
 scope.obj = {length: 42, otherKey: 'abc'};
 scope.counter = 0;

 scope.$watchCollection(
 function(scope) { return scope.obj; },
 function(newValue, oldValue, scope) {

Handing The Old Collection Value To Listeners 9

147 Errata© Tero Parviainen 2016

 scope.counter++;
 }
);

 scope.$digest();

 scope.obj.newKey = 'def';
 scope.$digest();

 expect(scope.counter).toBe(2);
});

When you run this test, you’ll see that the listener is not invoked after there’s been a change in the
object. That’s because we’ve decided it’s an array because it has a length, and the array change
detection doesn’t notice the new object key.

The fix for this is simple enough. Instead of considering all objects with a numeric length proper-
ty as array-like, let’s narrow it down to objects with a numeric length property and with a numer-
ic property for the key one smaller than the length. So for example, if the object has a length with
42, there must also be the attribute 41 in it. Arrays and array-like objects pass that requirement.

This only works for non-zero lengths though, so we need to relax the condition when the length is
zero:

src/scope.js
function isArrayLike(obj) {
 if (_.isNull(obj) || _.isUndefined(obj)) {
 return false;
 }
 var length = obj.length;
 return length === 0 ||
 (_.isNumber(length) && length > 0 && (length - 1) in obj);
}

This makes our test pass, and does indeed work for most objects. The check isn’t foolproof, but it is
the best we can practically do.

Handing The Old Collection Value To Listeners

The contract of the watch listener function is that it gets three arguments: The new value of the
watch function, the previous value of the watch function, and the scope. In this chapter we have
respected that contract by providing those values, but the way we have done it is problematic, espe-
cially when it comes to the previous value.

The problem is that since we are maintaining the old value in internalWatchFn, it will already
have been updated to the new value by the time we call the listener function. The values given to

Handing The Old Collection Value To Listeners 9

148 Errata© Tero Parviainen 2016

the listener function are always identical. This is the case for non-collections, so this test fails:

test/scope_spec.js
it('gives the old non-collection value to listeners', function() {
 scope.aValue = 42;
 var oldValueGiven;

 scope.$watchCollection(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 oldValueGiven = oldValue;
 }
);

 scope.$digest();

 scope.aValue = 43;
 scope.$digest();

 expect(oldValueGiven).toBe(42);
});

This is also the case for arrays:

test/scope_spec.js
it('gives the old array value to listeners', function() {
 scope.aValue = [1, 2, 3];
 var oldValueGiven;

 scope.$watchCollection(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 oldValueGiven = oldValue;
 }
);

 scope.$digest();

 scope.aValue.push(4);
 scope.$digest();

 expect(oldValueGiven).toEqual([1, 2, 3]);
});

And it is the case for objects:

test/scope_spec.js
it('gives the old object value to listeners', function() {
 scope.aValue = {a: 1, b: 2};
 var oldValueGiven;

Handing The Old Collection Value To Listeners 9

149 Errata© Tero Parviainen 2016

 scope.$watchCollection(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 oldValueGiven = oldValue;
 }
);

 scope.$digest();

 scope.aValue.c = 3;
 scope.$digest();

 expect(oldValueGiven).toEqual({a: 1, b: 2});
});

The implementation for the value comparison and copying works well and efficiently for the
change detection itself, so we don’t really want to change it. Instead, we’ll introduce another vari-
able that we’ll keep around between digest iterations. We’ll call it veryOldValue, and it will hold
a copy of the old collection value that we will not change in internalWatchFn.

Maintaining veryOldValue requires copying arrays or objects, which is expensive. We’ve gone to
great lengths to not copy full collections each time in collection watches. So we really only want to
maintain veryOldValue if we actually have to. We can check this by seeing if the listener func-
tion given by the user actually takes at least two arguments:

src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {
 var self = this;
 var newValue;
 var oldValue;
 var oldLength;
 var veryOldValue;
 var trackVeryOldValue = (listenerFn.length > 1);
 var changeCount = 0;

 // ...

};

The length property of Function contains the number of declared arguments in the function. If
there’s more than one, i.e. (newValue, oldValue), or (newValue, oldValue, scope), only
then do we enable the tracking of the very old value.

Note that this means you won’t incur the cost of copying the very old value in $watchCollec-
tion unless you declare oldvalue in your listener function arguments. It also means that you
can’t just reflectively look up the old value from your listener’s arguments object. You’ll need to
actually declare it.

Handing The Old Collection Value To Listeners 9

150 Errata© Tero Parviainen 2016

The rest of the work happens in internalListenerFn. Instead of handing oldValue to the
listener, it should hand it veryOldValue. It then needs to copy the next veryOldValue from the
current value, so that it can be given to the listener next time. We can use _.clone to get a shallow
copy of the collection, and it’ll also work with primitives:

src/scope.js
var internalListenerFn = function() {
 listenerFn(newValue, veryOldValue, self);

 if (trackVeryOldValue) {
 veryOldValue = _.clone(newValue);
 }
};

In Chapter 1 we discussed the role of oldValue on the first invocation to a listener function. For
that invocation it should be identical to the new value. That should hold true for $watchCollec-
tion listeners too:

test/scope_spec.js
it('uses the new value as the old value on first digest', function() {
 scope.aValue = {a: 1, b: 2};
 var oldValueGiven;

 scope.$watchCollection(
 function(scope) { return scope.aValue; },
 function(newValue, oldValue, scope) {
 oldValueGiven = oldValue;
 }
);

 scope.$digest();

 expect(oldValueGiven).toEqual({a: 1, b: 2});
});

The test does not pass since our old value is actually undefined, since we’ve never assigned any-
thing to veryOldValue before the first invocation of the listener.

We need to set a boolean flag denoting whether we’re on the first invocation, and call the listener
differently based on that:

src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {
 var self = this;
 var newValue;
 var oldValue;
 var oldLength;

Summary 9

151 Errata© Tero Parviainen 2016

 var veryOldValue;
 var trackVeryOldValue = (listenerFn.length > 1);
 var changeCount = 0;
 var firstRun = true;

 // ...

 var internalListenerFn = function() {
 if (firstRun) {
 listenerFn(newValue, newValue, self);
 firstRun = false;
 } else {
 listenerFn(newValue, veryOldValue, self);
 }

 if (trackVeryOldValue) {
 veryOldValue = _.clone(newValue);
 }
 };

 return this.$watch(internalWatchFn, internalListenerFn);
};

Summary

In this chapter we’ve added the third and final dirty-checking mechanism to our implementation
of Scope: Shallow collection-watching.

The $watchCollection function is not simple, but that’s mostly because it provides an import-
ant, non-trivial facility: We can watch for changes in large arrays and objects much more efficient-
ly than we could with just deep-watching.

You have learned about:

• How $watchCollection can be used with arrays, objects, and other values.
• What $watchCollection does with arrays.
• What $watchCollection does with objects.
• Array-like objects and their role in $watchCollection.

The next chapter concludes our implementation of scopes. We will add the other main functional
area that scopes provide in addition to dirty-checking: Events

 10

152 Errata© Tero Parviainen 2016

Chapter 5

Scope Events

Publish-Subscribe Messaging 10

153 Errata© Tero Parviainen 2016

In the preceding chapters we have implemented almost everything that Angular scopes do, includ-
ing watches and the digest cycle. In this final chapter on scopes we are going to implement the
scope event system, which completes the picture.

As you’ll see, the event system has actually very little to do with the digest system, so you could
say that scope objects provide two unrelated pieces of functionality. The reason it is useful to have
the event system on scopes is the structure that the scope hierarchy forms. The scope tree that
stems from the root scope forms a structural hierarchy baked into each Angular application. Prop-
agating events through this hierarchy provides natural channels of communication.

Download the code for the starting point of this chapter.

Publish-Subscribe Messaging

The scope event system is basically an implementation of the widely used publish-subscribe messag-
ing pattern: When something significant happens you can publish that information on the scope
as an event. Other parts of the application may have subscribed to receive that event, in which case
they will get notified. As a publisher you don’t know how many, if any, subscribers are receiving
the event. As a subscriber, you don’t really know where an event comes from. The scope acts as a
mediator, decoupling publishers from subscribers.

This pattern has a long history, and has also been widely employed in JavaScript applications. For
example, jQuery provides a custom event system, as does Backbone.js. Both of them can be used
for pub/sub messaging.

Angular’s implementation of pub/sub is in many ways similar to other implementations, but has
one key difference: The Angular event system is baked into the scope hierarchy. Rather than hav-
ing a single point through which all events flow, we have the scope tree where events may propa-
gate up and down.

When you publish an event on a scope, you choose between two propagation modes: Up the scope
hierarchy or down the scope hierarchy. When you go up, subscribers on the current and its an-
cestor scopes get notified. This is called emitting an event. When you go down, subscribers on the
current scope and its descendant scopes get notified. This is called broadcasting an event.

In this chapter we’ll implement both of these propagation models. The two are actually so similar
that we’ll implement them in tandem. This will also highlight the differences they do have.

The scope event system deals with application-level events - events that you publish as an application de-
veloper. It does not propagate native DOM events that the browser originates, such as clicks or resizes. For
dealing with native events there is angular.element.

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter4-watching-collections
http://api.jquery.com/trigger/
http://backbonejs.org/#Events

Setup 10

154 Errata© Tero Parviainen 2016

Setup

We will still be working on the scope objects, so all the code will go into src/scope.js and
test/scope_spec.js. Let’s begin by putting in place a new nested describe block for our tests
inside the outermost describe block.

test/scope_spec.js
describe('Events', function() {

 var parent;
 var scope;
 var child;
 var isolatedChild;

 beforeEach(function() {
 parent = new Scope();
 scope = parent.$new();
 child = scope.$new();
 isolatedChild = scope.$new(true);
 });

});

What we’re about to implement has a lot to do with scope inheritance hierarchies, so for conve-
nience we’re setting one up in a beforeEach function. It has a scope with a parent and two chil-
dren, one of them isolated. This should cover everything we need to test about inheritance.

Registering Event Listeners: $on

To get notified about an event you need to register to get notified. In AngularJS the registration is
done by calling the function $on on a Scope object. The function takes two arguments: The name
of the event of interest, and the listener function that will get called when that event occurs.

The AngularJS term for the subscribers in pub/sub is listeners, so that is the term we will also be using from
now on.

Listeners registered through $on will receive both emitted and broadcasted events. There is, in fact,
no way to limit the events received by anything else than the event name.

What should the $on function actually do? Well, it should store the listener somewhere so that it
can find it later when events are fired. For storage we’ll put an object in the attribute $$listeners
(the double-dollar denoting that it should be considered private). The object’s keys will be event
names, and the values will be arrays holding the listener functions registered for a particular event.
So, we can test that listeners registered with $on are stored accordingly:

Registering Event Listeners: $on 10

155 Errata© Tero Parviainen 2016

test/scope_spec.js
it('allows registering listeners', function() {
 var listener1 = function() { };
 var listener2 = function() { };
 var listener3 = function() { };

 scope.$on('someEvent', listener1);
 scope.$on('someEvent', listener2);
 scope.$on('someOtherEvent', listener3);

 expect(scope.$$listeners).toEqual({
 someEvent: [listener1, listener2],
 someOtherEvent: [listener3]
 });

});

We will need the $$listeners object to exist on the scope. Let’s set one up in the constructor:

src/scope.js
function Scope() {
 this.$$watchers = [];
 this.$$lastDirtyWatch = null;
 this.$$asyncQueue = [];
 this.$$applyAsyncQueue = [];
 this.$$applyAsyncId = null;
 this.$$postDigestQueue = [];
 this.$root = this;
 this.$$children = [];
 this.$$listeners = {};
 this.$$phase = null;
}

The $on function should check whether we already have a listener collection for the event given,
and initialize one if not. It can then just push the new listener function to the collection:

src/scope.js
Scope.prototype.$on = function(eventName, listener) {
 var listeners = this.$$listeners[eventName];
 if (!listeners) {
 this.$$listeners[eventName] = listeners = [];
 }
 listeners.push(listener);
};

Since the location of each listener in the scope hierarchy is significant, we do have a slight prob-
lem with the current implementation of $$listeners: All listeners in the whole scope hierarchy
will go into the same $$listeners collection. Instead, what we need is a separate $$listeners
collection for each scope:

The basics of $emit and $broadcast 10

156 Errata© Tero Parviainen 2016

test/scope_spec.js
it('registers different listeners for every scope', function() {
 var listener1 = function() { };
 var listener2 = function() { };
 var listener3 = function() { };

 scope.$on('someEvent', listener1);
 child.$on('someEvent', listener2);
 isolatedChild.$on('someEvent', listener3);

 expect(scope.$$listeners).toEqual({someEvent: [listener1]});
 expect(child.$$listeners).toEqual({someEvent: [listener2]});
 expect(isolatedChild.$$listeners).toEqual({someEvent: [listener3]});
});

This test fails because both scope and child actually have a reference to the same $$listeners
collection and isolatedChild doesn’t have one at all. We need to tweak the child scope con-
structor to explicitly give each new child scope its own $$listeners collection. For a non-iso-
lated scope it will shadow the one in its parent. This is exactly the same solution as we used for
$$watchers in Chapter 2:

src/scope.js
Scope.prototype.$new = function(isolated, parent) {
 var child;
 parent = parent || this;
 if (isolated) {
 child = new Scope();
 child.$root = parent.$root;
 child.$$asyncQueue = parent.$$asyncQueue;
 child.$$postDigestQueue = parent.$$postDigestQueue;
 child.$$applyAsyncQueue = this.$$applyAsyncQueue;
 } else {
 var ChildScope = function() { };
 ChildScope.prototype = this;
 child = new ChildScope();
 }
 parent.$$children.push(child);
 child.$$watchers = [];
 child.$$listeners = {};
 child.$$children = [];
 child.$parent = parent;
 return child;
};

The basics of $emit and $broadcast

Now that we have listeners registered, we can put them to use and fire events. As we’ve discussed,

The basics of $emit and $broadcast 10

157 Errata© Tero Parviainen 2016

there are two functions for doing that: $emit and $broadcast.

The basic functionality of both functions is that when you call them with an event name as an
argument, they will call all the listeners that have been registered for that event name. Correspond-
ingly, of course, they do not call listeners for other event names:

test/scope_spec.js
it('calls the listeners of the matching event on $emit', function() {
 var listener1 = jasmine.createSpy();
 var listener2 = jasmine.createSpy();
 scope.$on('someEvent', listener1);
 scope.$on('someOtherEvent', listener2);

 scope.$emit('someEvent');

 expect(listener1).toHaveBeenCalled();
 expect(listener2).not.toHaveBeenCalled();
});

it('calls the listeners of the matching event on $broadcast', function() {
 var listener1 = jasmine.createSpy();
 var listener2 = jasmine.createSpy();
 scope.$on('someEvent', listener1);
 scope.$on('someOtherEvent', listener2);

 scope.$broadcast('someEvent');

 expect(listener1).toHaveBeenCalled();
 expect(listener2).not.toHaveBeenCalled();

});

We’re using Jasmine’s spy functions to represent our listener functions. They are special stub functions that
do nothing but record whether they have been called or not, and what arguments they’ve been called with.
With spies we can very conveniently check what the scope is doing with our listeners.

If you’ve used mock objects or other kinds of test doubles before, spies should look familiar. They might
just as well be called mock functions.

These tests can be made pass by introducing the $emit and $broadcast functions that, for now,
behave identically. They find the listeners for the event name, and call each of them in succession:

src/scope.js
Scope.prototype.$emit = function(eventName) {
 var listeners = this.$$listeners[eventName] || [];
 _.forEach(listeners, function(listener) {
 listener();
 });
};

Dealing with Duplication 10

158 Errata© Tero Parviainen 2016

Scope.prototype.$broadcast = function(eventName) {
 var listeners = this.$$listeners[eventName] || [];
 _.forEach(listeners, function(listener) {
 listener();
 });
};

Dealing with Duplication

We’ve defined two almost identical test cases and two identical functions. It’s apparent there’s go-
ing to be a lot of similarity between the two event propagation mechanisms. Let’s meet this dupli-
cation head-on before we go any further, so we won’t end up having to write everything twice.

For the event functions themselves we can extract the common behavior, which is the delivery of
the event, to a function that both $emit and $broadcast use. Let’s call it $$fireEventOnScope:

src/scope.js
Scope.prototype.$emit = function(eventName) {
 this.$$fireEventOnScope(eventName);
};

Scope.prototype.$broadcast = function(eventName) {
 this.$$fireEventOnScope(eventName);
};

Scope.prototype.$$fireEventOnScope = function(eventName) {
 var listeners = this.$$listeners[eventName] || [];
 _.forEach(listeners, function(listener) {
 listener();
 });

};

The original AngularJS does not have a $$fireEventOnScope function. Instead it just duplicates the
code of the common behavior between $emit and $broadcast.

That’s much better. But we can go one further and also eliminate duplication in the test suite. We
can wrap the test cases that describe common functionality to a loop which runs once for $emit
and once for $broadcast. Within the loop body we can dynamically look the correct function up.
Replace the two test cases we added earlier with this:

test/scope_spec.js
_.forEach(['$emit', '$broadcast'], function(method) {

 it('calls listeners registered for matching events on '+method, function() {
 var listener1 = jasmine.createSpy();
 var listener2 = jasmine.createSpy();
 scope.$on('someEvent', listener1);

Event Objects 10

159 Errata© Tero Parviainen 2016

 scope.$on('someOtherEvent', listener2);

 scope[method]('someEvent');

 expect(listener1).toHaveBeenCalled();
 expect(listener2).not.toHaveBeenCalled();
 });

});

Since Jasmine’s describe blocks are just functions, we can run arbitrary code in them. Our loop
effectively defines two test cases for each it block within it.

Event Objects

We’re currently calling the listeners without any arguments, but that isn’t quite how Angular
works. What we should do instead is pass the listeners an event object.

The event objects used by scopes are regular JavaScript objects that carry information and behavior
related to the event. We’ll attach several attributes to the event, but to begin with, each event has a
name attribute with the name of the event. Here’s a test case for it (or rather, two test cases):

test/scope_spec.js
it('passes an event object with a name to listeners on '+method, function() {
 var listener = jasmine.createSpy();
 scope.$on('someEvent', listener);

 scope[method]('someEvent');

 expect(listener).toHaveBeenCalled();
 expect(listener.calls.mostRecent().args[0].name).toEqual('someEvent');
});

The calls.mostRecent() function of a Jasmine spy contains information about the last time that spy
was called. It has an args attribute containing an array of the arguments that were passed to the function.

An important aspect of event objects is that the same exact event object is passed to each listener. Appli-
cation developers attach additional attributes on it for communicating extra information between
listeners. This is significant enough to warrant its own unit test(s):

test/scope_spec.js
it('passes the same event object to each listener on '+method, function() {
 var listener1 = jasmine.createSpy();
 var listener2 = jasmine.createSpy();
 scope.$on('someEvent', listener1);
 scope.$on('someEvent', listener2);

Additional Listener Arguments 10

160 Errata© Tero Parviainen 2016

 scope[method]('someEvent');

 var event1 = listener1.calls.mostRecent().args[0];
 var event2 = listener2.calls.mostRecent().args[0];

 expect(event1).toBe(event2);
});

We can construct this event object in the $$fireEventOnScope function and pass it to the listen-
ers:

src/scope.js
Scope.prototype.$$fireEventOnScope = function(eventName) {
 var event = {name: eventName};
 var listeners = this.$$listeners[eventName] || [];
 _.forEach(listeners, function(listener) {
 listener(event);
 });
};

Additional Listener Arguments

When you emit or broadcast an event, an event name by itself isn’t always enough to communi-
cate everything about what’s happening. It’s very common to associate additional arguments with
the event. You can do that by just adding any number of arguments after the event name:

aScope.$emit('eventName', 'and', 'additional', 'arguments');

We need to pass these arguments on to the listener functions. They should receive them, cor-
respondingly, as additional arguments after the event object. This is true for both $emit and
$broadcast:

test/scope_spec.js
it('passes additional arguments to listeners on '+method, function() {
 var listener = jasmine.createSpy();
 scope.$on('someEvent', listener);

 scope[method]('someEvent', 'and', ['additional', 'arguments'], '...');

 expect(listener.calls.mostRecent().args[1]).toEqual('and');
 expect(listener.calls.mostRecent().args[2]).toEqual(['additional', 'arguments']);
 expect(listener.calls.mostRecent().args[3]).toEqual('...');
});

In both $emit and $broadcast, we’ll grab whatever additional arguments were given to the
function and pass them along to $$fireEventOnScope. We can get the additional arguments by
calling the Lo-Dash _.tail function with the arguments object, which gives us an array of all

Returning The Event Object 10

161 Errata© Tero Parviainen 2016

the function’s arguments except the first one:

src/scope.js
Scope.prototype.$emit = function(eventName) {
 var additionalArgs = _.tail(arguments);
 this.$$fireEventOnScope(eventName, additionalArgs);
};

Scope.prototype.$broadcast = function(eventName) {
 var additionalArgs = _.tail(arguments);
 this.$$fireEventOnScope(eventName, additionalArgs);
};

In $$fireEventOnScope we cannot simply pass the additional arguments on to the listeners.
That’s because the listeners are not expecting the additional arguments as a single array. They are
expecting them as regular arguments to the function. Thus, we need to apply the listener functions
with an array that contains both the event object and the additional arguments:

src/scope.js
Scope.prototype.$$fireEventOnScope = function(eventName, additionalArgs) {
 var event = {name: eventName};
 var listenerArgs = [event].concat(additionalArgs);
 var listeners = this.$$listeners[eventName] || [];
 _.forEach(listeners, function(listener) {
 listener.apply(null, listenerArgs);
 });
};

That gives us the desired behaviour.

Returning The Event Object

An additional characteristic that both $emit and $broadcast have is that they return the event
object that they construct, so that the originator of the event can inspect its state after it has fin-
ished propagating:

test/scope_spec.js
it('returns the event object on '+method, function() {
 var returnedEvent = scope[method]('someEvent');

 expect(returnedEvent).toBeDefined();
 expect(returnedEvent.name).toEqual('someEvent');
});

The implementation is trivial - we just return the event object:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply

Deregistering Event Listeners 10

162 Errata© Tero Parviainen 2016

src/scope.js
Scope.prototype.$emit = function(eventName) {
 var additionalArgs = _.tail(arguments);
 return this.$$fireEventOnScope(eventName, additionalArgs);
};

Scope.prototype.$broadcast = function(eventName) {
 var additionalArgs = _.tail(arguments);
 return this.$$fireEventOnScope(eventName, additionalArgs);
};

Scope.prototype.$$fireEventOnScope = function(eventName, additionalArgs) {
 var event = {name: eventName};
 var listenerArgs = [event].concat(additionalArgs);
 var listeners = this.$$listeners[eventName] || [];
 _.forEach(listeners, function(listener) {
 listener.apply(null, listenerArgs);
 });
 return event;
};

Deregistering Event Listeners

Before we get into the differences between $emit and $broadcast, let’s get one more important
common requirement out of the way: You should be able to not only register event listeners, but
also deregister them.

The mechanism for deregistering an event listener is the same as deregistering a watch, which we
implemented back in Chapter 1: The registration function returns a deregistration function. Once
that deregistration function has been called, the listener no longer receives any events:

test/scope_spec.js
it('can be deregistered '+method, function() {
 var listener = jasmine.createSpy();
 var deregister = scope.$on('someEvent', listener);

 deregister();

 scope[method]('someEvent');

 expect(listener).not.toHaveBeenCalled();
});

A simple implementation of removal does exactly what we did with watches - just splices the lis-
tener away from the collection:

src/scope.js
Scope.prototype.$on = function(eventName, listener) {

Deregistering Event Listeners 10

163 Errata© Tero Parviainen 2016

 var listeners = this.$$listeners[eventName];
 if (!listeners) {
 this.$$listeners[eventName] = listeners = [];
 }
 listeners.push(listener);
 return function() {
 var index = listeners.indexOf(listener);
 if (index >= 0) {
 listeners.splice(index, 1);
 }
 };
};

There is one special case we must be careful with, however: It is very common that a listener re-
moves itself when it gets fired, for example when the purpose is to invoke a listener just once. This
kind of removal happens while we are iterating the listeners array. The result is that the iteration jumps
over one listener - the one immediately after the removed listener:

test/scope_spec.js
it('does not skip the next listener when removed on '+method, function() {
 var deregister;

 var listener = function() {
 deregister();
 };
 var nextListener = jasmine.createSpy();

 deregister = scope.$on('someEvent', listener);
 scope.$on('someEvent', nextListener);

 scope[method]('someEvent');

 expect(nextListener).toHaveBeenCalled();
});

What this means is that we can’t just go and remove the listener directly. What we can do instead
is to replace the listener with something indicating it has been removed. null will do just fine for
this purpose:

src/scope.js
Scope.prototype.$on = function(eventName, listener) {
 var listeners = this.$$listeners[eventName];
 if (!listeners) {
 this.$$listeners[eventName] = listeners = [];
 }
 listeners.push(listener);
 return function() {
 var index = listeners.indexOf(listener);
 if (index >= 0) {
 listeners[index] = null;

Emitting Up The Scope Hierarchy 10

164 Errata© Tero Parviainen 2016

 }
 };
};

Then, in the listener iteration, we can check for listeners that are null and take corrective action.
We do need to switch from using _.forEach to a manual while loop to make this work:

src/scope.js
Scope.prototype.$$fireEventOnScope = function(eventName, additionalArgs) {
 var event = {name: eventName};
 var listenerArgs = [event].concat(additionalArgs);
 var listeners = this.$$listeners[eventName] || [];
 var i = 0;
 while (i < listeners.length) {
 if (listeners[i] === null) {
 listeners.splice(i, 1);
 } else {
 listeners[i].apply(null, listenerArgs);
 i++;
 }
 }
 return event;
};

Emitting Up The Scope Hierarchy

Now we finally get to the part that’s different between $emit and $broadcast: The direction in
which events travel in the scope hierarchy.

When you emit an event, that event gets passed to its listeners on the current scope, and then up
the scope hierarchy, to its listeners on each scope up to and including the root.

The test for this should go outside the forEach loop we created earlier, because it concerns $emit
only:

test/scope_spec.js
it('propagates up the scope hierarchy on $emit', function() {
 var parentListener = jasmine.createSpy();
 var scopeListener = jasmine.createSpy();

 parent.$on('someEvent', parentListener);
 scope.$on('someEvent', scopeListener);

 scope.$emit('someEvent');

 expect(scopeListener).toHaveBeenCalled();
 expect(parentListener).toHaveBeenCalled();
});

Emitting Up The Scope Hierarchy 10

165 Errata© Tero Parviainen 2016

Let’s try to implement this as simply as possible, by looping up the scopes in $emit. We can get to
each scope’s parent using the $parent attribute that we introduced in Chapter 2:

src/scope.js
Scope.prototype.$emit = function(eventName) {
 var additionalArgs = _.tail(arguments);
 var scope = this;
 do {
 scope.$$fireEventOnScope(eventName, additionalArgs);
 scope = scope.$parent;
 } while (scope);
};

This works - almost. We’ve now broken the contract about returning the event object to the caller
of $emit, but also recall that we discussed the importance of passing the same event object to ev-
ery listener. This requirement holds across scopes as well, but we’re failing the following test for it:

test/scope_spec.js
it('propagates the same event up on $emit', function() {
 var parentListener = jasmine.createSpy();
 var scopeListener = jasmine.createSpy();

 parent.$on('someEvent', parentListener);
 scope.$on('someEvent', scopeListener);

 scope.$emit('someEvent');

 var scopeEvent = scopeListener.calls.mostRecent().args[0];
 var parentEvent = parentListener.calls.mostRecent().args[0];
 expect(scopeEvent).toBe(parentEvent);
});

This means we’ll need to undo some of that duplication-removal we did earlier, and actually con-
struct the event object in $emit and $broadcast both, and then pass it to $$fireEventOnScope.
While we’re at it, let’s pull the whole listenerArgs construction out of $$fireEventOnScope.
That way we won’t have to construct it again for each scope:

src/scope.js
Scope.prototype.$emit = function(eventName) {
 var event = {name: eventName};
 var listenerArgs = [event].concat(_.tail(arguments));
 var scope = this;
 do {
 scope.$$fireEventOnScope(eventName, listenerArgs);
 scope = scope.$parent;
 } while (scope);
 return event;

Broadcasting Down The Scope Hierarchy 10

166 Errata© Tero Parviainen 2016

};

Scope.prototype.$broadcast = function(eventName) {
 var event = {name: eventName};
 var listenerArgs = [event].concat(_.tail(arguments));
 this.$$fireEventOnScope(eventName, listenerArgs);
 return event;
};

Scope.prototype.$$fireEventOnScope = function(eventName, listenerArgs) {
 var listeners = this.$$listeners[eventName] || [];
 var i = 0;
 while (i < listeners.length) {
 if (listeners[i] === null) {
 listeners.splice(i, 1);
 } else {
 listeners[i].apply(null, listenerArgs);
 i++;
 }
 }
};

We’ve introduced a bit of duplication here, but nothing too bad. It’ll actually come in handy as
$emit and $broadcast start to diverge more.

Broadcasting Down The Scope Hierarchy

$broadcast is basically the mirror image of $emit: It invokes the listeners on the current scope
and all of its direct and indirect descendant scopes - isolated or not:

test/scope_spec.js
it('propagates down the scope hierarchy on $broadcast', function() {
 var scopeListener = jasmine.createSpy();
 var childListener = jasmine.createSpy();
 var isolatedChildListener = jasmine.createSpy();

 scope.$on('someEvent', scopeListener);
 child.$on('someEvent', childListener);
 isolatedChild.$on('someEvent', isolatedChildListener);

 scope.$broadcast('someEvent');

 expect(scopeListener).toHaveBeenCalled();
 expect(childListener).toHaveBeenCalled();
 expect(isolatedChildListener).toHaveBeenCalled();
});
Just for the sake of completeness, let’s also make sure that $broadcast propagates one and the
same event object to all listeners:

Including The Current And Target Scopes in The Event Object 10

167 Errata© Tero Parviainen 2016

test/scope_spec.js
it('propagates the same event down on $broadcast', function() {
 var scopeListener = jasmine.createSpy();
 var childListener = jasmine.createSpy();

 scope.$on('someEvent', scopeListener);
 child.$on('someEvent', childListener);

 scope.$broadcast('someEvent');

 var scopeEvent = scopeListener.calls.mostRecent().args[0];
 var childEvent = childListener.calls.mostRecent().args[0];
 expect(scopeEvent).toBe(childEvent);
});

Iterating scopes on $broadcast isn’t quite as straightforward as it was on $emit, since there isn’t
a direct path down. Instead the scopes diverge in a tree structure. What we need to do is traverse
the tree. More precisely, we need the same kind of depth-first traversal of the tree we already have
in $$digestOnce. Indeed, we can just reuse the $$everyScope function introduced in Chapter
2:
src/scope.js
Scope.prototype.$broadcast = function(eventName) {
 var event = {name: eventName};
 var listenerArgs = [event].concat(_.tail(arguments));
 this.$$everyScope(function(scope) {
 scope.$$fireEventOnScope(eventName, listenerArgs);
 return true;
 });
 return event;
};

It’s now apparent why broadcasting an event is potentially much more expensive than emitting
one: Emitting goes up the hierarchy in a straight path, and scope hierarchies don’t usually get that
deep. Broadcasting, on the other hand, traverses across the tree as well. Broadcasting from the root
scope will visit each and every scope in your application.

Including The Current And Target Scopes in The Event
Object

At the moment our event object contains just one attribute: The event name. Next, we’re going to
bundle some more information on it.

If you’re familiar with DOM events in the browser, you’ll know that they come with a couple of
useful attributes: target, which identifies the DOM element on which the event occurred, and
currentTarget, which identifies the DOM element on which the event handler was attached.
Since DOM events propagate up the DOM tree, the two may be different.

Including The Current And Target Scopes in The Event Object 10

168 Errata© Tero Parviainen 2016

Angular scope events have an analogous pair of attributes: targetScope identifies the scope
on which the event occurred, and currentScope identifies the scope on which the listener was
attached. And, since scope events propagate up and down the scope tree, these two may also be
different.

Event originated in Listener attached in
DOM Events target currentTarget
Scope Events targetScope currentScope

Beginning with targetScope, the idea is that it points to the same scope, no matter which listener
is currently handling the event. For $emit:

test/scope_spec.js
it('attaches targetScope on $emit', function() {
 var scopeListener = jasmine.createSpy();
 var parentListener = jasmine.createSpy();

 scope.$on('someEvent', scopeListener);
 parent.$on('someEvent', parentListener);

 scope.$emit('someEvent');

 expect(scopeListener.calls.mostRecent().args[0].targetScope).toBe(scope);
 expect(parentListener.calls.mostRecent().args[0].targetScope).toBe(scope);
});

And for $broadcast:

test/scope_spec.js
it('attaches targetScope on $broadcast', function() {
 var scopeListener = jasmine.createSpy();
 var childListener = jasmine.createSpy();

 scope.$on('someEvent', scopeListener);
 child.$on('someEvent', childListener);

 scope.$broadcast('someEvent');

 expect(scopeListener.calls.mostRecent().args[0].targetScope).toBe(scope);
 expect(childListener.calls.mostRecent().args[0].targetScope).toBe(scope);
});
To make these tests pass, all we need to do is, in both $emit and $broadcast, attach this to the
event object as the target scope:

src/scope.js
Scope.prototype.$emit = function(eventName) {

Including The Current And Target Scopes in The Event Object 10

169 Errata© Tero Parviainen 2016

 var event = {name: eventName, targetScope: this};
 var listenerArgs = [event].concat(_.tail(arguments));
 var scope = this;
 do {
 scope.$$fireEventOnScope(eventName, listenerArgs);
 scope = scope.$parent;
 } while (scope);
 return event;
};

Scope.prototype.$broadcast = function(eventName) {
 var event = {name: eventName, targetScope: this};
 var listenerArgs = [event].concat(_.tail(arguments));
 this.$$everyScope(function(scope) {
 scope.$$fireEventOnScope(eventName, listenerArgs);
 return true;
 });
 return event;
};

Conversely, currentScope should differ based on what scope the listener was attached to. It
should point to exactly that scope. One way to look at it is that when the event is propagating up
or down the scope hierarchy, currentScope points to where we currently are in the propagation.

In this case we can’t use Jasmine spies for testing because with spies we can only verify invocations
after the fact. The currentScope is mutating during the scope traversal, so we have to record its
momentary value when a listener is called. We can do that with our own listener functions and local
variables:

For $emit:

test/scope_spec.js
it('attaches currentScope on $emit', function() {
 var currentScopeOnScope, currentScopeOnParent;
 var scopeListener = function(event) {
 currentScopeOnScope = event.currentScope;
 };
 var parentListener = function(event) {
 currentScopeOnParent = event.currentScope;
 };

 scope.$on('someEvent', scopeListener);
 parent.$on('someEvent', parentListener);

 scope.$emit('someEvent');

 expect(currentScopeOnScope).toBe(scope);
 expect(currentScopeOnParent).toBe(parent);
});

Including The Current And Target Scopes in The Event Object 10

170 Errata© Tero Parviainen 2016

And for $broadcast:

test/scope_spec.js
it('attaches currentScope on $broadcast', function() {
 var currentScopeOnScope, currentScopeOnChild;
 var scopeListener = function(event) {
 currentScopeOnScope = event.currentScope;
 };
 var childListener = function(event) {
 currentScopeOnChild = event.currentScope;
 };

 scope.$on('someEvent', scopeListener);
 child.$on('someEvent', childListener);

 scope.$broadcast('someEvent');

 expect(currentScopeOnScope).toBe(scope);
 expect(currentScopeOnChild).toBe(child);
});

Luckily the actual implementation is much more straightforward than the tests. All we need to do
is attach the scope we’re currently iterating on:

src/scope.js
Scope.prototype.$emit = function(eventName) {
 var event = {name: eventName, targetScope: this};
 var listenerArgs = [event].concat(_.tail(arguments));
 var scope = this;
 do {
 event.currentScope = scope;
 scope.$$fireEventOnScope(eventName, listenerArgs);
 scope = scope.$parent;
 } while (scope);
 return event;
};

Scope.prototype.$broadcast = function(eventName) {
 var event = {name: eventName, targetScope: this};
 var listenerArgs = [event].concat(_.tail(arguments));
 this.$$everyScope(function(scope) {
 event.currentScope = scope;
 scope.$$fireEventOnScope(eventName, listenerArgs);
 return true;
 });
 return event;
};

Since currentScope is meant to communicate the current status of the event propagation, it

Including The Current And Target Scopes in The Event Object 10

171 Errata© Tero Parviainen 2016

should also be cleared after the event propagation is done. Otherwise any code that holds on to the
event after it has finished propagating will have stale information about the propagation status. We
can test this by capturing the event in a listener, and seeing that after the event has been processed,
currentScope is explicitly set to null:

test/scope_spec.js
it('sets currentScope to null after propagation on $emit', function() {
 var event;
 var scopeListener = function(evt) {
 event = evt;
 };
 scope.$on('someEvent', scopeListener);

 scope.$emit('someEvent');

 expect(event.currentScope).toBe(null);
});

it('sets currentScope to null after propagation on $broadcast', function() {
 var event;
 var scopeListener = function(evt) {
 event = evt;
 };
 scope.$on('someEvent', scopeListener);

 scope.$broadcast('someEvent');

 expect(event.currentScope).toBe(null);
});

This is achieved by simply setting currentScope to null at the end of $emit:

src/scope.js
Scope.prototype.$emit = function(eventName) {
 var event = {name: eventName, targetScope: this};
 var listenerArgs = [event].concat(_.tail(arguments));
 var scope = this;
 do {
 event.currentScope = scope;
 scope.$$fireEventOnScope(eventName, listenerArgs);
 scope = scope.$parent;
 } while (scope);
 event.currentScope = null;
 return event;
};

The same is done in $broadcast:

src/scope.js

Stopping Event Propagation 10

172 Errata© Tero Parviainen 2016

Scope.prototype.$broadcast = function(eventName) {
 var event = {name: eventName, targetScope: this};
 var listenerArgs = [event].concat(_.tail(arguments));
 this.$$everyScope(function(scope) {
 event.currentScope = scope;
 scope.$$fireEventOnScope(eventName, listenerArgs);
 return true;
 });
 event.currentScope = null;
 return event;
};

And now event listeners can make decisions based on where in the scope hierarchy events are
coming from and where they’re being listened to.

Stopping Event Propagation

Another feature DOM events have, and one very commonly used, is stopping them from propagating
further. DOM event objects have a function called stopPropagation for this purpose. It can be used
in situations where you have, say, click handlers on multiple levels of the DOM, and don’t want to trigger
all of them for a particular event.

Scope events also have a stopPropagation method, but only when they’ve been emitted. Broadcast-
ed events cannot be stopped. (This further emphasizes the fact that broadcasting is expensive).

What this means is that when you emit an event, and one of its listeners stops its propagation,
listeners on parent scopes will never see that event:

test/scope_spec.js
it('does not propagate to parents when stopped', function() {
 var scopeListener = function(event) {
 event.stopPropagation();
 };
 var parentListener = jasmine.createSpy();

 scope.$on('someEvent', scopeListener);
 parent.$on('someEvent', parentListener);

 scope.$emit('someEvent');

 expect(parentListener).not.toHaveBeenCalled();
});

So the event does not go to parents but, crucially, it does still get passed to all remaining listeners
on the current scope. It is only the propagation to parent scopes that is stopped:

test/scope_spec.js

Preventing Default Event Behavior 10

173 Errata© Tero Parviainen 2016

it('is received by listeners on current scope after being stopped', function() {
 var listener1 = function(event) {
 event.stopPropagation();
 };
 var listener2 = jasmine.createSpy();

 scope.$on('someEvent', listener1);
 scope.$on('someEvent', listener2);

 scope.$emit('someEvent');

 expect(listener2).toHaveBeenCalled();

});

The first thing we need is a boolean flag that signals whether someone has called stopPropa-
gation or not. We can introduce that in the closure formed by $emit. Then we need the actual
stopPropagation function itself, which gets attached to the event object. Finally, the do..while
loop we have in $emit should check for the status of the flag before going up a level:

src/scope.js
Scope.prototype.$emit = function(eventName) {
 var propagationStopped = false;
 var event = {
 name: eventName,
 targetScope: this,
 stopPropagation: function() {
 propagationStopped = true;
 }
 };
 var listenerArgs = [event].concat(_.tail(arguments));
 var scope = this;
 do {
 event.currentScope = scope;
 scope.$$fireEventOnScope(eventName, listenerArgs);
 scope = scope.$parent;
 } while (scope && !propagationStopped);
 return event;
};

Preventing Default Event Behavior

In addition to stopPropagation, DOM events can also be cancelled in another way, and that is
by preventing their “default behavior”. DOM events have a function called preventDefault that
does this. Its purpose is to prevent the effect that the event would have natively in the browser, but
still letting all its listeners know about it. For example, when preventDefault is called on a click
event fired on a hyperlink, the browser does not follow the hyperlink, but all click handlers are still
invoked.

Preventing Default Event Behavior 10

174 Errata© Tero Parviainen 2016

Scope events also have a preventDefault function. This is true for both emitted and broadcast-
ed events. However, since scope events do not have any built-in “default behavior”, calling the
function has very little effect. It does one thing, which is to set a boolean flag called defaultPre-
vented on the event object. The flag does not alter the scope event system’s behavior, but may be
used by, say, custom directives to make decisions about whether or not they should trigger some
default behavior once the event has finished propagating. The Angular $locationService does
this when it broadcasts location events.

So, all we need to do is test that when a listener calls preventDefault() on the event object, its
defaultPrevented flag gets set. This behavior is identical for both $emit and $broadcast, so
add the following test to the loop in which we’ve added the common behaviors:

test/scope_spec.js
it('is sets defaultPrevented when preventDefault called on '+method, function() {
 var listener = function(event) {
 event.preventDefault();
 };
 scope.$on('someEvent', listener);

 var event = scope[method]('someEvent');

 expect(event.defaultPrevented).toBe(true);
});

The implementation here is similar to what we just did in stopPropagation: There’s a function
that sets a boolean flag attached to the event object. The difference is that this time the boolean
flag is also attached to the event object, and that this time we don’t make any decisions based on
the value of the boolean flag. For $emit:

src/scope.js
Scope.prototype.$emit = function(eventName) {
 var propagationStopped = false;
 var event = {
 name: eventName,
 targetScope: this,
 stopPropagation: function() {
 propagationStopped = true;
 },
 preventDefault: function() {
 event.defaultPrevented = true;
 }
 };
 var listenerArgs = [event].concat(_.tail(arguments));
 var scope = this;
 do {
 event.currentScope = scope;
 scope.$$fireEventOnScope(eventName, listenerArgs);
 scope = scope.$parent;

Broadcasting Scope Removal 10

175 Errata© Tero Parviainen 2016

 } while (scope && !propagationStopped);
 return event;
};

And for $broadcast:

src/scope.js
Scope.prototype.$broadcast = function(eventName) {
 var event = {
 name: eventName,
 targetScope: this,
 preventDefault: function() {
 event.defaultPrevented = true;
 }
 };
 var listenerArgs = [event].concat(_.tail(arguments));
 this.$$everyScope(function(scope) {
 event.currentScope = scope;
 scope.$$fireEventOnScope(eventName, listenerArgs);
 return true;
 });
 return event;
};

Broadcasting Scope Removal

Sometimes it is useful to know when a scope is removed. A typical use case for this is in directives,
where you might set up DOM listeners and other references which should be cleaned up when the
directive’s element gets destroyed. The solution to this is listening to an event named $destroy on
the directive’s scope. (Notice the dollar sign on the event name. It indicates it is an event coming
from the Angular framework rather than application code.)

Where does this $destroy event come from? Well, we should fire it when a scope gets removed,
which is when someone calls the $destroy function on it:

test/scope_spec.js
it('fires $destroy when destroyed', function() {
 var listener = jasmine.createSpy();
 scope.$on('$destroy', listener);

 scope.$destroy();

 expect(listener).toHaveBeenCalled();
});

When a scope gets removed, all of its child scopes get removed too. Their listeners should also
receive the $destroy event:

Disabling Listeners On Destroyed Scopes 10

176 Errata© Tero Parviainen 2016

test/scope_spec.js
it('fires $destroy on children destroyed', function() {
 var listener = jasmine.createSpy();
 child.$on('$destroy', listener);

 scope.$destroy();

 expect(listener).toHaveBeenCalled();
});

How do we make this work? Well, we have exactly the function needed to fire an event on a scope
and its children: $broadcast. We should use it to broadcast the $destroy event from the $de-
stroy function:

src/scope.js
Scope.prototype.$destroy = function() {
 this.$broadcast('$destroy');
 if (this.$parent) {
 var siblings = this.$parent.$$children;
 var indexOfThis = siblings.indexOf(this);
 if (indexOfThis >= 0) {
 siblings.splice(indexOfThis, 1);
 }
 }
 this.$$watchers = null;
};

Disabling Listeners On Destroyed Scopes

In addition to firing the $destroy event, another effect of destroying a scope should be that its
event listeners are no longer active:
test/scope_spec.js
it('no longers calls listeners after destroyed', function() {
 var listener = jasmine.createSpy();
 scope.$on('myEvent', listener);

 scope.$destroy();

 scope.$emit('myEvent');
 expect(listener).not.toHaveBeenCalled();
});

We can re-set the $$listeners object of the scope to an empty object, which will effectively
throw all existing event listeners away:

src/scope.js

Handling Exceptions 10

177 Errata© Tero Parviainen 2016

Scope.prototype.$destroy = function() {
 this.$broadcast('$destroy');
 if (this.$parent) {
 var siblings = this.$parent.$$children;
 var indexOfThis = siblings.indexOf(this);
 if (indexOfThis >= 0) {
 siblings.splice(indexOfThis, 1);
 }
 }
 this.$$watchers = null;
 this.$$listeners = {};
};

This leaves the $$listeners on any child scopes untouched, but since those Scopes are no longer
part of the Scope hierarchy they won’t be receiving any events. Unless there’s a reference leak in
application code, the child Scopes along with their listeners will soon be garbage collected.

Handling Exceptions

There’s just one thing remaining that we need to do, and that is to deal with the unfortunate fact
that exceptions occur. When a listener function does something that causes it to throw an excep-
tion, that should not mean that the event stops propagating. Our current implementation does not
only that, but also actually causes the exception to be thrown all the way out to the caller of $emit
or $broadcast. That means these test cases (defined inside the forEach loop for $emit and
$broadcast) currently throw exceptions:

test/scope_spec.js
it('does not stop on exceptions on '+method, function() {
 var listener1 = function(event) {
 throw 'listener1 throwing an exception';
 };
 var listener2 = jasmine.createSpy();
 scope.$on('someEvent', listener1);
 scope.$on('someEvent', listener2);

 scope[method]('someEvent');

 expect(listener2).toHaveBeenCalled();
});

Just like with watch functions, $evalAsync functions, and $$postDigest functions, we need
to wrap each listener invocation in a try..catch clause and handle the exception. For now the
handling means merely logging it to the console, but at a later point we’ll actually forward it to a
special exception handler service:

src/scope.js

Summary 10

178 Errata© Tero Parviainen 2016

Scope.prototype.$$fireEventOnScope = function(eventName, listenerArgs) {
 var listeners = this.$$listeners[eventName] || [];
 var i = 0;
 while (i < listeners.length) {
 if (listeners[i] === null) {
 listeners.splice(i, 1);
 } else {
 try {
 listeners[i].apply(null, listenerArgs);
 } catch (e) {
 console.error(e);
 }
 i++;
 }
 }
};

Summary

We’ve now implemented the Angular scope event system in full, and with that we have a fully fea-
tured Scope implementation! Everything that Angular’s scopes do, our scopes now do too.

In this chapter you’ve learned:

• How Angular’s event system builds on the classic pub/sub pattern.
• How event listeners are registered on scopes
• How events are fired on scopes
• What the differences between $emit and $broadcast are
• What the contents of scope event objects are
• How some of the scope attributes are modeled after the DOM event model
• When and how scope events can be stopped

In future chapters we will integrate the scope implementation to other parts of Angular as we
build them. In the next chapter we will begin this work by starting to look at expressions and the
Angular expression language. Expressions are intimately tied to scope watches and enable a much
more succint way to express the thing you want to watch.

 11

179 Errata© Tero Parviainen 2016

Part 2

Expressions
and Filters

Dependency Injection

Scopes Expressions

Directives
(+ controllers)

$q

$http

A Whole New Language 11

180 Errata© Tero Parviainen 2016

We now have a full implementation of Scopes, which forms the core of Angular’s change detec-
tion system. We’ll now turn our attention to expressions* - a feature that provides frictionless access
to that core. Expressions allow us to concisely access and manipulate data on scopes and run
computation on it.

We can use expressions in JavaScript application code, often to great effect, but that’s not the main
use case for them. The real value of expressions is in allowing us to bind data and behavior to
HTML markup. We use expressions when providing attributes to directives like ngClass or ng-
Click, and we use them when binding data to the contents and attributes of DOM elements with
the interpolation syntax {{ }}.

This approach of attaching behavior to HTML isn’t free of controversy, and to many people it is
uncomfortably reminiscent of the onClick=”javascript:doStuff()” style of JavaScript we
used in the early days of the dynamic web. Fortunately, as we will see, there are some key dif-
ferences between Angular expressions and arbitrary JavaScript code that greatly diminishes the
magnitude of the problems associated with mixing markup and code.

In this part of the book we will implement Angular expressions. In the process, you will learn in
great detail what you can and cannot do with them and how they work their magic.

Closely connected to expressions are Angular filters - those functions we run by adding the Unix-
style pipe character ’|’ to expressions to modify their return values. We will see how filters are
constructed, how they can be invoked from JavaScript, and how they integrate with Angular
expressions.

A Whole New Language

So what exactly are Angular expressions? Aren’t they just pieces of JavaScript you sprinkle in your
HTML markup? That’s close, but not quite true.

Angular expressions are custom-designed to access and manipulate data on scope objects, and
to not do much else. Expressions are definitely modeled very closely on JavaScript, and as Miško
Hevery has pointed out, you could implement much of the expression system with just a few lines
of JavaScript:

function parse(expr) {
 return function(scope) {
 with (scope) {
 return eval(expr);
 }
 }
}

This function takes an expression string and returns a function. That function executes the expres-
sion by evaluating it as JavaScript code. It also sets the context of the code to be a scope object

What We Will Skip 11

181 Errata© Tero Parviainen 2016

using the JavaScript with statement.

This implementation of expressions is problematic because it uses some iffy JavaScript features:
The use of both eval and with is frowned upon, and with is actually forbidden in ECMAScript 5
strict mode.

But the main problem is that this implementation doesn’t get us all the way there. While Angular
expressions are almost pure JavaScript, they also extend it: The filter expressions that use the pipe
character | are not valid JavaScript (where the pipe denotes a bitwise OR operation, and as such
cannot be processed by eval.

There are also some serious security considerations with parsing and executing arbitrary JavaS-
cript code using eval. This is particularly true when the code originates in HTML, where you typ-
ically include user-generated content. This opens up a whopping new vector for cross-site scripting
attacks. That is why Angular expressions are constrained to execute in the context of a scope, and
not a global object like window. Angular also does its best to prevent you from doing anything
dangerous with expressions, as we will see.

So, if expressions aren’t JavaScript, what are they? You could say they are a whole new program-
ming language. A JavaScript derivative that’s optimized for short expressions, removes most con-
trol flow statements, and adds filtering support.

Starting in the following chapter we are going to implement this programming language. It in-
volves taking strings that represent expressions and returning JavaScript functions that execute the
computation in those expressions. This will bring us to the world of parsers, lexers, and abstract
syntax trees - the tools of programming language designers.

What We Will Skip

There are a couple of things the Angular expression implementation includes that we will omit in
the interest of staying closer to the essence of expressions:

• The Angular expression parser does a lot of work so that application programmers can get
clear error messages when parsing goes wrong. This involves bookkeeping related to the lo-
cations of characters and tokens in the input strings. We will skip most of that bookkeeping,
making our implementation simpler at the cost of having error messages that aren’t quite so
user friendly.

• The expression parser supports the HTML Content Security Policy, and switches to an inter-
preted mode from the default compiled mode when there is one present. We will only focus on the
compiled mode in this book, which means our implementation would not work with a Content
Security Policy.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators)
http://en.wikipedia.org/wiki/Content_Security_Policy

What We Will Skip 11

182 Errata© Tero Parviainen 2016

 12

183 Errata© Tero Parviainen 2016

Chapter 6

Literal Expressions

Setup 12

184 Errata© Tero Parviainen 2016

To begin our implementation of the Angular expression parser, let’s make a version that can parse
literal expressions - simple data expressions that represent themselves, like numbers, strings, an
arrays (”42”, [1, 2, 3]), and unlike identifiers or function calls, (fourtyTwo, a.b()).

Literal expressions are the simplest kinds of expressions to parse. By adding support for them first
we can flesh out the structure and dynamics of all the pieces that make up expression parsing.

Download the code for the starting point of this chapter.

Setup

The code that parses Angular expressions will go into a new file called src/parse.js, named
after the $parse service that it will provide.

In that file, there will be one external-facing function, called parse. It takes an Angular expression
string and returns a function that executes that expression in a certain context:

src/parse.js
'use strict';

function parse(expr) {
 // return ...
}

module.exports = parse;

We will later turn this function into the $parse service, once we have the dependency injector up and
running.

The file will contain four objects that do all the work of turning expression strings into functions: A
Lexer, an AST Builder, an AST Compiler, and a Parser. They have distinct responsibilities in different
phases of the job:

The Lexer takes the original expression string and returns an array of tokens parsed from that string. For
example, the string ”a + b” would result in tokens for a, +, and b.

The AST Builder takes the array of tokens generated by the lexer, and builds up an Abstract
Syntax Tree (AST) from them. The tree represents the syntactic structure of the expression as nested
JavaScript objects. For example, the tokens a, +, and b would result in something like this:

{
 type: AST.BinaryExpression,
 operator: '+',
 left: {
 type: AST.Identifier,
 name: 'a'

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter5-scope-events

Setup 12

185 Errata© Tero Parviainen 2016

 },
 right: {
 type: AST.Identifier,
 name: 'b'
 }
}

The AST Compiler takes the abstract syntax tree and compiles it into a JavaScript function that evaluates
the expression represented in the tree. For example, the AST above would result in something like this:

function(scope) {
 return scope.a + scope.b;
}

The Parser is responsible for combining the low-level steps mentioned above. It doesn’t do very much
itself, but instead delegates the heavy lifting to the Lexer, the AST Builder, and the AST Compiler.

Setup 12

186 Errata© Tero Parviainen 2016

Lexer

"a + b"

{
 type: AST.BinaryExpression,
 operator: '+',
 left: {
 type: AST.Identifier,
 name: 'a'
 },
 right: {
 type: AST.Identifier,
 name: 'b'
 }
}

function(scope) {
 return scope.a + scope.b;
}

AST Builder

[
 {text: 'a', identifier: true},
 {text: '+'},
 {text: 'b', identifier: true}
]

AST Compiler

Input String

Tokens

Abstract
Syntax
Tree

Expression
Function

Setup 12

187 Errata© Tero Parviainen 2016

What this all means is that whenever you use expressions in Angular, JavaScript functions get gen-
erated behind the scenes. Those functions then get repeatedly executed when the expressions are
evaluated during digests.

Let’s set up the scaffolding for each of these. Firstly, the Lexer is defined as a constructor func-
tion. It includes a method called lex, which executes the tokenization:

src/parse.js
function Lexer() {
}

Lexer.prototype.lex = function(text) {
 // Tokenization will be done here
};

The AST Builder (denoted in the code just by AST) is another constructor function. It takes a Lex-
er as an argument. It also has an ast method, which will execute the AST building for the tokens
of a given expression:

src/parse.js
function AST(lexer) {
 this.lexer = lexer;
}

AST.prototype.ast = function(text) {
 this.tokens = this.lexer.lex(text);
 // AST building will be done here
};

The AST Compiler is yet another constructor function, which takes an AST Builder as an argu-
ment. It has a method called compile, which compiles an expression into an expression function:

src/parse.js
function ASTCompiler(astBuilder) {
 this.astBuilder = astBuilder;
}

ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 // AST compilation will be done here
};

Finally, Parser is a constructor function that constructs the complete parsing pipeline from the
pieces outlined above. It takes a Lexer as an argument, and has a method called parse:

src/parse.js

Parsing Integers 12

188 Errata© Tero Parviainen 2016

function Parser(lexer) {
 this.lexer = lexer;
 this.ast = new AST(this.lexer);
 this.astCompiler = new ASTCompiler(this.ast);
}

Parser.prototype.parse = function(text) {
 return this.astCompiler.compile(text);
};

We can now augment the public parse function so that it creates a Lexer and a Parser and then
calls Parser.parse:

src/parse.js
function parse(expr) {
 var lexer = new Lexer();
 var parser = new Parser(lexer);
 return parser.parse(expr);
}

This is the high-level structure of parse.js. In the rest of this and the following few chapters
we’ll populate these functions with the features that make the magic happen.

Parsing Integers

The most simple literal value one can parse is a plain integer, such as 42. Its simplicity makes it a
good starting point for our parser implementation.

Let’s add our first parser test case to express what we want. Create the file test/parse_spec.js
and set the contents as follows:

test/parse_spec.js
'use strict';

var parse = require('../src/parse');

describe('parse', function() {

 it('can parse an integer', function() {
 var fn = parse('42');
 expect(fn).toBeDefined();
 expect(fn()).toBe(42);
 });

});

In the preamble we set the file to strict mode and require the parse function from parse.js. In

Parsing Integers 12

189 Errata© Tero Parviainen 2016

the test case itself we define the contract for parse: It takes a string and returns a function. That func-
tion evaluates to the parsed value of the original string.

To implement this, let’s first consider the output of the Lexer. We’ve discussed that it outputs a
collection of tokens, but what exactly is a token?

For our purposes, a token is an object that gives the AST Builder all the information it needs to
construct an abstract syntax tree. At this point, we’ll need just two things for our numeric literal,
which are:

• The text that the token was parsed from
• The numeric value of the token

For the number 42, our token can simply be something like:

{
 text: '42',
 value: 42
}

So, let’s implement number parsing in the Lexer in a way that gets us a data structure like the one
above.

The lex function of the Lexer forms basically one big loop, which iterates over all characters in
the given input string. During the iteration, it forms the collection of tokens the string included:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 }

 return this.tokens;
};

This function outline does nothing yet (except loop infinitely), but it sets up the fields we’ll need
during the iteration:

• text - The original string
• index - Our current character index in the string
• ch - The current character

Parsing Integers 12

190 Errata© Tero Parviainen 2016

• tokens - The resulting collection of tokens.

The while loop is where we’ll add the behavior for dealing with different kinds of characters.
Let’s do so now for numbers:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch)) {
 this.readNumber();
 } else {
 throw 'Unexpected next character: ' + this.ch;
 }
 }

 return this.tokens;
};

If the current character is a number, we delegate to a helper method called readNumber to read it
in. If the character isn’t a number, it’s something we can’t currently deal with so we just throw an
exception.

The isNumber check is simple:

src/parse.js
Lexer.prototype.isNumber = function(ch) {
 return '0' <= ch && ch <= '9';
};

We use the numeric <= operator to check that the value of the character is between the values of
’0’ and ’9’. JavaScript uses lexicographical comparison here, as opposed to numeric compari-
son, but in the single-digit case they amount to the same thing.

The readNumber method, on a high level, has a structure similar to lex: It loops over the text
character by character, building up the number as it goes:

src/parse.js
Lexer.prototype.readNumber = function() {
 var number = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);

Parsing Integers 12

191 Errata© Tero Parviainen 2016

 if (this.isNumber(ch)) {
 number += ch;
 } else {
 break;
 }
 this.index++;
 }
};

The while loop reads the current character. Then, if the character is a number, it’s concatenated
to the local number variable and the character index is advanced. If the character is not a number,
the loop is terminated.

This gives us the number string, but we don’t do anything with it yet. We need to emit a token:

src/parse.js
Lexer.prototype.readNumber = function() {
 var number = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (this.isNumber(ch)) {
 number += ch;
 } else {
 break;
 }
 this.index++;
 }
 this.tokens.push({
 text: number,
 value: Number(number)
 });
};

Here we just add a new token to the this.tokens collection. The token’s text attribute is the
string we have read, and the value attribute is the numeric value converted from that string using
the Number constructor.

The lexer is now doing its part for integer parsing. Next, we’ll focus our attention on the AST
Builder.

As discussed earlier, the AST is a nested JavaScript object structure that represents an expression
in a tree-like form. Each node in the tree will have a type attribute that describes the syntactic
structure the node represents. In addition to the type, nodes will have type-specific attributes that
hold further information about the node.

For instance, our numeric literals will have a type of AST.Literal, and a value attribute that
holds the value of the literal:

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Number

Parsing Integers 12

192 Errata© Tero Parviainen 2016

{type: AST.Literal, value: 42}

Every AST has a root node of type AST.Program. That root node has an attribute called body
that holds the contents of the expression. Thus, our numeric literal should actually be wrapped
inside an AST.Program:

{
 type: AST.Program,
 body: {
 type: AST.Literal,
 value: 42
 }
}

This is the AST we should now form from the Lexer output.

There is actually an additional level of wrapping in ASTs that we’re skipping for now. It has to do with
expression having multiple statements. We will see how this works later in this part of the book.

The top-level Program node is created by a method on the AST builder called program. It be-
comes the return value of the whole AST building process:

src/parse.js
AST.prototype.ast = function(text) {
 this.tokens = this.lexer.lex(text);
 return this.program();
};
AST.prototype.program = function() {
 return {type: AST.Program};
};

The value of the type, AST.Program, is a “marker constant” defined on the AST function. It is
used to identify what type of node is being represented. Its value is a simple string:

src/parse.js
function AST(lexer) {
 this.lexer = lexer;
}
AST.Program = 'Program';

We will introduce similar marker constants for all AST node types, and use them in the AST com-
piler to make decisions about what kind of JavaScript code to generate.

The program should have a body, which in this case can just be a numeric literal value. Its type is
AST.Literal, and it is generated by the constant method of the AST builder:

Parsing Integers 12

193 Errata© Tero Parviainen 2016

src/parse.js
AST.prototype.program = function() {
 return {type: AST.Program, body: this.constant()};
};
AST.prototype.constant = function() {
 return {type: AST.Literal, value: this.tokens[0].value};
};

For now we just grab the first token we have, and take its value attribute.

We need a marker constant for this type of node as well:
src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';

This gives us the AST we need for numeric literals, and we can next focus our attention to the AST
Compiler and its task of generating a JavaScript function from this AST.

What the AST Compiler will do is walk over the tree generated by the AST Builder, and build
up the JavaScript source code that represents the nodes in the tree. It’ll then generate a JavaScript
function for the source code. For our numeric literal, that function will be very simple:

function() {
 return 42;
}

In the main compile function of the compiler, we’ll introduce a state attribute into which we
will collect information while walking the tree. For now we’ll collect just one thing, which is the
JavaScript code that forms the body of the function:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: []};
};

Once we’ve initialized the state, we’ll start walking the tree, which we do with a method called recurse:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: []};
 this.recurse(ast);
};
ASTCompiler.prototype.recurse = function(ast) {

};

Parsing Integers 12

194 Errata© Tero Parviainen 2016

The goal is that once recurse returns, state.body will hold JavaScript statements that we can
create a function from. That function will become our return value:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: []};
 this.recurse(ast);
 /* jshint -W054 */
 return new Function(this.state.body.join(''));
 /* jshint +W054 */
};

We’re using the Function constructor to create the function. This constructor takes some Ja-
vaScript source code and compiles it into a function on the fly. This is basically a form of eval.
JSHint doesn’t like eval, so we need to tell it that we know we’re doing something potentially
dangerous and it should not raise warnings about it. (W054 is one of the JSHint numeric warning
codes, and stands for “The Function constructor is a form of eval.”).

The final piece of the puzzle is to figure out what we should be doing in recurse. The expecta-
tion is to generate some JavaScript code and put it into this.state.body.

As the name implies, recurse is a recursive method that we will invoke for each node in the tree. Since
each node has a type, and different types of nodes require different kind of processing, we’ll introduce a
switch statement with alternate branches for different AST node types:

src/parse.js
ASTCompiler.prototype.recurse = function(ast) {
 switch (ast.type) {
 case AST.Program:

 case AST.Literal:

 }
};

A literal is a “leaf node”, which means it has no child nodes - just a value. What we can do for it is
simply return the node’s value:

src/parse.js
case AST.Literal:
 return ast.value
For the Program node we need to do a bit more. We need to generate the return statement for the
whole expression. What we should return is the value of the body of the Program, which we can
obtain by recursively calling recurse:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://jslinterrors.com/the-function-constructor-is-eval
https://jslinterrors.com/the-function-constructor-is-eval

Parsing Floating Point Numbers 12

195 Errata© Tero Parviainen 2016

src/parse.js
case AST.Program:
 this.state.body.push('return ', this.recurse(ast.body), ';');
 break;

In the case of our first test the body happens to be the value of the identifier 42, resulting in the
function body return 42;.

This makes our test pass. We have generated an expression function from the expression string
’42’!

You can actually inspect the generated source code by calling fn.toString() on the expression func-
tions returned from parse. This can be a useful trick when debugging issues with more complicated
expressions.

There are quite a few pieces at work here, which may seem unnecessarily complicated, but the
roles of the different pieces will become more apparent as we add more features to our expression
implementation.

You may have noticed we’re only considering positive integers here. That is because we will handle negative
numbers differently, by considering the minus sign as an operator instead of being part of the number itself.

Parsing Floating Point Numbers

Our lexer can currently only deal with integers, and not floating point numbers such as 4.2:

test/parse_spec.js
it('can parse a floating point number', function() {
 var fn = parse('4.2');
 expect(fn()).toBe(4.2);
});

Fixing this is straightforward. All we need to do is allow a character in readNumber to be the dot
in addition to a digit:

src/parse.js
Lexer.prototype.readNumber = function() {
 var number = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (ch === '.' || this.isNumber(ch)) {
 number += ch;
 } else {
 break;

Parsing Floating Point Numbers 12

196 Errata© Tero Parviainen 2016

 }
 this.index++;
 }
 this.tokens.push({
 text: number,
 value: Number(number)
 });
};

We don’t need to do anything special to parse the dot, since JavaScript’s built-in number coercion
can handle it.

When a floating point number’s integer part is zero, Angular expressions let you omit the integer
part completely, just like JavaScript does. Our implementation doesn’t yet work with that though,
causing this test to fail:

test/parse_spec.js
it('can parse a floating point number without an integer part', function() {
 var fn = parse('.42');
 expect(fn()).toBe(0.42);
});

The reason is that in the lex function we’re making the decision about going into readNumber by
seeing whether the current character is a number. We should also do that when it is a dot, and the
next character will be a number.

Firstly, for looking at the next character, let’s add a function to the lexer called peek. It returns the
next character in the text, without moving the current character index forward. If there is no next
character, peek will return false:

src/parse.js
Lexer.prototype.peek = function() {
 return this.index < this.text.length - 1 ?
 this.text.charAt(this.index + 1) :
 false;
};

The lex function will now use it to make the decision about going to readNumber:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {

Parsing Scientific Notation 12

197 Errata© Tero Parviainen 2016

 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.ch === '.' && this.isNumber(this.peek()))) {
 this.readNumber();
 } else {
 throw 'Unexpected next character: '+this.ch;
 }
 }

 return this.tokens;
};

And that covers floating point numbers!

Parsing Scientific Notation

The third and final way to express a number in Angular expressions is scientific notation, which
actually consists of two numbers: The coefficient and the exponent, separated by the character e.
For example, the number 42,000, or 42 * 103, can be expressed as 42e3. As a unit test:

test/parse_spec.js
it('can parse a number in scientific notation', function() {
 var fn = parse('42e3');
 expect(fn()).toBe(42000);
});

Also, the coefficient in scientific notation does not have to be an integer:

test/parse_spec.js
it('can parse scientific notation with a float coefficient', function() {
 var fn = parse('.42e2');
 expect(fn()).toBe(42);
});

The exponent in scientific notation may also be negative, causing the coefficient to be multiplied
by negative powers of ten:

test/parse_spec.js
it('can parse scientific notation with negative exponents', function() {
 var fn = parse('4200e-2');
 expect(fn()).toBe(42);
});

The exponent may also be explicitly expressed as positive, by having the + sign precede it:

test/parse_spec.js

Parsing Scientific Notation 12

198 Errata© Tero Parviainen 2016

it('can parse scientific notation with the + sign', function() {
 var fn = parse('.42e+2');
 expect(fn()).toBe(42);
});

Finally, the e character in between the coefficient and the exponent may also be an uppercase E:

test/parse_spec.js
it('can parse upper case scientific notation', function() {
 var fn = parse('.42E2');
 expect(fn()).toBe(42);
});

Now that we have the specs for scientific notation, how should we go about implementing it? The
most straightforward approach might be to just downcase each character, pass it right through to
the number if it is e, -, or +, and rely on JavaScript’s number coercion to do the rest. And that
really does make our tests pass:

src/parse.js
Lexer.prototype.readNumber = function() {
 var number = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index).toLowerCase();
 if (ch === '.' || ch === 'e' || ch === '-' ||
 ch === '+' || this.isNumber(ch)) {
 number += ch;
 } else {
 break;
 }
 this.index++;
 }
 this.tokens.push({
 text: number,
 value: Number(number)
 });
};

As you might have guessed, we can’t get away with it quite that easily. While this implementation
parses scientific notation correctly, it is also too lenient about invalid notation, letting through bro-
ken number literals such as the following:

test/parse_spec.js
it('will not parse invalid scientific notation', function() {
 expect(function() { parse('42e-'); }).toThrow();
 expect(function() { parse('42e-a'); }).toThrow();
});

Let’s tighten things up. Firstly, we’ll need to introduce the concept of an exponent operator. That is,

Parsing Scientific Notation 12

199 Errata© Tero Parviainen 2016

a character that is allowed to come after the e character in scientific notation. That may be a digit,
the plus sign, or the minus sign:

src/parse.js
Lexer.prototype.isExpOperator = function(ch) {
 return ch === '-' || ch === '+' || this.isNumber(ch);
};

Next, we need to use this check in readNumber. First of all, let’s undo the damage we did in our naïve
implementation and introduce an empty else branch where we will handle scientific notation:

src/parse.js
Lexer.prototype.readNumber = function() {
 var number = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index).toLowerCase();
 if (ch === '.' || this.isNumber(ch)) {
 number += ch;
 } else {

 }
 this.index++;
 }
 this.tokens.push({
 text: number,
 value: Number(number)
 });
};

There are three situations we need to consider:

• If the current character is e, and the next character is a valid exponent operator, we should add
the current character to the result and proceed.

• If the current character is + or -, and the previous character was e, and the next character is a
number, we should add the current character to the result and proceed.

• If the current character is + or -, and the previous character was e, and there is no numeric
next character, we should throw an exception.

• Otherwise we should terminate the number parsing and emit the result token.

Here’s the same expressed in code:
src/parse.js
Lexer.prototype.readNumber = function() {
 var number = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index).toLowerCase();
 if (ch === '.' || this.isNumber(ch)) {
 number += ch;
 } else {

Parsing Strings 12

200 Errata© Tero Parviainen 2016

 var nextCh = this.peek();
 var prevCh = number.charAt(number.length - 1);
 if (ch === 'e' && this.isExpOperator(nextCh)) {
 number += ch;
 } else if (this.isExpOperator(ch) && prevCh === 'e' &&
 nextCh && this.isNumber(nextCh)) {
 number += ch;
 } else if (this.isExpOperator(ch) && prevCh === 'e' &&
 (!nextCh || !this.isNumber(nextCh))) {
 throw 'Invalid exponent';
 } else {
 break;
 }
 }
 this.index++;
 }
 this.tokens.push({
 text: number,
 value: Number(number)
 });
};

Notice that in the second and third branches we are doing the check for + or - by reusing the is-
ExpOperator function. While isExpOperator also accepts a number, that can’t be the case here
since if it was a number it would have activated the very first if clause in the while loop.

That function is quite a mouthful, but it now gives us the full capabilities of number parsing in An-
gular expressions - apart from negative numbers, which we will handle with the - operator later.

Parsing Strings

With numbers out of the way, let’s go ahead and extend the capabilities of the parser to strings. It
is almost as straightforward as parsing numbers, but there are a couple of special cases we need to
take care of.

At its simplest, a string in an expression is just a sequence of characters wrapped in single or dou-
ble quotes:

test/parse_spec.js
it('can parse a string in single quotes', function() {
 var fn = parse("'abc'");
 expect(fn()).toEqual('abc');
});

it('can parse a string in double quotes', function() {
 var fn = parse('"abc"');
 expect(fn()).toEqual('abc');
});

Parsing Strings 12

201 Errata© Tero Parviainen 2016

In lex we can detect whether the current character is one of those quotes, and step into a function
for reading strings, which we’ll implement in a moment:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.ch === '.' && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.ch === '\'' || this.ch === '"') {
 this.readString();
 } else {
 throw 'Unexpected next character: '+this.ch;
 }
 }

 return this.tokens;
};

On a high level, readString is very similar to readNumber, it consumes the expression text using
a while loop and builds up a string into a local variable. One important difference is that before
entering the while loop, we’ll increment the character index to get past the opening quote charac-
ter:

src/parse.js
Lexer.prototype.readString = function() {
 this.index++;
 var string = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);

 this.index++;
 }
};
So what should we do inside the loop? There are two things: If the current character is something
other than a quote, we should just append it to the string. If it is a quote, we should emit a token
and terminate, since the quote ends the string. After the loop, we’ll throw an exception if we’re still
reading a string because it means the string was not terminated before the expression ended:

src/parse.js
Lexer.prototype.readString = function() {
 this.index++;

Parsing Strings 12

202 Errata© Tero Parviainen 2016

 var string = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (ch === '\'' || ch === '"') {
 this.index++;
 this.tokens.push({
 text: string,
 value: string
 });
 return;
 } else {
 string += ch;
 }
 this.index++;
 }
 throw 'Unmatched quote';
};

That’s a good start for string parsing, but we’re not done yet. Our tests are still failing because
when this token ends up in the AST as a literal, its value is compiled as-is into the resulting JavaS-
cript function. The expression ’abc’ results in a function like this:

function() {
 return abc;
}

The quotes around the string are missing, and the function is trying to look up a variable instead!

Our AST Compiler needs to be able to escape string values, so that they are properly quoted in the
JavaScript. We’ll use a method called escape for that:

case AST.Literal:
 return this.escape(ast.value);

This method puts quotes around a value, but if and only if it is a string:

src/parse.js
ASTCompiler.prototype.escape = function(value) {
 if (_.isString(value)) {
 return '\'' + value + '\'';
 } else {
 return value;
 }
};

Since we’re using _.isString, LoDash is now needed in parse.js:

src/parse.js

Parsing Strings 12

203 Errata© Tero Parviainen 2016

'use strict';

var _ = require('lodash');

We’re also being a bit too lenient about the start and end quotes of the input string by allowing a
string to terminate with a different kind of quote than what it was opened with:

test/parse_spec.js
it('will not parse a string with mismatching quotes', function() {
 expect(function() { parse('"abc\''); }).toThrow();
});

We need to make sure a string ends with the same quote as it started with. Firstly, let’s pass the
opening quote character into readString from the lex function:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.ch === '.' && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.ch === '\'' || this.ch === '"') {
 this.readString(this.ch);
 } else {
 throw 'Unexpected next character: '+this.ch;
 }
 }

 return this.tokens;
};

In readString, we can now check the string termination with the passed-in quote character, rather
than a the literal ’ or ”:

src/parse.js
Lexer.prototype.readString = function(quote) {
 this.index++;
 var string = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (ch === quote) {
 this.index++;

Parsing Strings 12

204 Errata© Tero Parviainen 2016

 this.tokens.push({
 text: string,
 value: string
 });
 return;
 } else {
 string += ch;
 }
 this.index++;
 }
 throw 'Unmatched quote';
};

Just like JavaScript strings, Angular expression strings may also have escape characters in them.
There are two kinds of escapes we’ll need to support:

1. Single character escapes: Newline \n, form feed \f, carriage return \r, horizontal tab \t, ver-
tical tab \v, the single quote character \’, and the double quote character \”.

2. Unicode escape sequences, which begin with \u and contain a four-digit hexadecimal charac-
ter code value. For example, \u00A0 denotes a non-breaking space character.

Let’s consider single character escapes first. For instance, We should be able to parse strings that
have quotes in them:

test/parse_spec.js
it('can parse a string with single quotes inside', function() {
 var fn = parse("'a\\\'b'");
 expect(fn()).toEqual('a\'b');
});

it('can parse a string with double quotes inside', function() {
 var fn = parse('"a\\\"b"');
 expect(fn()).toEqual('a\"b');
});

What we’ll do during the parse is look out for the backslash \ and move into an “escape mode”, in
which we’ll handle the next characters differently:

src/parse.js
Lexer.prototype.readString = function(quote) {
 this.index++;
 var string = '';
 var escape = false;
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (escape) {

 } else if (ch === quote) {
 this.index++;

Parsing Strings 12

205 Errata© Tero Parviainen 2016

 this.tokens.push({
 text: string,
 value: string
 });
 return;
 } else if (ch === '\\') {
 escape = true;
 } else {
 string += ch;
 }
 this.index++;
 }
 throw 'Unmatched quote';
};

In escape mode, if we’re looking at a single-character escape, we should see what character it is
and replace it with the corresponding escape character. Let’s add a “constant” top-level object in
parse.js for storing the escape characters we support. This includes the quote characters we
wrote unit tests for:

src/parse.js
var ESCAPES = {'n':'\n', 'f':'\f', 'r':'\r', 't':'\t',
 'v':'\v', '\'':'\'', '"':'"'};

Then, in readString, let’s look the escape character up from this object. If it’s there, we’ll append
the replacement character. If it isn’t, we’ll just append the original character as-is, effectively ignor-
ing the escape backslash:

src/parse.js
Lexer.prototype.readString = function(quote) {
 this.index++;
 var string = '';
 var escape = false;
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (escape) {
 var replacement = ESCAPES[ch];
 if (replacement) {
 string += replacement;
 } else {
 string += ch;
 }
 escape = false;
 } else if (ch === quote) {
 this.index++;
 this.tokens.push({
 text: string,
 value: string
 });
 return;

Parsing Strings 12

206 Errata© Tero Parviainen 2016

 } else if (ch === '\\') {
 escape = true;
 } else {
 string += ch;
 }
 this.index++;
 }
 throw 'Unmatched quote';
};

There’s still a problem when we get to the AST compilation phase, though. When the AST com-
piler encounters characters like ’ and ” in literals, it just puts them in the result, which results in
invalid JavaScript code. The escape method of the compiler should be able to handle these char-
acters. What we’ll do is a regex replacement during the escaping:

src/parse.js
ASTCompiler.prototype.escape = function(value) {
 if (_.isString(value)) {
 return '\'' +
 value.replace(this.stringEscapeRegex, this.stringEscapeFn) +
 '\'';
 } else {
 return value;
 }
};

What we match for escaping are any characters other than a space or an alphanumeric character:

src/parse.js
ASTCompiler.prototype.stringEscapeRegex = /[^ a-zA-Z0-9]/g;

In the replacement function, we get the numeric unicode value of the character we’re escaping
(using charCodeAt), and convert it into the corresponding hexadecimal (base 16) unicode escape
sequence that we can safely concatenate into the generated JavaScript code:

src/parse.js
ASTCompiler.prototype.stringEscapeFn = function(c) {
 return '\\u' + ('0000' + c.charCodeAt(0).toString(16)).slice(-4);
};

Finally, let’s consider unicode escape sequences in the input expressions themselves:

test/parse_spec.js
it('will parse a string with unicode escapes', function() {
 var fn = parse('"\\u00A0"');
 expect(fn()).toEqual('\u00A0');
});

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/charCodeAt

Parsing Strings 12

207 Errata© Tero Parviainen 2016

What we need to do is see if the character following the backslash is u, and if it is, grab the next
four characters, parse them as a hexadecimal number, and look up the character corresponding to
that number code. For the lookup, we can use the built-in JavaScript String.fromCharCode func-
tion:

src/parse.js
Lexer.prototype.readString = function(quote) {
 this.index++;
 var string = '';
 var escape = false;
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (escape) {
 if (ch === 'u') {
 var hex = this.text.substring(this.index + 1, this.index + 5);
 this.index += 4;
 string += String.fromCharCode(parseInt(hex, 16));
 } else {
 var replacement = ESCAPES[ch];
 if (replacement) {
 string += replacement;
 } else {
 string += ch;
 }
 }
 escape = false;
 } else if (ch === quote) {
 this.index++;
 this.tokens.push({
 text: string,
 value: string
 });
 return;
 } else if (ch === '\\') {
 escape = true;
 } else {
 string += ch;
 }
 this.index++;
 }
 throw 'Unmatched quote';
};

The final issue to consider is what happens when the character code following \u is not actually
valid. We should throw an exception in those situations:

test/parse_spec.js
it('will not parse a string with invalid unicode escapes', function() {
 expect(function() { parse('"\\u00T0"'); }).toThrow();

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/String/fromCharCode

Parsing true, false, and null 12

208 Errata© Tero Parviainen 2016

});

We’ll use a regular expression to check that what follows \u is exactly four characters that are
either numbers or letters between a-f, i.e. valid hexadecimal digits. We will accept either upper or
lower case characters here, as unicode escape sequences are case-insensitive:

src/parse.js
Lexer.prototype.readString = function(quote) {
 this.index++;
 var string = '';
 var escape = false;
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (escape) {
 if (ch === 'u') {
 var hex = this.text.substring(this.index + 1, this.index + 5);
 if (!hex.match(/[\da-f]{4}/i)) {
 throw 'Invalid unicode escape';
 }
 this.index += 4;
 string += String.fromCharCode(parseInt(hex, 16));
 } else {
 var replacement = ESCAPES[ch];
 if (replacement) {
 string += replacement;
 } else {
 string += ch;
 }
 }
 escape = false;
 } else if (ch === quote) {
 this.index++;
 this.tokens.push({
 text: string,
 value: string
 });
 return;
 } else if (ch === '\\') {
 escape = true;
 } else {
 string += ch;
 }
 this.index++;
 }
 throw 'Unmatched quote';
};

And now we’re able to parse strings!

Parsing true, false, and null

Parsing true, false, and null 12

209 Errata© Tero Parviainen 2016

The third type of literals we’ll add support for are boolean literals true and false, and the literal
null. They are all so-called identifier tokens, meaning that they are bare alphanumeric character
sequences in the input. We are going to see lots of identifiers as we go along. Often they’re used
to look up scope attributes by name, but they can also be reserved words such as true, false, or
null. Those should be represented by the corresponding JavaScript values in the parser output:

test/parse_spec.js
it('will parse null', function() {
 var fn = parse('null');
 expect(fn()).toBe(null);
});

it('will parse true', function() {
 var fn = parse('true');
 expect(fn()).toBe(true);
});

it('will parse false', function() {
 var fn = parse('false');
 expect(fn()).toBe(false);
});

We can identify an identifier in the Lexer by seeing if we have a character sequence that begins
with a lower or upper case letter, the underscore character, or the dollar character:

src/parse.js
Lexer.prototype.isIdent = function(ch) {
 return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
 ch === '_' || ch === '$';
};

When we encounter such a character, we’ll parse the identifier using a new function called readI-
dent:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.ch === '.' && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.ch === '\'' || this.ch === '"') {
 this.readString(this.ch);

Parsing true, false, and null 12

210 Errata© Tero Parviainen 2016

 } else if (this.isIdent(this.ch)) {
 this.readIdent();
 } else {
 throw 'Unexpected next character: '+this.ch;
 }
 }

 return this.tokens;
};

Once in readIdent, we’ll read in the identifier token very similarly as we did with strings:

src/parse.js
Lexer.prototype.readIdent = function() {
 var text = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (this.isIdent(ch) || this.isNumber(ch)) {
 text += ch;
 } else {
 break;
 }
 this.index++;
 }

 var token = {text: text};

 this.tokens.push(token);
};

Note that an identifier may also contain numbers, but it may not begin with one.

Now we have identifier tokens, but they aren’t yet being turned to anything useful by the AST
builder. We should change that, and we can do it by making the AST aware that certain kinds of
“constant” tokens represent predefined literals:

src/parse.js
AST.prototype.constants = {
 'null': {type: AST.Literal, value: null},
 'true': {type: AST.Literal, value: true},
 'false': {type: AST.Literal, value: false}
};

To plug these into the AST, let’s introduce an additional intermediate function between program,
and constant, called primary. That is, a program’s body consists of a “primary” token:

src/parse.js
AST.prototype.program = function() {

Parsing Whitespace 12

211 Errata© Tero Parviainen 2016

 return {type: AST.Program, body: this.primary()};
};
AST.prototype.primary = function() {
 return this.constant();
};
AST.prototype.constant = function() {
 return {type: AST.Literal, value: this.tokens[0].value};
};

A primary token can be one of our predefined constants, or some other constant from our previ-
ous implementation.

src/parse.js
AST.prototype.primary = function() {
 if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 return this.constants[this.tokens[0].text];
 } else {
 return this.constant();
 }
};

The test cases for true and false are now passing, as they end up in the compiled JavaScript
as-is. For null this isn’t happening yet, because its default string representation is an empty string.
We need a special case for it in the compiler’s escape method so that the text null appears in the
compiled code:

src/parse.js
ASTCompiler.prototype.escape = function(value) {
 if (_.isString(value)) {
 return '\'' +
 value.replace(this.stringEscapeRegex, this.stringEscapeFn) +
 '\'';
 } else if (_.isNull(value)) {
 return 'null';
 } else {
 return value;
 }
};

Parsing Whitespace

Before we start discussing multi-token expressions, let’s consider the question of whitespace. Ex-
pressions like ’[1, 2, 3]’, ’a = 42’, and ’aFunction (42)’ all contain whitespace char-
acters. What’s common to all of them is that the whitespace is completely optional and will be
ignored by the parser. This is true for (almost) all whitespace in Angular expressions.

test/parse_spec.js

Parsing Arrays 12

212 Errata© Tero Parviainen 2016

it('ignores whitespace', function() {
 var fn = parse(' \n42 ');
 expect(fn()).toEqual(42);
});

The characters we consider to be whitespace will be the space, the carriage return, the horizontal
and vertical tabs, the newline, and the non-breaking space:

src/parse.js
Lexer.prototype.isWhitespace = function(ch) {
 return ch === ' ' || ch === '\r' || ch === '\t' ||
 ch === '\n' || ch === '\v' || ch === '\u00A0';
};

In lex we will just move the current character pointer forward when we encounter one of these
characters:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.ch === '.' && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.ch === '\'' || this.ch === '"') {
 this.readString(this.ch);
 } else if (this.isIdent(this.ch)) {
 this.readIdent();
 } else if (this.isWhitespace(this.ch)) {
 this.index++;
 } else {
 throw 'Unexpected next character: '+this.ch;
 }
 }

 return this.tokens;
};

Parsing Arrays

Numbers, strings, booleans, and null are all so-called scalar literal expressions. They are simple,
singular values that consist of just one token each. Now we’ll turn our attention to multi-token
expressions. The first one of those is arrays.

Parsing Arrays 12

213 Errata© Tero Parviainen 2016

The most simple array you can have is an empty one. It consists of just an opening square bracket
and a closing square bracket:

test/parse_spec.js
it('will parse an empty array', function() {
 var fn = parse('[]');
 expect(fn()).toEqual([]);
});

Simple though this may be, it is the first expression we’ve seen that isn’t just a single token. The
Lexer is going to emit two tokens for this expression, one for each square bracket. We’ll emit these
tokens right from the lex function:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.ch === '.' && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.ch === '\'' || this.ch === '"') {
 this.readString(this.ch);
 } else if (this.ch === '[' || this.ch === ']') {
 this.tokens.push({
 text: this.ch
 });
 this.index++;
 } else if (this.isIdent(this.ch)) {
 this.readIdent();
 } else if (this.isWhitespace(this.ch)) {
 this.index++;
 } else {
 throw 'Unexpected next character: '+this.ch;
 }
 }

 return this.tokens;
};

In the AST builder we now have to consider a situation where the Lexer output doesn’t just consist
of a single token. We now have two tokens - [and] - that should cause an array node to be in-
cluded in the AST.

Parsing Arrays 12

214 Errata© Tero Parviainen 2016

Arrays are primary expressions, just like constants, so the handling of arrays is going to be in AST.
primary. A primary expression may begin with an opening square bracket, in which case we han-
dle it as an array declaration:

src/parse.js
AST.prototype.primary = function() {
 if (this.expect('[')) {
 return this.arrayDeclaration();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 return this.constants[this.tokens[0].text];
 } else {
 return this.constant();
 }
};

The expect function used here is something we don’t have yet. It has to do with the fact that we
are now working with multiple tokens. expect checks if the next token is what we expect it to be,
and returns it if it is. It also removes that token from this.tokens, so that we “move forward” to
the next token:

src/parse.js
AST.prototype.expect = function(e) {
 if (this.tokens.length > 0) {
 if (this.tokens[0].text === e || !e) {
 return this.tokens.shift();
 }
 }
};

Note that expect can also be called with no arguments, in which case it’ll process whatever token
is next.

The arrayDeclaration function is also new. This is where we will consume the tokens related to
an array and construct the array AST node. When we enter the function the opening square brack-
et will already have been consumed. Since we’re only concerned with empty arrays for now, what
remains is the closing square bracket:

src/parse.js
AST.prototype.arrayDeclaration = function() {
 this.consume(']');
};

The consume function used here is basically the same thing as expect, but with one major dif-
ference: It will actually throw an exception if a matching token is not found. The closing square
bracket in arrays is definitely not optional, so we need to be strict about it:

Parsing Arrays 12

215 Errata© Tero Parviainen 2016

src/parse.js
AST.prototype.consume = function(e) {
 var token = this.expect(e);
 if (!token) {
 throw 'Unexpected. Expecting: ' + e;
 }
 return token;
};

If no exception is thrown, we have a valid (empty) array, and we can return the corresponding
AST node. It has its own type of ArrayExpression:

src/parse.js
AST.prototype.arrayDeclaration = function() {
 this.consume(']');
 return {type: AST.ArrayExpression};

};

We also need to introduce this type:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';

This new type now needs to be handled by the AST compiler. For now we can actually just emit
[] for it to make our test pass:

src/parse.js
ASTCompiler.prototype.recurse = function(ast) {
 switch (ast.type) {
 case AST.Program:
 this.state.body.push('return ', this.recurse(ast.body), ';');
 break;
 case AST.Literal:
 return this.escape(ast.value);
 case AST.ArrayExpression:
 return '[]';
 }
};

So that is how a basic, empty array is produced: The Lexer emits its opening and closing square
brackets as tokens, AST.primary notices the opening square bracket and delegates to AST.ar-
rayDeclaration, which consumes the closing square bracket and emits an ArrayExpression
AST node. The AST compiler then emits an empty JavaScript array expression.

Next, let’s consider non-empty arrays. When array literals have elements in them, they are separat-

Parsing Arrays 12

216 Errata© Tero Parviainen 2016

ed by commas. The elements may be anything, including other arrays:

test/parse_spec.js
it('will parse a non-empty array', function() {
 var fn = parse('[1, "two", [3], true]');
 expect(fn()).toEqual([1, 'two', [3], true]);
});

That comma between the values needs to be emitted from the Lexer. Like the square brackets, it’s
emitted as-is, as a plain text token:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.ch === '.' && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.ch === '\'' || this.ch === '"') {
 this.readString(this.ch);
 } else if (this.ch === '[' || this.ch === ']' || this.ch === ',') {
 this.tokens.push({
 text: this.ch
 });
 this.index++;
 } else if (this.isIdent(this.ch)) {
 this.readIdent();
 } else if (this.isWhitespace(this.ch)) {
 this.index++;
 } else {
 throw 'Unexpected next character: ' + this.ch;
 }
 }

 return this.tokens;
};

The element parsing happens in the AST arrayDeclaration. It should check whether the array
is immediately closed as an empty array or not. If not, there’s element processing to be done. The
element nodes are collected to a local array called elements:

src/parse.js
AST.prototype.arrayDeclaration = function() {
 var elements = [];

Parsing Arrays 12

217 Errata© Tero Parviainen 2016

 if (!this.peek(']')) {

 }
 this.consume(']');
 return {type: AST.ArrayExpression};
};

We need to define the peek function used above before getting into collecting the elements. It is
basically the same as expect, but does not consume the token it looks at:

src/parse.js
AST.prototype.peek = function(e) {
 if (this.tokens.length > 0) {
 var text = this.tokens[0].text;
 if (text === e || !e) {
 return this.tokens[0];
 }
 }
};

Now we can actually redefine expect in terms of peek so we don’t need to duplicate their com-
mon logic. If a matching token is found with peek, expect consumes it:

src/parse.js
AST.prototype.expect = function(e) {
 var token = this.peek(e);
 if (token) {
 return this.tokens.shift();
 }
};

If there are elements in an array, we’ll consume them in a loop. The loop terminates when we no
longer see a comma following the last element. Each element is recursively processed as another
primary node:

src/parse.js
AST.prototype.arrayDeclaration = function() {
 var elements = [];
 if (!this.peek(']')) {
 do {
 elements.push(this.primary());
 } while (this.expect(','));
 }
 this.consume(']');
 return {type: AST.ArrayExpression};
};

Before this’ll work, there’s an important change we have to make to the primary and constant

Parsing Arrays 12

218 Errata© Tero Parviainen 2016

methods of AST that we implemented earlier. They can no longer assume there’s just one token,
and they need to consume the current token so that we’re able to move forward to the next one.

In primary we should consume a constant value’s token:

src/parse.js
AST.prototype.primary = function() {
 if (this.expect('[')) {
 return this.arrayDeclaration();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 return this.constants[this.consume().text];
 } else {
 return this.constant();
 }
};

And we should do the same in constant:

src/parse.js
AST.prototype.constant = function() {
 return {type: AST.Literal, value: this.consume().value};
};

The last thing the AST builder should do is attach those collected elements into the ArrayEx-
pression node so that we’ll be able to access them in the compiler:

src/parse.js
AST.prototype.arrayDeclaration = function() {
 var elements = [];
 if (!this.peek(']')) {
 do {
 elements.push(this.primary());
 } while (this.expect(','));
 }
 this.consume(']');
 return {type: AST.ArrayExpression, elements: elements};
};

Moving to the compiler then, what we need to do is recurse into each of the elements of an array,
and collect the resulting JavaScript expressions:

src/parse.js
case AST.ArrayExpression:
 var elements = _.map(ast.elements, _.bind(function(element) {
 return this.recurse(element);
 }, this));
 return '[]';

Parsing Objects 12

219 Errata© Tero Parviainen 2016

We can then emit them as the contents of the array JavaScript expression:

src/parse.js
case AST.ArrayExpression:
 var elements = _.map(ast.elements, _.bind(function(element) {
 return this.recurse(element);
 }, this));
 return '[' + elements.join(',') + ']';

Arrays in Angular expressions also allow you to use a trailing comma, i.e. a comma after which
there are no more elements in the array. This is consistent with standards-compliant JavaScript
implementations:

test/parse_spec.js
it('will parse an array with trailing commas', function() {
 var fn = parse('[1, 2, 3,]');
 expect(fn()).toEqual([1, 2, 3]);
});

To support a trailing comma, we need to tweak the do..while loop in the AST builder so that
it’s prepared for a situation where it doesn’t have an element expression to process. If it sees the
closing square bracket, it should break out early:

src/parse.js
AST.prototype.arrayDeclaration = function() {
 var elements = [];
 if (!this.peek(']')) {
 do {
 if (this.peek(']')) {
 break;
 }
 elements.push(this.primary());
 } while (this.expect(','));
 }
 this.consume(']');
 return {type: AST.ArrayExpression, elements: elements};
};

Parsing Objects

The final expression type we will add support for in this chapter is object literals. That is, key-value
pairs such as {a: 1, b: 2}. In expressions, objects are often used not only as data literals, but
also as configuration for directives such as ngClass and ngStyle.

Parsing objects is in many ways similar to parsing arrays, with a couple of key differences. Again,
let’s first take the case of an empty collection. An empty object should evaluate to an empty object:

Parsing Objects 12

220 Errata© Tero Parviainen 2016

test/parse_spec.js
it('will parse an empty object', function() {
 var fn = parse('{}');
 expect(fn()).toEqual({});
});

For objects we are going to need three more character tokens from the Lexer: The opening and
closing curly braces, and the colon for denoting key-value pairs:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.ch === '.' && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.ch === '\'' || this.ch === '"') {
 this.readString(this.ch);
 } else if (this.ch === '[' || this.ch === ']' || this.ch === ',' ||
 this.ch === '{' || this.ch === '}' || this.ch === ':') {
 this.tokens.push({
 text: this.ch
 });
 this.index++;
 } else if (this.isIdent(this.ch)) {
 this.readIdent();
 } else if (this.isWhitespace(this.ch)) {
 this.index++;
 } else {
 throw 'Unexpected next character: ' + this.ch;
 }
 }

 return this.tokens;
};

This else if branch is getting a little bit unwieldy. Let’s add a helper method to Lexer that’ll
make it easier to check if the current character matches a number of alternatives. The function
takes a string, and checks whether the current character matches any character in that string:

src/parse.js
Lexer.prototype.is = function(chs) {
 return chs.indexOf(this.ch) >= 0;
};

Parsing Objects 12

221 Errata© Tero Parviainen 2016

Now we can make the code in lex more concise:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.is('.') && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.is('\'"')) {
 this.readString(this.ch);
 } else if (this.is('[],{}:')) {
 this.tokens.push({
 text: this.ch
 });
 this.index++;
 } else if (this.isIdent(this.ch)) {
 this.readIdent();
 } else if (this.isWhitespace(this.ch)) {
 this.index++;
 } else {
 throw 'Unexpected next character: ' + this.ch;
 }
 }

 return this.tokens;
};

Objects, like arrays, are a primary expression. AST.primary looks out for opening curly braces
and when one is seen, delegates to a new method called object:

src/parse.js
AST.prototype.primary = function() {
 if (this.expect('[')) {
 return this.arrayDeclaration();
 } else if (this.expect('{')) {
 return this.object();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 return this.constants[this.consume().text];
 } else {
 return this.constant();
 }
};

Parsing Objects 12

222 Errata© Tero Parviainen 2016

The object method’s structure is basically the same as that of arrayDeclaration. It consumes
the object, including the closing curly brace, and returns an AST node of type ObjectExpres-
sion:

src/parse.js
AST.prototype.object = function() {
 this.consume('}');
 return {type: AST.ObjectExpression};
};

Again, the type needs to be defined as well:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';

The AST compiler’s responsibility is to now emit an object literal when it sees an ObjectExpression
node in recurse:

src/parse.js
case AST.ObjectExpression:
 return '{}';

When an object is not empty, its keys are identifiers or strings, and its values may be any other
expressions. Here’s a test case with string keys:

test/parse_spec.js
it('will parse a non-empty object', function() {
 var fn = parse('{"a key": 1, \'another-key\': 2}');
 expect(fn()).toEqual({'a key': 1, 'another-key': 2});
});

Just like in array AST building, in object AST building we have a do..while loop that consumes
the keys and values separated by commas:

src/parse.js
AST.prototype.object = function() {
 if (!this.peek('}')) {
 do {

 } while (this.expect(','));
 }
 this.consume('}');
 return {type: AST.ObjectExpression};

Parsing Objects 12

223 Errata© Tero Parviainen 2016

};

Inside the loop body, we will first read in the key by consuming a constant token. From it we form
another AST node of type Property:

src/parse.js
AST.prototype.object = function() {
 if (!this.peek('}')) {
 do {
 var property = {type: AST.Property};
 property.key = this.constant();

 } while (this.expect(','));
 }
 this.consume('}');
 return {type: AST.ObjectExpression};
};

The type needs to be declared as well:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';

Then we’ll consume the colon character that should separate the key and a value:

src/parse.js
AST.prototype.object = function() {
 if (!this.peek('}')) {
 do {
 var property = {type: AST.Property};
 property.key = this.constant();
 this.consume(':');

 } while (this.expect(','));
 }
 this.consume('}');
 return {type: AST.ObjectExpression};
};

Finally we’ll consume the value, which is a whole other primary AST node that we attach onto the
property:

src/parse.js

Parsing Objects 12

224 Errata© Tero Parviainen 2016

AST.prototype.object = function() {
 if (!this.peek('}')) {
 do {
 var property = {type: AST.Property};
 property.key = this.constant();
 this.consume(':');
 property.value = this.primary();

 } while (this.expect(','));
 }
 this.consume('}');
 return {type: AST.ObjectExpression};
};

We then collect these properties from the loop and attach them to the ObjectExpression node:
src/parse.js
AST.prototype.object = function() {
 var properties = [];
 if (!this.peek('}')) {
 do {
 var property = {type: AST.Property};
 property.key = this.constant();
 this.consume(':');
 property.value = this.primary();
 properties.push(property);
 } while (this.expect(','));
 }
 this.consume('}');
 return {type: AST.ObjectExpression, properties: properties};
};

During compilation we’ll now generate the JavaScript for each property, and put it inside the gen-
erated object literal:

src/parse.js
case AST.ObjectExpression:
 var properties = _.map(ast.properties, _.bind(function(property) {

 }, this));
 return '{' + properties.join(',') + '}';

The key is a Constant node, which has a value attribute that we should also escape, since it is a
string:

src/parse.js
case AST.ObjectExpression:
 var properties = _.map(ast.properties, _.bind(function(property) {
 var key = this.escape(property.key.value);

Parsing Objects 12

225 Errata© Tero Parviainen 2016

 }, this));
 return '{' + properties.join(',') + '}';

The value is any expression, whose value we can get using recurse. The combined value of the
property consists of the key and value separated by a colon character:

src/parse.js
case AST.ObjectExpression:
 var properties = _.map(ast.properties, _.bind(function(property) {
 var key = this.escape(property.key.value);
 var value = this.recurse(property.value);
 return key + ':' + value;
 }, this));
 return '{' + properties.join(',') + '}';

An object’s keys are not always strings. They may also be identifiers where the quotes are omitted:

test/parse.js
it('will parse an object with identifier keys', function() {
 var fn = parse('{a: 1, b: [2, 3], c: {d: 4}}');
 expect(fn()).toEqual({a: 1, b: [2, 3], c: {d: 4}});
});

The test fails because what the AST consumes at the position of the object keys are identifier tokens
generated by readIdent, while it expects them to be constants instead. Let’s first tweak readI-
dent a bit so that the fact that these are identifier tokens is marked:

src/parse.js
Lexer.prototype.readIdent = function() {
 var text = '';
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 if (this.isIdent(ch) || this.isNumber(ch)) {
 text += ch;
 } else {
 break;
 }
 this.index++;
 }

 var token = {
 text: text,
 identifier: true
 };

 this.tokens.push(token);
};

Parsing Objects 12

226 Errata© Tero Parviainen 2016

The AST builder should check this flag and form an identifier node instead of a constant one when
it is true:

src/parse.js
AST.prototype.object = function() {
 var properties = [];
 if (!this.peek('}')) {
 do {
 var property = {type: AST.Property};
 if (this.peek().identifier) {
 property.key = this.identifier();
 } else {
 property.key = this.constant();
 }
 this.consume(':');
 property.value = this.primary();
 properties.push(property);
 } while (this.expect(','));
 }
 this.consume('}');
 return {type: AST.ObjectExpression, properties: properties};
};

Identifiers are a new kind of AST node, of type Identifier. They have a name attribute formed
from the text of the identifier token:

src/parse.js
AST.prototype.identifier = function() {
 return {type: AST.Identifier, name: this.consume().text};
};

We need to introduce the Identifier type:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';
AST.Identifier = 'Identifier';

We will later use identifier nodes elsewhere in the AST as well, but for now they only exist as ob-
ject keys.

In the AST compiler we should now check whether the key is an Identifier. This affects which
attribute we use on it to access the actual key to generate:

Summary 12

227 Errata© Tero Parviainen 2016

src/parse.js
case AST.ObjectExpression:
 var properties = _.map(ast.properties, _.bind(function(property) {
 var key = property.key.type === AST.Identifier ?
 property.key.name :
 this.escape(property.key.value);
 var value = this.recurse(property.value);
 return key + ':' + value;
 }, this));
 return '{' + properties.join(',') + '}';

And finally we’re able to parse all the literals that the Angular expression language supports!

Summary

We now have a very limited but functional implementation of the Angular expression parser.
While building it you have learned:

• That the expression parser runs internally in three phases: Lexing, AST building, and AST
compilation.

• That the end result of the parsing process is a generated JavaScript function.
• How the parser deals with integers, floating point numbers, and scientific notation.
• How the parser deals with strings.
• How the parser deals with literal booleans and null.
• How the parser deals with whitespace - by ignoring it.
• How the parser deals with arrays and objects, and how it recursively parses their contents.

In the next chapter we’ll extend our parser’s capabilities with much more interesting expressions:
Those that actually access scope attributes.

 13

228 Errata© Tero Parviainen 2016

Chapter 7

Lookup and Function
Call Expressions

Simple Attribute Lookup 13

229 Errata© Tero Parviainen 2016

By now we have a simple expression language that can express literals, but that isn’t very useful in
any real world scenario. What the Angular expression language is designed for is accessing data
on Scopes, and occasionally also manipulating that data.

In this chapter we will add those capabilities. We’ll learn to access and assign attributes in different
ways and to call functions. We will also implement many of the security measures the Angular
expression language takes to prevent dangerous expressions from getting through.

Download the code for the starting point of this chapter.

Simple Attribute Lookup

The simplest kind of scope attribute access you can do is to look up something by name: The ex
pression ’aKey’ finds the aKey attribute from a scope object and returns it:

test/parse_spec.js
it('looks up an attribute from the scope', function() {
 var fn = parse('aKey');
 expect(fn({aKey: 42})).toBe(42);
 expect(fn({})).toBeUndefined();
});

Notice how the functions returned by parse actually take a JavaScript object as an argument.
That object is almost always an instance of Scope, which the expression will access or manipulate.
It doesn’t necessarily have to be a Scope though, and in unit tests we can just use plain object liter-
als. Since literal expressions don’t do anything with scopes we haven’t used this argument before,
but that will change in this chapter. In fact, the first change we should make is to add this argu-
ment to the generated, compiled expression function. We’ll call it s:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: []};
 this.recurse(ast);
 /* jshint -W054 */
 return new Function('s', this.state.body.join(''));
 /* jshint +W054 */
};

When parsed, the expression ’aKey’ turns into an identifier token and then an Identifier AST
node. We have already used identifier nodes as object keys. Now we will extend our identifier sup-
port to include attribute lookup as well.

In the AST builder, the change we have to make is to check for identifiers when we’re building a
primary AST node. We’ll do it in the same way we did when building object property nodes: If

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter6-literal-expressions

Simple Attribute Lookup 13

230 Errata© Tero Parviainen 2016

we’re looking at an identifier token, we’ll make an Identifier node.

src/parse.js
AST.prototype.primary = function() {
 if (this.expect('[')) {
 return this.arrayDeclaration();
 } else if (this.expect('{')) {
 return this.object();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 return this.constants[this.consume().text];
 } else if (this.peek().identifier) {
 return this.identifier();
 } else {
 return this.constant();
 }
};

Similarly, the AST compiler now needs to be able to handle an identifier in its recurse method.
When one is seen, it should be handled as a member attribute lookup from the scope - or s.

src/parse.js
case AST.Identifier:
 return this.nonComputedMember('s', ast.name);

The nonComputedMember method takes two arguments: An object to do a lookup from, and the
member attribute to look up. It generates the JavaScript for a non-computed a.b member lookup
(as opposed to a computed a[b] lookup):

src/parse.js
ASTCompiler.prototype.nonComputedMember = function(left, right) {
 return '(' + left + ').' + right;
};

And that passes our test: We’re generating the function body return s.aKey for the expression
’aKey’. That instantly makes the expression language much more useful than before, especially in
the context of watch expressions, which are often doing attribute lookups.

If you’ve written AngularJS applications before, you’ve probably noticed that the Angular expres-
sion language is very forgiving when it comes to missing attributes. Unlike JavaScript, it never
throws exceptions when you reference attributes from objects that don’t exist. That means, for
example, that when we evaluate the expression function without any arguments, causing s to be
undefined, no exceptions should be thrown:

test/parse_spec.js
it('returns undefined when looking up attribute from undefined', function() {
 var fn = parse('aKey');

Simple Attribute Lookup 13

231 Errata© Tero Parviainen 2016

 expect(fn()).toBeUndefined();
});

What this means that we’ll need to generate a conditional to the JavaScript code, which first
checks if s actually exists before trying to do a lookup from it. Essentially, we’ll want to generate
something like this for the aKey expression:

function (s) {
 var v0;
 if (s) {
 v0 = s.aKey;
 }
 return v0;
}

For the if statement, let’s introduce a method called if_ that takes two arguments: A test expres-
sion and the “consequent” statement to execute when the expression is true. It generates the corre-
sponding JavaScript if statement and appends it to the expression body:

src/parse.js
ASTCompiler.prototype.if_ = function(test, consequent) {
 this.state.body.push('if(', test, '){', consequent, '}');
};

We’ll use it to check for the existence of s in the identifier lookup:

src/parse.js
case AST.Identifier:
 this.if_('s', '');
 return this.nonComputedMember('s', ast.name);

What we should do next is introduce a variable before the if block, populate it with the scope
attribute inside the if block, and then return the variable’s value from this recurse call:

src/parse.js
case AST.Identifier:
 this.state.body.push('var v0;');
 this.if_('s', 'v0=' + this.nonComputedMember('s', ast.name) + ';');
 return 'v0';

Our tests now pass, but before we move forward, let’s spend a moment refactoring this code to
make it easier to extend later. For instance, we can introduce another helper function for variable
assignment:

src/parse.js
ASTCompiler.prototype.assign = function(id, value) {

Simple Attribute Lookup 13

232 Errata© Tero Parviainen 2016

 return id + '=' + value + ';';
};

We’ll use it inside the if statement:

src/parse.js
case AST.Identifier:
 this.state.body.push('var v0;');
 this.if_('s', this.assign('v0', this.nonComputedMember('s', ast.name)));
 return 'v0';

Also, many expressions are going to need several variables, and it’s going to be difficult to figure
out what names to generate for them without having them clash. For this purpose we’ll introduce
a running counter to the state of the compiler, which forms a basis for generating unique ids. We’ll
initialize it to zero:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: [], nextId: 0};
 this.recurse(ast);
 /* jshint -W054 */
 return new Function('s', this.state.body.join(''));
 /* jshint +W054 */
};

Then we’ll make a method, also called nextId, that generates a variable name and increments the
counter:

src/parse.js
ASTCompiler.prototype.nextId = function() {
 var id = 'v' + (this.state.nextId++);
 return id;
};

We can then use this function in identifier lookup:

src/parse.js
case AST.Identifier:
 var intoId = this.nextId();
 this.state.body.push('var ', intoId, ';');
 this.if_('s', this.assign(intoId, this.nonComputedMember('s', ast.name)));
 return intoId;

Finally, the var declaration shouldn’t really be a part of the identifier lookup. In JavaScript, vari-
able declarations are hoisted to the top of the function, and it would be better if we did that explic-
itly as well. So, we can introduce a vars array in the compiler state:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var#var_hoisting

Simple Attribute Lookup 13

233 Errata© Tero Parviainen 2016

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: [], nextId: 0, vars: []};
 this.recurse(ast);
 /* jshint -W054 */
 return new Function('s', this.state.body.join(''));
 /* jshint +W054 */
};

Whenever nextId is called, the generated variable name is added to the state:

src/parse.js
ASTCompiler.prototype.nextId = function() {
 var id = 'v' + (this.state.nextId++);
 this.state.vars.push(id);
 return id;
};

Then, a var declaration for all the generated vars is added to the top of the generated JavaScript:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: [], nextId: 0, vars: []};
 this.recurse(ast);
 /* jshint -W054 */
 return new Function('s',
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''
) + this.state.body.join(''));
 /* jshint +W054 */
};

Now we no longer need the var statement in the identifier branch:

src/parse.js
case AST.Identifier:
 var intoId = this.nextId();
 this.if_('s', this.assign(intoId, this.nonComputedMember('s', ast.name)));
 return intoId;

And there we have a general facility for introducing any number of variables inside the expression
function. This’ll come in very handy in the near future.

Parsing this 13

234 Errata© Tero Parviainen 2016

Parsing this

One special kind of attribute lookup we need to handle is a reference to this. The role of this in
Angular expressions is similar to its role in JavaScript: It is the context in which the expression is
being evaluated. The context of an expression function is always the scope it’s being evaluated on,
so that is what this refers to:

test/parse_spec.js
it('will parse this', function() {
 var fn = parse('this');
 var scope = {};
 expect(fn(scope)).toBe(scope);
 expect(fn()).toBeUndefined();
});

From the Lexer, this comes out as an identifier, and in the AST builder we’ll now add a special
kind of AST node for it into the constants lookup object:

src/parse.js
AST.prototype.constants = {
 'null': {type: AST.Literal, value: null},
 'true': {type: AST.Literal, value: true},
 'false': {type: AST.Literal, value: false},
 'this': {type: AST.ThisExpression}
};

We haven’t introduced AST.ThisExpression yet, so we need to do that too:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';
AST.Identifier = 'Identifier';
AST.ThisExpression = 'ThisExpression';

In the AST Compiler’s recurse method we can compile an AST.ThisExpression node to a
simple reference to s - the scope given to the expression function:

src/parse.js
case AST.ThisExpression:
 return 's';

Non-Computed Attribute Lookup

Non-Computed Attribute Lookup 13

235 Errata© Tero Parviainen 2016

In addition to just referencing a Scope attribute, you can go deeper in the same expression and
look up something in a nested data structure using the dot operator:

test/parse_spec.js
it('looks up a 2-part identifier path from the scope', function() {
 var fn = parse('aKey.anotherKey');
 expect(fn({aKey: {anotherKey: 42}})).toBe(42);
 expect(fn({aKey: {}})).toBeUndefined();
 expect(fn({})).toBeUndefined();
});

We expect the expression to reach down to aKey.anotherKey, or return undefined if one or both
of the keys are missing.

More generally, an attribute lookup doesn’t have to be preceded by an identifier. It might as well be
some other expression, like an object literal:

test/parse_spec.js
it('looks up a member from an object', function() {
 var fn = parse('{aKey: 42}.aKey');
 expect(fn()).toBe(42);
});

We don’t currently emit dot tokens from the Lexer, so before doing anything else we need to
change that:

src/parse.js
} else if (this.is('[],{}:.')) {
 this.tokens.push({
 text: this.ch
 });
 this.index++;

On the AST building side of things, non-computed attribute lookup using the dot operator is con-
sidered a primary node, and handled in the primary method. After processing an initial primary
node, we should check if it is followed by a dot token:

src/parse.js
AST.prototype.primary = function() {
 var primary;
 if (this.expect('[')) {
 primary = this.arrayDeclaration();
 } else if (this.expect('{')) {
 primary = this.object();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 primary = this.constants[this.consume().text];

Non-Computed Attribute Lookup 13

236 Errata© Tero Parviainen 2016

 } else if (this.peek().identifier) {
 primary = this.identifier();
 } else {
 primary = this.constant();
 }
 if (this.expect('.')) {

 }
 return primary;
};

If a dot is found, this primary expression becomes a MemberExpression node. We reuse the ini-
tial primary node as the object of the member expression, and expect to have an identifier after the
dot, which we’ll use as the property name to look up:

src/parse.js
AST.prototype.primary = function() {
 var primary;
 if (this.expect('[')) {
 primary = this.arrayDeclaration();
 } else if (this.expect('{')) {
 primary = this.object();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 primary = this.constants[this.consume().text];
 } else if (this.peek().identifier) {
 primary = this.identifier();
 } else {
 primary = this.constant();
 }
 if (this.expect('.')) {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.identifier()
 };
 }
 return primary;
};

The MemberExpression type needs to be introduced:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';
AST.Identifier = 'Identifier';
AST.ThisExpression = 'ThisExpression';
AST.MemberExpression = 'MemberExpression';

Non-Computed Attribute Lookup 13

237 Errata© Tero Parviainen 2016

In the AST compiler we already have all the parts we need. What we should generate is a
non-computed member lookup, where the left side is the object of the AST node, and the right
side is the property of the node.

Just like we did in the simple lookup, we need to guard the lookup with an if statement, because
the left side might not exist. We’ll also reuse the intoId variable name here so let’s pull its decla-
ration to the top of the recurse function while we’re adding the MemberExpression case:

src/parse.js
ASTCompiler.prototype.recurse = function(ast) {
 var intoId;
 switch (ast.type) {
 case AST.Program:
 this.state.body.push('return ', this.recurse(ast.body), ';');
 break;
 case AST.Literal:
 return this.escape(ast.value);
 case AST.ArrayExpression:
 var elements = _.map(ast.elements, _.bind(function(element) {
 return this.recurse(element);
 }, this));
 return '[' + elements.join(',') + ']';
 case AST.ObjectExpression:
 var properties = _.map(ast.properties, _.bind(function(property) {
 var key = property.key.type === AST.Identifier ?
 property.key.name :
 this.escape(property.key.value);
 var value = this.recurse(property.value);
 return key + ':' + value;
 }, this));
 return '{' + properties.join(',') + '}';
 case AST.Identifier:
 intoId = this.nextId();
 this.if_('s', this.assign(intoId, this.nonComputedMember('s', ast.name)));
 return intoId;
 case AST.ThisExpression:
 return 's';
 case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object);
 this.if_(left,
 this.assign(intoId, this.nonComputedMember(left, ast.property.name)));
 return intoId;
 }
};

Sometimes you need to go deeper than two nested attributes into a data structure. A 4-part identi-
fier lookup should work just as well as a 2-part one does:

Non-Computed Attribute Lookup 13

238 Errata© Tero Parviainen 2016

test/parse_spec.js
it('looks up a 4-part identifier path from the scope', function() {
 var fn = parse('aKey.secondKey.thirdKey.fourthKey');
 expect(fn({aKey: {secondKey: {thirdKey: {fourthKey: 42}}}})).toBe(42);
 expect(fn({aKey: {secondKey: {thirdKey: {}}}})).toBeUndefined();
 expect(fn({aKey: {}})).toBeUndefined();
 expect(fn()).toBeUndefined();
});

However many lookups there are, they’re all part of the same primary expression. The trick is to
turn the if statement in AST.primary into a while statement. As long as there are dots in the
expression, new member lookups are generated. The previous member lookup always becomes the
object of the next lookup:

src/parse.js
AST.prototype.primary = function() {
 var primary;
 if (this.expect('[')) {
 primary = this.arrayDeclaration();
 } else if (this.expect('{')) {
 primary = this.object();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 primary = this.constants[this.consume().text];
 } else if (this.peek().identifier) {
 primary = this.identifier();
 } else {
 primary = this.constant();
 }
 while (this.expect('.')) {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.identifier()
 };
 }
 return primary;
};

Before moving forward, let’s take a moment to inspect what happens here, since the recursive code
in the AST builder and AST compiler is already surprisingly powerful. The abstract syntax tree
that gets built up for aKey.secondKey.thirdKey.fourthKey looks like this:

{
 type: AST.Program,
 body: {
 type: AST.MemberExpression,
 property: {type: AST.Identifier, name: 'fourthKey'},

Locals 13

239 Errata© Tero Parviainen 2016

 object: {
 type: AST.MemberExpresion,
 property: {type: AST.Identifier, name: 'thirdKey'},
 object: {
 type: AST.MemberExpression,
 property: {type: AST.Identifier, name: 'secondKey'},
 object: {type: AST.Identifier, name: 'aKey'}
 }
 }
 }
}

In the AST compiler this turns into the following JavaScript function:

function(s) {
 var v0, v1, v2, v3;
 if (s) {
 v3 = s.aKey;
 }
 if (v3) {
 v2 = v3.secondKey;
 }
 if (v2) {
 v1 = v2.thirdKey;
 }
 if (v1) {
 v0 = v1.fourthKey;
 }
 return v0;
}

Pretty neat, huh!

Locals

Until now all the functions returned by parse have taken one argument - the scope. The literal
expression functions ignore even that one.

There is a second argument that expressions should accept, called locals. This argument is basi-
cally just another object, like the scope argument. The contract is that parsed expressions should
look things up from either the scope object or the locals object. They should try to use locals
first and only if that fails fall back to scope.

This means you can effectively augment or override scope attributes with locals. In other words,
you can make certain attributes available to expressions without putting them on any scope. This is
sometimes useful especially in directives and their expression bindings. For example, the ngClick
directive lets you access the click event object from your click handler expression by referring to
$event. It does this by attaching it to the expression locals.

Locals 13

240 Errata© Tero Parviainen 2016

test/parse_spec.js
it('uses locals instead of scope when there is a matching key', function() {
 var fn = parse('aKey');
 var scope = {aKey: 42};
 var locals = {aKey: 43};
 expect(fn(scope, locals)).toBe(43);
});

it('does not use locals instead of scope when no matching key', function() {
 var fn = parse('aKey');
 var scope = {aKey: 42};
 var locals = {otherKey: 43};
 expect(fn(scope, locals)).toBe(42);
});

You may recall that we’ve already seen something like locals in Scope.prototype.$eval,
which takes a locals argument. In fact, this argument gets passed to the expression directly, as we’ll see
when we integrate expressions with watches.

The locals vs. scope rule only applies to the first part of the key. If the first level of a multi-level
lookup matches in locals, that is where the lookup will be done, even if the second part does not
match:

test/parse_spec.js
it('uses locals instead of scope when the first part matches', function() {
 var fn = parse('aKey.anotherKey');
 var scope = {aKey: {anotherKey: 42}};
 var locals = {aKey: {}};
 expect(fn(scope, locals)).toBeUndefined();
});

Our generated JavaScript function should now take two arguments, the second of which is the
locals object. We’ll call it l in the generated code:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: [], nextId: 0, vars: []};
 this.recurse(ast);
 /* jshint -W054 */
 return new Function('s', 'l',
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''
) + this.state.body.join(''));
 /* jshint +W054 */
};

Locals 13

241 Errata© Tero Parviainen 2016

Inside the compiler, the relevant section for us to modify is the code generated for AST.Identifi-
er, which is currently doing a Scope attribute lookup. We should have an additional check there to
see if we should be doing a locals lookup instead of the scope lookup:

src/parse.js
case AST.Identifier:
 intoId = this.nextId();
 this.if_('l',
 this.assign(intoId, this.nonComputedMember('l', ast.name)));
 this.if_(this.not('l') + ' && s',
 this.assign(intoId, this.nonComputedMember('s', ast.name)));
 return intoId;

This version tries to check l first, and only looks the identifier up from s if there is no l. The not
method is new, so we should define it. It just negates the value of a JavaScript expression:

src/parse.js
ASTCompiler.prototype.not = function(e) {
 return '!(' + e + ')';
};

Our test cases are not passing yet, and the problem is in how we’re checking the locals lookup. The
contract is that locals should only be used if the property actually exists in locals, whereas cur-
rently we always use locals if it merely exists. We must instead check if l actually has an attribute
matching the identifier, which we can do with a new helper method called getHasOwnProperty:

src/parse.js
case AST.Identifier:
 intoId = this.nextId();
 this.if_(this.getHasOwnProperty('l', ast.name),
 this.assign(intoId, this.nonComputedMember('l', ast.name)));
 this.if_(this.not(this.getHasOwnProperty('l', ast.name)) + ' && s',
 this.assign(intoId, this.nonComputedMember('s', ast.name)));
 return intoId;

The getHasOwnProperty method takes an object and a property name. It first checks that the
object exists, and then that the property name is included in the object. For the latter it uses JavaS-
cript’s in operator:
src/parse.js
ASTCompiler.prototype.getHasOwnProperty = function(object, property) {
 return object + '&&(' + this.escape(property) + ' in ' + object + ')';
};

In addition to looking up individual attributes of the locals object, the expression parser gives ac-
cess to the whole locals object itself via the special name $locals. This may be useful when you
need to introspect what locals there are available:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/in

Computed Attribute Lookup 13

242 Errata© Tero Parviainen 2016

test/parse_spec.js
it('will parse $locals', function() {
 var fn = parse('$locals');
 var scope = {};
 var locals = {};
 expect(fn(scope, locals)).toBe(locals);
 expect(fn(scope)).toBeUndefined();

 fn = parse('$locals.aKey');
 scope = {aKey: 42};
 locals = {aKey: 43};
 expect(fn(scope, locals)).toBe(43);
});

A new AST token is needed for this expression:

src/parse.js
AST.Program = 'Program’;
AST.Literal = ‘Literal’;
AST.ArrayExpression = ‘ArrayExpression’;
AST.ObjectExpression = ‘ObjectExpression’;
AST.Property = ‘Property’;
AST.Identifier = ‘Identifier’;
AST.ThisExpression = ‘ThisExpression’;
AST.LocalsExpression = 'LocalsExpression';
AST.MemberExpression = ‘MemberExpression’;

Similarly to the this expression, the $locals expression is considered a constant, and so we add
it to the constants object we have:

src/parse.js
AST.prototype.constants = {
 ‘null’: {type: AST.Literal, value: null},
 ‘true’: {type: AST.Literal, value: true},
 ‘false’: {type: AST.Literal, value: false},
 ‘this’: {type: AST.ThisExpression},
 '$locals': {type: AST.LocalsExpression}
};

In ASTCompiler.recurse we can simply return the l argument of the expression function when
we encounter this token:

src/parse.js
case AST.LocalsExpression:
 return 'l';

Computed Attribute Lookup

Computed Attribute Lookup 13

243 Errata© Tero Parviainen 2016

We’ve seen how you can access attributes on scopes in a non-computed way using the dot opera-
tor. The second way you can do that in Angular expressions (like you can in JavaScript) is comput-
ed attribute lookup using square bracket notation:

test/parse_spec.js
it('parses a simple computed property access', function() {
 var fn = parse('aKey["anotherKey"]');
 expect(fn({aKey: {anotherKey: 42}})).toBe(42);
});

The same notation also works with arrays. You just use numbers instead of strings as the key:

test/parse_spec.js
it('parses a computed numeric array access', function() {
 var fn = parse('anArray[1]');
 expect(fn({anArray: [1, 2, 3]})).toBe(2);
});

The square bracket notation is perhaps most useful when the key isn’t known at parse time, but is
itself looked up from the scope or computed in some other way (hence the name). You can’t do that
with the dot notation:

test/parse_spec.js
it('parses a computed access with another key as property', function() {
 var fn = parse('lock[key]');
 expect(fn({key: 'theKey', lock: {theKey: 42}})).toBe(42);
});

Finally, the notation should be flexible enough to recursively allow more elaborate expressions -
such as other computed property accesses - as the key:

test/parse_spec.js
it('parses computed access with another access as property', function() {
 var fn = parse('lock[keys["aKey"]]');
 expect(fn({keys: {aKey: 'theKey'}, lock: {theKey: 42}})).toBe(42);
});

The expression lock[key] consists of four tokens: The identifier token lock, a single character
token ’[‘, the identifier token key, and a single character token ’]’. Together they form a prima-
ry AST node. We should augment AST.primary to look out for opening square brackets in addi-
tion to dots:

src/parse.js
AST.prototype.primary = function() {
 var primary;
 if (this.expect('[')) {

Computed Attribute Lookup 13

244 Errata© Tero Parviainen 2016

 primary = this.arrayDeclaration();
 } else if (this.expect('{')) {
 primary = this.object();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 primary = this.constants[this.consume().text];
 } else if (this.peek().identifier) {
 primary = this.identifier();
 } else {
 primary = this.constant();
 }
 var next;
 while ((next = this.expect('.')) || (next = this.expect('['))) {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.identifier()
 };
 }
 return primary;
};

To make the alternative expect calls a bit more concise, we can extend expect and peek to sup-
port multiple alternative tokens. Let’s go ahead and bump the number of alternatives we can use
to four:

src/parse.js
AST.prototype.expect = function(e1, e2, e3, e4) {
 var token = this.peek(e1, e2, e3, e4);
 if (token) {
 return this.tokens.shift();
 }
};
AST.prototype.peek = function(e1, e2, e3, e4) {
 if (this.tokens.length > 0) {
 var text = this.tokens[0].text;
 if (text === e1 || text === e2 || text === e3 || text === e4 ||
 (!e1 && !e2 && !e3 && !e4)) {
 return this.tokens[0];
 }
 }
};

Now we can go ahead and use the two-argument form in primary:

src/parse.js
var next;
while ((next = this.expect('.', '['))) {
 primary = {
 type: AST.MemberExpression,
 object: primary,

Computed Attribute Lookup 13

245 Errata© Tero Parviainen 2016

 property: this.identifier()
 };
}

If what we encounter is an opening square bracket, we should also consume a closing square
bracket before we’re done:

src/parse.js
var next;
while ((next = this.expect('.', '['))) {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.identifier()
 };
 if (next.text === '[') {
 this.consume(']');
 }
}

Also, as we saw in our tests, what goes between the square brackets is not an identifier. It is a
whole other primary expression. To support this it’s actually better to branch out the computed
and non-computed cases to handle them separately:

src/parse.js
var next;
while ((next = this.expect('.', '['))) {
 if (next.text === '[') {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.primary()
 };
 this.consume(']');
 } else {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.identifier()
 };
 }
}

The AST compiler is also going to need to know whether it is dealing with a computed or
non-computed property access. Before we’re done with the AST builder, let’s add information
about that to the AST nodes:

src/parse.js

Computed Attribute Lookup 13

246 Errata© Tero Parviainen 2016

var next;
while ((next = this.expect('.', '['))) {
 if (next.text === '[') {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.primary(),
 computed: true
 };
 this.consume(']');
 } else {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.identifier(),
 computed: false
 };
 }
}

Note that a square bracket is now interpreted very differently in different positions. If it is the first
character in a primary expression, it denotes an array declaration. If there’s something preceding
it, it’s a property access.

Moving on to the AST compiler, we now have two different types of AST.MemberExpression,
which we should generate different kind of code for:

src/parse.js
case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object);
 if (ast.computed) {

 } else {
 this.if_(left,
 this.assign(intoId, this.nonComputedMember(left, ast.property.name)));
 }
 return intoId;

Since the property for the computed lookup is an arbitrary expression itself, we should first recurse
into it:

src/parse.js
case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object);
 if (ast.computed) {
 var right = this.recurse(ast.property);
 } else {

Function Calls 13

247 Errata© Tero Parviainen 2016

 this.if_(left,
 this.assign(intoId, this.nonComputedMember(left, ast.property.name)));
 }
 return intoId;

That gives us the computed property that we should look up. We can complete the picture by do-
ing the actual lookup and assigning the result as the result of the member expression:

src/parse.js
case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object);
 if (ast.computed) {
 var right = this.recurse(ast.property);
 this.if_(left,
 this.assign(intoId, this.computedMember(left, right)));
 } else {
 this.if_(left,
 this.assign(intoId, this.nonComputedMember(left, ast.property.name)));
 }
 return intoId;

The new computedMember method is the last piece we need before we’re done with computed
lookup. It generates the JavaScript for a computed attribute access:

src/parse.js
ASTCompiler.prototype.computedMember = function(left, right) {
 return '(' + left + ')[' + right + ']';
};

Function Calls

In Angular expressions it is very common to not only look things up, but also to invoke functions:
test/parse_spec.js
it('parses a function call', function() {
 var fn = parse('aFunction()');
 expect(fn({aFunction: function() { return 42; }})).toBe(42);
});

One thing to understand about function calls is that there are really two things going on: First you
look up the function to call, as with ’aFunction’ in the expression above, and then you call that
function by using parentheses. The lookup part is no different from any other attribute lookup.
After all, in JavaScript, functions are no different from other values.

This means that we can use the code we already have to look the function up, and what remains to
be done is the invocation. Let’s begin by adding the parentheses as character tokens that the Lexer

Function Calls 13

248 Errata© Tero Parviainen 2016

will emit:

src/parse.js
} else if (this.is('[],{}:.()')) {
 this.tokens.push({
 text: this.ch
 });
 this.index++;

Function calls are processed as primary AST nodes, just like property accesses. In the while loop
in AST.primary we’ll consume not only square brackets and dots, but also opening parentheses.
When we come across one, we generate a CallExpression node, and set the previous primary
expression as the callee (the function to be called):

src/parse.js
var next;
while ((next = this.expect('.', '[', '('))) {
 if (next.text === '[') {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.primary(),
 computed: true
 };
 this.consume(']');
 } else if (next.text === '.') {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.identifier(),
 computed: false
 };
 } else if (next.text === '(') {
 primary = {type: AST.CallExpression, callee: primary};
 this.consume(')');
 }
}

The CallExpression constant needs to be defined:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';
AST.Identifier = 'Identifier';
AST.ThisExpression = 'ThisExpression';
AST.LocalsExpression = 'LocalsExpression';

Function Calls 13

249 Errata© Tero Parviainen 2016

AST.MemberExpression = 'MemberExpression';
AST.CallExpression = 'CallExpression';

Now we’re ready to compile the call expression into JavaScript. We can do it by first obtaining the
function to call by recursing to callee, and then generating the JavaScript for calling that func-
tion - but only if it exists:

src/parse.js
case AST.CallExpression:
 var callee = this.recurse(ast.callee);
 return callee + '&&' + callee + '()';

Of course, most function calls are not as simple as the one we saw earlier. What you often do
with functions is pass arguments, and our naïve function implementation currently knows nothing
about such things.

We should be able to handle simple arguments like integers:

test/parse_spec.js
it('parses a function call with a single number argument', function() {
 var fn = parse('aFunction(42)');
 expect(fn({aFunction: function(n) { return n; }})).toBe(42);
});

We should also be able to handle arguments that look up something else from the scope:

test/parse_spec.js
it('parses a function call with a single identifier argument', function() {
 var fn = parse('aFunction(n)');
 expect(fn({n: 42, aFunction: function(arg) { return arg; }})).toBe(42);
});

Some arguments will be function calls themselves:

test/parse_spec.js
it('parses a function call with a single function call argument', function() {
 var fn = parse('aFunction(argFn())');
 expect(fn({
 argFn: _.constant(42),
 aFunction: function(arg) { return arg; }
 })).toBe(42);
});

And of course there may be combinations of all of the above, as multiple arguments separated
with commas:

Function Calls 13

250 Errata© Tero Parviainen 2016

test/parse_spec.js
it('parses a function call with multiple arguments', function() {
 var fn = parse('aFunction(37, n, argFn())');
 expect(fn({
 n: 3,
 argFn: _.constant(2),
 aFunction: function(a1, a2, a3) { return a1 + a2 + a3; }
 })).toBe(42);
});

With the addition of these tests, LoDash is now needed in parse_spec.js as well:

test/parse_spec.js
'use strict';

var _ = require('lodash');
var parse = require('../src/parse');

In the AST builder, we should be prepared to parse any arguments that go between the opening and
closing parentheses. We’ll do it with a new method called parseArguments:

src/parse.js
} else if (next.text === '(') {
 primary = {
 type: AST.CallExpression,
 callee: primary,
 arguments: this.parseArguments()
 };
 this.consume(')');

This method collects primary expressions until it sees a closing parenthesis, in precisely the same way as
we did with array literals - with the exception that with arguments we don’t support tailing commas:

src/parse.js
AST.prototype.parseArguments = function() {
 var args = [];
 if (!this.peek(')')) {
 do {
 args.push(this.primary());
 } while (this.expect(','));
 }
 return args;
};

As we compile these argument expressions into JavaScript, we can recurse to each one and collect
the results into an array:

src/parse.js

Method Calls 13

251 Errata© Tero Parviainen 2016

case AST.CallExpression:
 var callee = this.recurse(ast.callee);
 var args = _.map(ast.arguments, _.bind(function(arg) {
 return this.recurse(arg);
 }, this));
 return callee + '&&' + callee + '()';

We can then join the argument expressions into the generated function call:

src/parse.js
case AST.CallExpression:
 var callee = this.recurse(ast.callee);
 var args = _.map(ast.arguments, _.bind(function(arg) {
 return this.recurse(arg);
 }, this));
 return callee + '&&' + callee + '(' + args.join(',') + ')';

Method Calls

In JavaScript, a function call is not always just a function call. When a function is attached to an
object as an attribute and invoked by first dereferencing it from the object using a dot or square
brackets, the function is invoked as a method. What that means is that the function body will have
the this keyword bound to the containing object. So, in the following test cases, this in aFunc-
tion should point to aMember because of the way we call it in the expression. For computed
attribute accesses:

test/parse_spec.js
it('calls methods accessed as computed properties', function() {
 var scope = {
 anObject: {
 aMember: 42,
 aFunction: function() {
 return this.aMember;
 }
 }
 };
 var fn = parse('anObject["aFunction"]()');
 expect(fn(scope)).toBe(42);
});

And for non-computed accesses:

test/parse_spec.js
it('calls methods accessed as non-computed properties', function() {
 var scope = {
 anObject: {
 aMember: 42,

Method Calls 13

252 Errata© Tero Parviainen 2016

 aFunction: function() {
 return this.aMember;
 }
 }
 };
 var fn = parse('anObject.aFunction()');
 expect(fn(scope)).toBe(42);
});

All the steps for making this work are going to be in the AST compiler. What we’ll need to do is
generate the right kind of JavaScript in the CallExpression branch of recurse, so that this
will be bound to the object that was referenced in the original Angular expression.

The key to doing that is to introduce a “call context” object, in which information about the
method call will be stored. We’ll introduce such an object for call expressions. We will then pass
it into the recurse method as the second argument when we process the callee. The idea is that
recurse will then add the information we’ll need in that object:

src/parse.js
case AST.CallExpression:
 var callContext = {};
 var callee = this.recurse(ast.callee, callContext);
 var args = _.map(ast.arguments, _.bind(function(arg) {
 return this.recurse(arg);
 }, this));
 return callee + '&&' + callee + '(' + args.join(',') + ')';

In the recurse method’s declaration we now need to be able to receive a second argument. Here
we’ll just call it context:

src/parse.js
ASTCompiler.prototype.recurse = function(ast, context) {
 // ...
};

What we expect to happen when we pass in the context to recurse is that if we’re dealing with a
method call, three attributes will get populated on it:

• context - The owning object of the method. Will eventually become this.
• name - The method’s property name in the owning object.
• computed - Whether the method was accessed as a computed property or not.

The CallExpression branch makes use of these three properties to form the callee that will
cause the correct this to be used in the generated call expression:

src/parse.js

Method Calls 13

253 Errata© Tero Parviainen 2016

case AST.CallExpression:
 var callContext = {};
 var callee = this.recurse(ast.callee, callContext);
 var args = _.map(ast.arguments, _.bind(function(arg) {
 return this.recurse(arg);
 }, this));
 if (callContext.name) {
 if (callContext.computed) {
 callee = this.computedMember(callContext.context, callContext.name);
 } else {
 callee = this.nonComputedMember(callContext.context, callContext.name);
 }
 }
 return callee + '&&' + callee + '(' + args.join(',') + ')';

What’s happening here is that we are reconstrucing the computed or non-computed property ac-
cess in the JavaScript code. Doing that causes the this binding to occur.

Now that we’ve seen how the call context will be used, we should populate it in the MemberEx-
pression branch, which is where the callee of method call expressions is formed. The context
attribute of the context should be the owning object of the member expression:

src/parse.js
case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object);
 if (context) {
 context.context = left;
 }
 if (ast.computed) {
 var right = this.recurse(ast.property);
 this.if_(left,
 this.assign(intoId, this.computedMember(left, right)));
 } else {
 this.if_(left,
 this.assign(intoId, this.nonComputedMember(left, ast.property.name)));
 }
 return intoId;

The name and computed attributes of the context are different depending on whether the member
lookup is computed or not:

src/parse.js
case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object);
 if (context) {
 context.context = left;
 }

Method Calls 13

254 Errata© Tero Parviainen 2016

 if (ast.computed) {
 var right = this.recurse(ast.property);
 this.if_(left,
 this.assign(intoId, this.computedMember(left, right)));
 if (context) {
 context.name = right;
 context.computed = true;
 }
 } else {
 this.if_(left,
 this.assign(intoId, this.nonComputedMember(left, ast.property.name)));
 if (context) {
 context.name = ast.property.name;
 context.computed = false;
 }
 }
 return intoId;

Now we are correctly generating method calls and our test suite is happy.

A feature closely related to method calls is about what happens to this for non-method functions.
When you call a standalone function in an Angular expression, its this is actually bound to the
Scope:

test/parse_spec.js
it('binds bare functions to the scope', function() {
 var scope = {
 aFunction: function() {
 return this;
 }
 };
 var fn = parse('aFunction()');
 expect(fn(scope)).toBe(scope);
});

An exception to this is when the function was attached to the expression locals instead of the
scope. In that case, this points to the locals:

test/parse_spec.js
it('binds bare functions on locals to the locals', function() {
 var scope = {};
 var locals = {
 aFunction: function() {
 return this;
 }
 };
 var fn = parse('aFunction()');
 expect(fn(scope, locals)).toBe(locals);
});

Assigning Values 13

255 Errata© Tero Parviainen 2016

We can implement this by populating the context for Identifier expressions as well. The context
is either l or s, the name is the identifier name, and computed is always false:

src/parse.js
case AST.Identifier:
 intoId = this.nextId();
 this.if_(this.getHasOwnProperty('l', ast.name),
 this.assign(intoId, this.nonComputedMember('l', ast.name)));
 this.if_(this.not(this.getHasOwnProperty('l', ast.name)) + ' && s',
 this.assign(intoId, this.nonComputedMember('s', ast.name)));
 if (context) {
 context.context = this.getHasOwnProperty('l', ast.name) + '?l:s';
 context.name = ast.name;
 context.computed = false;
 }
 return intoId;

Assigning Values

Now we are going to take a look at how expressions can not only access data on scopes but also
put data on scopes by using assignments. For example, it is perfectly legal for an expression to set a
scope attribute to some value:

test/parse_spec.js
it('parses a simple attribute assignment', function() {
 var fn = parse('anAttribute = 42');
 var scope = {};
 fn(scope);
 expect(scope.anAttribute).toBe(42);
});

The value assigned does not have to be a simple literal either. It can be any primary expression,
such as a function call:

test/parse_spec.js
it('can assign any primary expression', function() {
 var fn = parse('anAttribute = aFunction()');
 var scope = {aFunction: _.constant(42)};
 fn(scope);
 expect(scope.anAttribute).toBe(42);
});

You can assign not only simple identifiers, but also computed and non-computed properties, and
nested combinations of them:

test/parse_spec.js

Assigning Values 13

256 Errata© Tero Parviainen 2016

it('can assign a computed object property', function() {
 var fn = parse('anObject["anAttribute"] = 42');
 var scope = {anObject: {}};
 fn(scope);
 expect(scope.anObject.anAttribute).toBe(42);
});

it('can assign a non-computed object property', function() {
 var fn = parse('anObject.anAttribute = 42');
 var scope = {anObject: {}};
 fn(scope);
 expect(scope.anObject.anAttribute).toBe(42);
});

it('can assign a nested object property', function() {
 var fn = parse('anArray[0].anAttribute = 42');
 var scope = {anArray: [{}]};
 fn(scope);
 expect(scope.anArray[0].anAttribute).toBe(42);
});

Just as with most of the other new features in this chapter, we’ll begin by having the Lexer emit a token
for the AST builder to use. This time we’ll need one for the = sign that denotes assignments:

src/parse.js
} else if (this.is('[],{}:.()=')) {
 this.tokens.push({
 text: this.ch
 });
 this.index++;

Assignment is not what we’ve been calling a “primary” AST node, and unlike most of what we’ve
seen before, its AST it’ll not be built by the existing AST.primary function. It’ll have a function
of its own, which we’ll call assignment. In it, we begin by consuming the left hand side token,
which is a primary node. The left hand side is then followed by an equals sign token, and then the
right hand side, which is another primary node:

src/parse.js
AST.prototype.assignment = function() {
 var left = this.primary();
 if (this.expect('=')) {
 var right = this.primary();

 }
 return left;
};

Together these form an AssignmentExpression with left and right subexpressions:

Assigning Values 13

257 Errata© Tero Parviainen 2016

src/parse.js
AST.prototype.assignment = function() {
 var left = this.primary();
 if (this.expect('=')) {
 var right = this.primary();
 return {type: AST.AssignmentExpression, left: left, right: right};
 }
 return left;
};

We need to define the AssignmentExpression constant as well:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';
AST.Identifier = 'Identifier';
AST.ThisExpression = 'ThisExpression';
AST.LocalsExpression = 'LocalsExpression';
AST.MemberExpression = 'MemberExpression';
AST.CallExpression = 'CallExpression';
AST.AssignmentExpression = 'AssignmentExpression';

The remaining issue in the AST builder is that assignment is currently an “orphan” method: It is
not called by anything.

Notice how we’ve constructed assignment so that it checks if there is an equals sign following
the left hand side. If there is no equals sign it just returns the left hand side by itself. That means
we can use the assignment function to build either an assignment expression or just a plain
primary expression. This pattern of trying to build something and falling through to something
else is something we’ll see a lot more in the next chapter. Right now we can just replace the call to
primary in program with a call to assignment, and that’ll take care of all expressions we have
so far, whether assignments or something else:

src/parse.js
AST.prototype.program = function() {
 return {type: AST.Program, body: this.assignment()};
};

Assignments can also be contained in arrays as items, so we should change the method we call in array
expressions as well:

src/parse.js
AST.prototype.arrayDeclaration = function() {

Assigning Values 13

258 Errata© Tero Parviainen 2016

 var elements = [];
 if (!this.peek(']')) {
 do {
 if (this.peek(']')) {
 break;
 }
 elements.push(this.assignment());
 } while (this.expect(','));
 }
 this.consume(']');
 return {type: AST.ArrayExpression, elements: elements};
};

The same goes for values in object expressions - but not keys since they’re always just strings:

src/parse.js
AST.prototype.object = function() {
 var properties = [];
 if (!this.peek('}')) {
 do {
 var property = {type: AST.Property};
 if (this.peek().identifier) {
 property.key = this.identifier();
 } else {
 property.key = this.constant();
 }
 this.consume(':');
 property.value = this.assignment();
 properties.push(property);
 } while (this.expect(','));
 }
 this.consume('}');
 return {type: AST.ObjectExpression, properties: properties};
};

And it goes for function arguments as well:

src/parse.js
AST.prototype.parseArguments = function() {
 var args = [];
 if (!this.peek(')')) {
 do {
 args.push(this.assignment());
 } while (this.expect(','));
 }
 return args;
};

In the AST compiler, we’ll first process the left hand side of the assignment - the identifier or
member to assign. We’ll make use of the context feature built in the previous section to collect

Assigning Values 13

259 Errata© Tero Parviainen 2016

information about it as we recurse into it:

src/parse.js
case AST.AssignmentExpression:
 var leftContext = {};
 this.recurse(ast.left, leftContext);

The left hand side of the generated assignment expression will be different depending on whether
the left hand side was computed or not:

src/parse.js
case AST.AssignmentExpression:
 var leftContext = {};
 this.recurse(ast.left, leftContext);
 var leftExpr;
 if (leftContext.computed) {
 leftExpr = this.computedMember(leftContext.context, leftContext.name);
 } else {
 leftExpr = this.nonComputedMember(leftContext.context, leftContext.name);
 }

The assignment itself is a combination of the left hand side and the right hand side, separated by
=:

src/parse.js
case AST.AssignmentExpression:
 var leftContext = {};
 this.recurse(ast.left, leftContext);
 var leftExpr;
 if (leftContext.computed) {
 leftExpr = this.computedMember(leftContext.context, leftContext.name);
 } else {
 leftExpr = this.nonComputedMember(leftContext.context, leftContext.name);
 }
 return this.assign(leftExpr, this.recurse(ast.right));

An interesting thing about nested assignments in Angular expressions is that if some of the objects
in the path don’t exist, they are created on the fly:

test/parse_spec.js
it('creates the objects in the assignment path that do not exist', function() {
 var fn = parse('some["nested"].property.path = 42');
 var scope = {};
 fn(scope);
 expect(scope.some.nested.property.path).toBe(42);
});

This is in stark contrast to what JavaScript does. JavaScript would just raise an error on

Assigning Values 13

260 Errata© Tero Parviainen 2016

some[“nested”] since some does not exist. The Angular expression engine happily assigns it.

This is done by passing a new, third argument to recurse, which tells it to create any missing
objects there might be. We pass it as true when recursing the left side of an assignment:

src/parse.js
case AST.AssignmentExpression:
 var leftContext = {};
 this.recurse(ast.left, leftContext, true);
 // ...

In recurse we’ll receive this argument:

src/parse.js
ASTCompiler.prototype.recurse = function(ast, context, create) {
 // ...
};

When handling MemberExpressions we’ll then check if we’re supposed to be creating missing
objects. If we are, we assign empty objects to the members. We need to handle that separately for
the computed and non-computed cases:

src/parse.js
case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object);
 if (context) {
 context.context = left;
 }
 if (ast.computed) {
 var right = this.recurse(ast.property);
 if (create) {
 this.if_(this.not(this.computedMember(left, right)),
 this.assign(this.computedMember(left, right), '{}'));
 }
 this.if_(left,
 this.assign(intoId, this.computedMember(left, right)));
 if (context) {
 context.name = right;
 context.computed = true;
 }
 } else {
 if (create) {
 this.if_(this.not(this.nonComputedMember(left, ast.property.name)),
 this.assign(this.nonComputedMember(left, ast.property.name), '{}'));
 }
 this.if_(left,
 this.assign(intoId, this.nonComputedMember(left, ast.property.name)));
 if (context) {

Ensuring Safety In Member Access 13

261 Errata© Tero Parviainen 2016

 context.name = ast.property.name;
 context.computed = false;
 }
 }
 return intoId;

This takes care of the last member expression before the assignment, but for nested paths such
as the one in our test case, we need to recursively pass the create flag for the next left hand side
expression as well:

src/parse.js
case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object, undefined, create);
 // ...

The path will terminate in an Identifier expression. It should be able to populate an empty ob-
ject on the scope if one does not exist and we’re supposed to be creating missing objects. We do it
only when there’s no match either on the locals or the scope:

src/parse.js
case AST.Identifier:
 intoId = this.nextId();
 this.if_(this.getHasOwnProperty('l', ast.name),
 this.assign(intoId, this.nonComputedMember('l', ast.name)));
 if (create) {
 this.if_(this.not(this.getHasOwnProperty('l', ast.name)) +
 ' && s && ' +
 this.not(this.getHasOwnProperty('s', ast.name)),
 this.assign(this.nonComputedMember('s', ast.name), '{}'));
 }
 this.if_(this.not(this.getHasOwnProperty('l', ast.name)) + ' && s',
 this.assign(intoId, this.nonComputedMember('s', ast.name)));
 if (context) {
 context.context = this.getHasOwnProperty('l', ast.name) + '?l:s';
 context.name = ast.name;
 context.computed = false;
 }
 return intoId;

Ensuring Safety In Member Access

Since expressions are most often used within HTML and also often combined with user-generated
content, it is important to do everything we can to prevent injection attacks, where users could exe-
cute arbitrary code by crafting particular kinds of expressions. The protection against this is mostly
based on the fact that all expressions are strictly scoped on Scope objects by the AST compiler:

Ensuring Safety In Member Access 13

262 Errata© Tero Parviainen 2016

Apart from literals you can only work on things that have been attached to the scope (or the lo-
cals). The objects with potentially dangerous operations, such as window simply aren’t accessible.

There are a few ways around this in our current implementation though: In particular, in this
chapter we have already seen how the JavaScript Function constructor takes a string and evalu-
ates that string as the source code of a new function. We used it to generate the expression func-
tions. It turns out that if we don’t take measures to prevent it, that very same Function constructor
can be used to evaluate arbitrary code in an expression.

The Function constructor is made available to an attacker by the fact that it is attached to the
constructor attribute of every JavaScript function. If you have a function on the scope, as you
often do, you can take its constructor in an expression, pass it a string of JavaScript code, and then
execute the resulting function. At that point, all bets are off. For example, you can then easily gain
access to the global window object:

aFunction.constructor('return window;')()

Apart from the function constructor, there are a few other common object members that could
cause security issues because calling them may have unpredictably wide effects:

• __proto__ is a non-standard, deprecated accessor for an object’s prototype. It allows not only
getting but also setting global prototypes, making it potentially dangerous.

• __defineGetter__, __lookupGetter__, __defineSetter__, and __lookupSetter__ are
non-standard functions for defining properties on object in terms of getter and setter functions.
Since they are not standardized and not supported in all browsers, and they potentially allow
redefining well-known global properties, Angular disallows them in expressions.

Let’s add tests that verify none of the above six members are available in expressions:

test/parse_spec.js
it('does not allow calling the function constructor', function() {
 expect(function() {
 var fn = parse('aFunction.constructor("return window;")()');
 fn({aFunction: function() { }});
 }).toThrow();
});

it('does not allow accessing __proto__', function() {
 expect(function() {
 var fn = parse('obj.__proto__');
 fn({obj: { }});
 }).toThrow();
});

it('does not allow calling __defineGetter__', function() {
 expect(function() {
 var fn = parse('obj.__defineGetter__("evil", fn)');

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/__defineGetter__

Ensuring Safety In Member Access 13

263 Errata© Tero Parviainen 2016

 fn({obj: { }, fn: function() { }});
 }).toThrow();
});

it('does not allow calling __defineSetter__', function() {
 expect(function() {
 var fn = parse('obj.__defineSetter__("evil", fn)');
 fn({obj: { }, fn: function() { }});
 }).toThrow();
});

it('does not allow calling __lookupGetter__', function() {
 expect(function() {
 var fn = parse('obj.__lookupGetter__("evil")');
 fn({obj: { }});
 }).toThrow();
});

it('does not allow calling __lookupSetter__', function() {
 expect(function() {
 var fn = parse('obj.__lookupSetter__("evil")');
 fn({obj: { }});
 }).toThrow();
});

The security measure we’ll take against these kinds of attacks is to simply disallow accessing any
members on any objects that have these names. To that effect, we’ll introduce a helper function
that checks the name of a member and throws an exception if it’s not allowed:

src/parse.js
function ensureSafeMemberName(name) {
 if (name === 'constructor' || name === '__proto__' ||
 name === '__defineGetter__' || name === '__defineSetter__' ||
 name === '__lookupGetter__' || name === '__lookupSetter__') {
 throw 'Attempting to access a disallowed field in Angular expressions!';
 }
}

Now we need to sprinkle calls to this function in a few places in the AST compiler. In identifiers
we’ll call it with the name of the identifier:

src/parse.js
case AST.Identifier:
 ensureSafeMemberName(ast.name);
 // ...

In non-computed member accesses we’ll check the property name:

src/parse.js

Ensuring Safety In Member Access 13

264 Errata© Tero Parviainen 2016

case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object, undefined, create);
 if (context) {
 context.context = left;
 }
 if (ast.computed) {
 var right = this.recurse(ast.property);
 if (create) {
 this.if_(this.not(this.computedMember(left, right)),
 this.assign(this.computedMember(left, right), '{}'));
 }
 this.if_(left,
 this.assign(intoId, this.computedMember(left, right)));
 if (context) {
 context.name = right;
 context.computed = true;
 }
 } else {
 ensureSafeMemberName(ast.property.name);
 if (create) {
 this.if_(this.not(this.nonComputedMember(left, ast.property.name)),
 this.assign(this.nonComputedMember(left, ast.property.name), '{}'));
 }
 this.if_(left,
 this.assign(intoId, this.nonComputedMember(left, ast.property.name)));
 if (context) {
 context.name = ast.property.name;
 context.computed = false;
 }
 }
 return intoId;

In computed member accesses we’ll need to do a bit more work, as we won’t know the name of
the property at parse time. Instead we’ll need to call ensureSafeMemberName at runtime, whenev-
er the expression is evaluated.

First of all, we’ll need to make ensureSafeMemberName available to expressions at runtime. Let’s
first refactor our generated function code so that it itself is not the expression function, but returns
the expression function:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: [], nextId: 0, vars: []};
 this.recurse(ast);
 var fnString = 'var fn=function(s,l){' +
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''

Ensuring Safety In Member Access 13

265 Errata© Tero Parviainen 2016

) +
 this.state.body.join('') +
 '}; return fn;';
 /* jshint -W054 */
 return new Function(fnString)();
 /* jshint +W054 */
};

As we now have this higher-order function, we can use it to pass in arguments that will become
available inside the closure of the generated code. At this point we’ll pass in ensureSafeMember-
Name so we can use it at runtime:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: [], nextId: 0, vars: []};
 this.recurse(ast);
 var fnString = 'var fn=function(s,l){' +
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''
) +
 this.state.body.join('') +
 '}; return fn;';
 /* jshint -W054 */
 return new Function('ensureSafeMemberName', fnString)(ensureSafeMemberName);
 /* jshint +W054 */

Next, we’ll generate a call to this function for the right side of computed member accesses:

src/parse.js
case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object, undefined, create);
 if (context) {
 context.context = left;
 }
 if (ast.computed) {
 var right = this.recurse(ast.property);
 this.addEnsureSafeMemberName(right);
 if (create) {
 this.if_(this.not(this.computedMember(left, right)),
 this.assign(this.computedMember(left, right), '{}'));
 }
 this.if_(left,
 this.assign(intoId, this.computedMember(left, right)));
 if (context) {
 context.name = right;
 context.computed = true;
 }

Ensuring Safe Objects 13

266 Errata© Tero Parviainen 2016

 } else {
 ensureSafeMemberName(ast.property.name);
 if (create) {
 this.if_(this.not(this.nonComputedMember(left, ast.property.name)),
 this.assign(this.nonComputedMember(left, ast.property.name), '{}'));
 }
 this.if_(left,
 this.assign(intoId, this.nonComputedMember(left, ast.property.name)));
 if (context) {
 context.name = ast.property.name;
 context.computed = false;
 }
 }
 return intoId;

The addEnsureSafeMemberName function is new. It generates the call to ensureSafeMember-
Name:

src/parse.js
ASTCompiler.prototype.addEnsureSafeMemberName = function(expr) {
 this.state.body.push('ensureSafeMemberName(' + expr + ');');
};

Ensuring Safe Objects

The second security measure Angular expressions provide for us has more to do with protecting
application developers from themselves, by not letting them attach dangerous things on scopes and
then access them with expressions.

One of these dangerous objects is window. You could do great damage by calling some of the
functions attached to window, so what Angular does is it completely prevents you from using it in
expressions. Of course, you can’t just call window members directly anyway since expressions only
work on scopes, but you should also not be able to alias window as a scope attribute. If you were
to try that, an exception should be thrown:

test/parse_spec.js
it('does not allow accessing window as computed property', function() {
 var fn = parse('anObject["wnd"]');
 expect(function() { fn({anObject: {wnd: window}}); }).toThrow();
});

it('does not allow accessing window as non-computed property', function() {
 var fn = parse('anObject.wnd');
 expect(function() { fn({anObject: {wnd: window}}); }).toThrow();
});

The security measure against this is that when dealing with objects, we should check that they’re

Ensuring Safe Objects 13

267 Errata© Tero Parviainen 2016

not dangerous objects. We’ll first introduce a helper function for this purpose:

src/parse.js
function ensureSafeObject(obj) {
 if (obj) {
 if (obj.window === obj) {
 throw 'Referencing window in Angular expressions is disallowed!';
 }
 }
 return obj;
}

We’re checking for the “windowness” of the object by seeing if it has an attribute called window
that points to itself - something that the JavaScript window object has and other objects are very
unlikely to have.

To make the test pass we should first make this new helper function available at runtime:
src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: [], nextId: 0, vars: []};
 this.recurse(ast);
 var fnString = 'var fn=function(s,l){' +
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''
) +
 this.state.body.join('') +
 '}; return fn;';
 /* jshint -W054 */
 return new Function(
 'ensureSafeMemberName',
 'ensureSafeObject',
 fnString)(
 ensureSafeMemberName,
 ensureSafeObject);
 /* jshint +W054 */
};

Now we can wrap the results of member accesses with calls to ensureSafeObject:

src/parse.js
case AST.MemberExpression:
 intoId = this.nextId();
 var left = this.recurse(ast.object, undefined, create);
 if (context) {
 context.context = left;
 }
 if (ast.computed) {

Ensuring Safe Objects 13

268 Errata© Tero Parviainen 2016

 var right = this.recurse(ast.property);
 this.addEnsureSafeMemberName(right);
 if (create) {
 this.if_(this.not(this.computedMember(left, right)),
 this.assign(this.computedMember(left, right), '{}'));
 }
 this.if_(left,
 this.assign(intoId,
 'ensureSafeObject(' + this.computedMember(left, right) + ')'));
 if (context) {
 context.name = right;
 context.computed = true;
 }
 } else {
 ensureSafeMemberName(ast.property.name);
 if (create) {
 this.if_(this.not(this.nonComputedMember(left, ast.property.name)),
 this.assign(this.nonComputedMember(left, ast.property.name), '{}'));
 }
 this.if_(left,
 this.assign(intoId,
 'ensureSafeObject(' +
 this.nonComputedMember(left, ast.property.name) + ')'));
 if (context) {
 context.name = ast.property.name;
 context.computed = false;
 }
 }
 return intoId;

One should also not be allowed to pass unsafe objects in as function arguments:

test/parse_spec.js
it('does not allow passing window as function argument', function() {
 var fn = parse('aFunction(wnd)');
 expect(function() {
 fn({aFunction: function() { }, wnd: window});
 }).toThrow();
});

We need to wrap each of the argument expressions of a call expression in ensureSafeObject:

src/parse.js
case AST.CallExpression:
 var callContext = {};
 var callee = this.recurse(ast.callee, callContext);
 var args = _.map(ast.arguments, _.bind(function(arg) {
 return 'ensureSafeObject(' + this.recurse(arg) + ')';
 }, this));
 // ...

Ensuring Safe Objects 13

269 Errata© Tero Parviainen 2016

One should also not be able to call a function on window, if it happened to be attached on the
scope:

test/parse_spec.js
it('does not allow calling methods on window', function() {
 var fn = parse('wnd.scrollTo(0)');
 expect(function() {
 fn({wnd: window});
 }).toThrow();
});

In this case what we should check is the context of the method call:

src/parse.js
case AST.CallExpression:
 var callContext = {};
 var callee = this.recurse(ast.callee, callContext);
 var args = _.map(ast.arguments, _.bind(function(arg) {
 return 'ensureSafeObject(' + this.recurse(arg) + ')';
 }, this));
 if (callContext.name) {
 this.addEnsureSafeObject(callContext.context);
 if (callContext.computed) {
 callee = this.computedMember(callContext.context, callContext.name);
 } else {
 callee = this.nonComputedMember(callContext.context, callContext.name);
 }
 }
 return callee + '&&' + callee + '(' + args.join(',') + ')';

The addEnsureSafeObject method here is new, and we should add it:

src/parse.js
ASTCompiler.prototype.addEnsureSafeObject = function(expr) {
 this.state.body.push('ensureSafeObject(' + expr + ');');
};

Functions cannot be called on window, but it should also not be possible to call functions that
return window:

test/parse_spec.js
it('does not allow functions to return window', function() {
 var fn = parse('getWnd()');
 expect(function() { fn({getWnd: _.constant(window)}); }).toThrow();
});

This time we should wrap the return value of the function call in ensureSafeObject:

Ensuring Safe Objects 13

270 Errata© Tero Parviainen 2016

src/parse.js
case AST.CallExpression:
 var callContext = {};
 var callee = this.recurse(ast.callee, callContext);
 var args = _.map(ast.arguments, _.bind(function(arg) {
 return 'ensureSafeObject(' + this.recurse(arg) + ')';
 }, this));
 if (callContext.name) {
 this.addEnsureSafeObject(callContext.context);
 if (callContext.computed) {
 callee = this.computedMember(callContext.context, callContext.name);
 } else {
 callee = this.nonComputedMember(callContext.context, callContext.name);
 }
 }
 return callee + '&&ensureSafeObject(' + callee + '(' + args.join(',') + '))';

It should not be allowed to assign an unsafe object on the scope:

src/parse.js
it('does not allow assigning window', function() {
 var fn = parse('wnd = anObject');
 expect(function() {
 fn({anObject: window});
 }).toThrow();
});

This means we should wrap the right hand side of assignments too:

src/parse.js
case AST.AssignmentExpression:
 var leftContext = {};
 this.recurse(ast.left, leftContext, true);
 var leftExpr;
 if (leftContext.computed) {
 leftExpr = this.computedMember(leftContext.context, leftContext.name);
 } else {
 leftExpr = this.nonComputedMember(leftContext.context, leftContext.name);
 }
 return this.assign(leftExpr,
 'ensureSafeObject(' + this.recurse(ast.right) + ')');

And finally, one should not be able to reference an unsafe object using an identifier if it happens to
be simply aliased on the scope:

test/parse_spec.js
it('does not allow referencing window', function() {
 var fn = parse('wnd');

Ensuring Safe Objects 13

271 Errata© Tero Parviainen 2016

 expect(function() {
 fn({wnd: window});
 }).toThrow();
});

We need to generate a safeness check for Identifiers too:

src/parse.js
case AST.Identifier:
 ensureSafeMemberName(ast.name);
 intoId = this.nextId();
 this.if_(this.getHasOwnProperty('l', ast.name),
 this.assign(intoId, this.nonComputedMember('l', ast.name)));
 if (create) {
 this.if_(this.not(this.getHasOwnProperty('l', ast.name)) +
 ' && s && ' +
 this.not(this.getHasOwnProperty('s', ast.name)),
 this.assign(this.nonComputedMember('s', ast.name), '{}'));
 }
 this.if_(this.not(this.getHasOwnProperty('l', ast.name)) + ' && s',
 this.assign(intoId, this.nonComputedMember('s', ast.name)));
 if (context) {
 context.context = this.getHasOwnProperty('l', ast.name) + '?l:s';
 context.name = ast.name;
 context.computed = false;
 }
 this.addEnsureSafeObject(intoId);
 return intoId;

That should take care of everything. But the thing is, window is not the only dangerous object
we should be looking out for. Another one is DOM elements. Having access to a DOM element
would make it possible for an attacker to traverse and manipulate the contents of the web page, so
they should also be forbidden:

test/parse_spec.js
it('does not allow calling functions on DOM elements', function() {
 var fn = parse('el.setAttribute("evil", "true")');
 expect(function() { fn({el: document.documentElement}); }).toThrow();
});

AngularJS implements the following check for the “DOM-elementness” of an object:

src/parse.js
function ensureSafeObject(obj) {
 if (obj) {
 if (obj.window === obj) {
 throw 'Referencing window in Angular expressions is disallowed!';
 } else if (obj.children &&
 (obj.nodeName || (obj.prop && obj.attr && obj.find))) {

Ensuring Safe Objects 13

272 Errata© Tero Parviainen 2016

 throw 'Referencing DOM nodes in Angular expressions is disallowed!';
 }
 }
 return obj;
}

The third dangerous object we’ll consider is our old friend, the function constructor. While we’re
already making sure no one obtains the constructor by using the constructor property of func-
tions, there’s nothing to prevent someone from aliasing a function constructor on the scope with
some other name:

src/parse.js
it('does not allow calling the aliased function constructor', function() {
 var fn = parse('fnConstructor("return window;")');
 expect(function() {
 fn({fnConstructor: (function() { }).constructor});
 }).toThrow();
});

The check for this is quite a bit simpler than that of window and DOM element: The function
constructor is also a function, so it’ll also have a constructor property - one that points to
itself.

src/parse.js
function ensureSafeObject(obj) {
 if (obj) {
 if (obj.window === obj) {
 throw 'Referencing window in Angular expressions is disallowed!';
 } else if (obj.children &&
 (obj.nodeName || (obj.prop && obj.attr && obj.find))) {
 throw 'Referencing DOM nodes in Angular expressions is disallowed!';
 } else if (obj.constructor === obj) {
 throw 'Referencing Function in Angular expressions is disallowed!';
 }
 }
 return obj;
}

The fourth and final dangerous object we should think about is the Object object. Apart from
acting as the constructor for primitive object wrappers, it holds a number of helper functions, such
as Object.defineProperty(), Object.freeze(), Object.getOwnPropertyDescriptor(),
and Object.setPrototypeOf(). It is this latter role of Object that we are concerned about.
Some of these functions are potentially dangerous if an attacker gets access to them. Thus, we will
forbid referencing Object completely:

test/parse_spec.js

Ensuring Safe Functions 13

273 Errata© Tero Parviainen 2016

it('does not allow calling functions on Object', function() {
 var fn = parse('obj.create({})');
 expect(function() {
 fn({obj: Object});
 }).toThrow();
});

We can just check if the object is Object:

src/parse.js
function ensureSafeObject(obj) {
 if (obj) {
 if (obj.window === obj) {
 throw 'Referencing window in Angular expressions is disallowed!';
 } else if (obj.children &&
 (obj.nodeName || (obj.prop && obj.attr && obj.find))) {
 throw 'Referencing DOM nodes in Angular expressions is disallowed!';
 } else if (obj.constructor === obj) {
 throw 'Referencing Function in Angular expressions is disallowed!';
 } else if (obj === Object) {
 throw 'Referencing Object in Angular expressions is disallowed!';
 }
 }
 return obj;
}

Ensuring Safe Functions

We just saw how you cannot call a function in an expression if it happens to be the function
constructor function. There’s also another thing Angular prevents you from doing with functions,
which is to rebind their receiver (this) to something else:

test/parse_spec.js
it('does not allow calling call', function() {
 var fn = parse('fun.call(obj)');
 expect(function() { fn({fun: function() { }, obj: {}}); }).toThrow();
});

it('does not allow calling apply', function() {
 var fn = parse('fun.apply(obj)');
 expect(function() { fn({fun: function() { }, obj: {}}); }).toThrow();
});

The methods call and apply (as well as bind) are all different ways to invoke a function so that
its receiver is changed from the original. In all of the test cases above, this would be bound to
obj within the body of fun. Since rebinding this can cause functions to behave differently than
the function author originally intended, Angular simply disallows them in expressions so that this
cannot be abused in injection attacks.

Ensuring Safe Functions 13

274 Errata© Tero Parviainen 2016

In the previous section we ensured the safety of invoked functions with ensureSafeObject. Now
we’re going to switch from that to a new function called ensureSafeFunction. The first thing it
does is check that the function isn’t the function constructor, just like ensureSafeObject does:

src/parse.js
function ensureSafeFunction(obj) {
 if (obj) {
 if (obj.constructor === obj) {
 throw 'Referencing Function in Angular expressions is disallowed!';
 }
 }
 return obj;
}

The second responsibility of ensureSafeFunction is to see that the function isn’t call, apply,
or bind. Let’s introduce them as constant values in parse.js so we can compare the function to
them:

src/parse.js
var CALL = Function.prototype.call;
var APPLY = Function.prototype.apply;
var BIND = Function.prototype.bind;

Now we can refer to these constants in ensureSafeFunction:

src/parse.js
function ensureSafeFunction(obj) {
 if (obj) {
 if (obj.constructor === obj) {
 throw 'Referencing Function in Angular expressions is disallowed!';
 } else if (obj === CALL || obj === APPLY || obj === BIND) {
 throw 'Referencing call, apply, or bind in Angular expressions '+
 'is disallowed!';
 }
 }
 return obj;
}

We should now make ensureSafeFunction available at runtime:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: [], nextId: 0, vars: []};
 this.recurse(ast);
 var fnString = 'var fn=function(s,l){' +
 (this.state.vars.length ?

Summary 13

275 Errata© Tero Parviainen 2016

 'var ' + this.state.vars.join(',') + ';' :
 ''
) +
 this.state.body.join('') +
 '}; return fn;';
 /* jshint -W054 */
 return new Function(
 'ensureSafeMemberName',
 'ensureSafeObject',
 'ensureSafeFunction',
 fnString)(
 ensureSafeMemberName,
 ensureSafeObject,
 ensureSafeFunction);
 /* jshint +W054 */
};

We can then generate a call to it for the callee of a function call expression:

src/parse.js
case AST.CallExpression:
 var callContext = {};
 var callee = this.recurse(ast.callee, callContext);
 var args = _.map(ast.arguments, _.bind(function(arg) {
 return 'ensureSafeObject(' + this.recurse(arg) + ')';
 }, this));
 if (callContext.name) {
 this.addEnsureSafeObject(callContext.context);
 if (callContext.computed) {
 callee = this.computedMember(callContext.context, callContext.name);
 } else {
 callee = this.nonComputedMember(callContext.context, callContext.name);
 }
 }
 this.addEnsureSafeFunction(callee);
 return callee + '&&ensureSafeObject(' + callee + '(' + args.join(',') + '))';

Before we’re done we still need to add the addEnsureSafeFunction helper method:

src/parse.js
ASTCompiler.prototype.addEnsureSafeFunction = function(expr) {
 this.state.body.push('ensureSafeFunction(' + expr + ');');
};

This is how Angular attempts to secure expressions from injection attacks. The security measures
are by no means perfect, and there are almost certainly several ways to attach dangerous attributes
to scopes even with these checks in place. However, the risk related to this is greatly diminished by
the fact that before an attacker can use these dangerous attributes the application developer has to
have put them on the scope in the first place, which is something they should not be doing.

Summary 13

276 Errata© Tero Parviainen 2016

Summary

This chapter has been quite a ride. We have added a lot of code, and while doing it we’ve taken
our expression engine from something extremely simple to something that can be used to access
and manipulate arbitrarily deep data structures on scopes. That is no small feat!

In this chapter you’ve learned:

• How Angular expressions do computed and non-computed attribute lookup.
• How scope attributes can be overriden by locals
• How Angular expressions do function calls
• How Angular expressions obtain the this context in method calls
• Why and how access to the Function constructor is prevented for security reasons.
• How access to potentially dangerous objects is prevented for security reasons.
• How Angular expressions do attribute assignment for simple attributes and nested attributes.
• How the forgiving nature of Angular expressions is formed: When attributes are accessed,

existence checks are done on every step. When attributes are assigned, intermediate objects are
created automatically. Exceptions are never thrown because of missing attributes.

In the next chapter we’ll extend the expression language with operators. Once we’re done with that,
our language will have the vocabulary for doing arithmetic, comparisons, and logical expressions.

 14

277 Errata© Tero Parviainen 2016

Chapter 8

Operator Expressions

Unary Operators 14

278 Errata© Tero Parviainen 2016

A majority of expressions used in a typical Angular application are covered by the features we’ve
implemented in the last two chapters. A simple field lookup or function call is often all you need.
However, sometimes you do need to have some actual logic in your expressions, to make decisions
or derive values from other values.

Angular expressions are mostly logic-free, in that you cannot use many things you could in a full-
blown programming language. For example, if statements and looping constructs are not support-
ed. Nevertheless, there are a few things you can do:

• Arithmetic: +, -, *, /, and %
• Numeric comparisons: <, >, <=, and >=
• Boolean algebra: && and ||
• Equality checks: ==, !=, ===, !==
• Conditionals using the ternary operator a ? b : c
• Filtering using the pipe operator |

This chapter covers all of the above except for filters, which is the subject of the next chapter.

When discussing operators, the question of operator precedence is central: Given an expression that
combines multiple operators, which operators get applied first? Angular’s operator precedence
rules are, for all intents and purposes, the same as JavaScript’s. We will see how the precedence or-
der is enforced as we implement the operators. We will also see how the natural precedence order
can be altered using parentheses.

Finally, we’ll look at how you can actually execute several statements in a single Angular expres-
sion, by separating them with the semicolon character ;.

Download the code for the starting point of this chapter.

Unary Operators

We’ll begin from the operators with the highest precedence and work our way down in decreasing
precedence order. On the very top are primary expressions, which we have already implemented:
Whenever there’s a function call or a computed or non-computed property access, it gets evaluated
before anything else. The first thing after primary expressions are unary operator expressions.

Unary operators are operators that have exactly one operand:

• The unary - numerically negates its operand, as in -42 or -a.
• The unary + actually does nothing, but it can be used for clarity or emphasis, as in +42 or +a.
• The not operator ! negates its operand’s boolean value, as in !true or !a.

Let’s start with the unary + operator since it is so simple. Basically, it just returns its operand as-is:

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter7-lookup-and-function-call-expressions

Unary Operators 14

279 Errata© Tero Parviainen 2016

test/parse_spec.js
it('parses a unary +', function() {
 expect(parse('+42')()).toBe(42);
 expect(parse('+a')({a: 42})).toBe(42);
});

In the AST builder we’ll introduce a new method unary that deals with unary operators and falls
back to primary for everything else:

src/parse.js
AST.prototype.unary = function() {
 if (this.expect('+')) {

 } else {
 return this.primary();
 }
};

What unary actually does is build a UnaryExpression token, whose sole argument is expected
to be a primary expression:

src/parse.js
AST.prototype.unary = function() {
 if (this.expect('+')) {
 return {
 type: AST.UnaryExpression,
 operator: '+',
 argument: this.primary()
 };
 } else {
 return this.primary();
 }
};

UnaryExpression is a new AST node type:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';
AST.Identifier = 'Identifier';
AST.ThisExpression = 'ThisExpression';
AST.LocalsExpression = 'LocalsExpression';
AST.MemberExpression = 'MemberExpression';
AST.CallExpression = 'CallExpression';
AST.AssignmentExpression = 'AssignmentExpression';

Unary Operators 14

280 Errata© Tero Parviainen 2016

AST.UnaryExpression = 'UnaryExpression';

To have unary expressions actually parsed, we need to call unary from somewhere. It’s done from
assignment, where we have previously called primary. The left and right sides of an assignment
expression aren’t necessarily primary expressions, but might be unary expressions too:

src/parse.js
AST.prototype.assignment = function() {
 var left = this.unary();
 if (this.expect('=')) {
 var right = this.unary();
 return {type: AST.AssignmentExpression, left: left, right: right};
 }
 return left;
};

Because unary falls back to primary, assignment now supports either of them on both the left
and right hand sides.

At this point, we should revisit the Lexer. Our AST builder is prepared to handle a unary +, but
the Lexer is not emitting one yet.

In the previous chapter we handled several situations by just emitting plain text tokens from the
Lexer, as we did with [,], and .. For operators we’ll be doing something different: We’ll intro-
duce a “constant” object called OPERATORS that contains tokens that we consider operators:

src/parse.js
var OPERATORS = {
 '+': true
};

All the values in this object will be true. We’re just using an object instead of an array because
objects allow us to check the presence of a key more efficiently, in constant time.

The Lexer still needs to emit the +. We need a final else branch in the lex method, that attempts
to look up an operator for the current character from the OPERATORS object:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);

Unary Operators 14

281 Errata© Tero Parviainen 2016

 if (this.isNumber(this.ch) ||
 (this.is('.') && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.is('\'"')) {
 this.readString(this.ch);
 } else if (this.is('[],{}:.()=')) {
 this.tokens.push({
 text: this.ch
 });
 this.index++;
 } else if (this.isIdent(this.ch)) {
 this.readIdent();
 } else if (this.isWhitespace(this.ch)) {
 this.index++;
 } else {
 var op = OPERATORS[this.ch];
 if (op) {
 this.tokens.push({text: this.ch});
 this.index++;
 } else {
 throw 'Unexpected next character: '+this.ch;
 }
 }
 }

 return this.tokens;
};

Basically, lex now tries to match the character against all the things it knows about, and if all else
fails, sees if the OPERATORS object has something stored for it.

The remaining piece of the puzzle is in the AST compiler, which now needs to learn how to com-
pile unary expressions. What we can do there is to return a JavaScript fragment that consists of the
operator of the expression, followed by the recursed value of the argument:

src/parse.js
case AST.UnaryExpression:
 return ast.operator + '(' + this.recurse(ast.argument) + ')';

The unary arithmetic operators in Angular expressions are different from JavaScript’s unary opera-
tors in that they treat an undefined value as zero, whereas JavaScript would just treat it as NaN:

test/parse_spec.js
it('replaces undefined with zero for unary +', function() {
 expect(parse('+a')({})).toBe(0);
});

Let’s guard the operand of the unary expression with a call to a new method ifDefined that takes
two arguments: An expression and a value to use if the expression is undefined, which in this case

Unary Operators 14

282 Errata© Tero Parviainen 2016

is 0.

src/parse.js
case AST.UnaryExpression:
 return ast.operator +
 '(' + this.ifDefined(this.recurse(ast.argument), 0) + ')';

The ifDefined method generates a runtime JavaScript call to an ifDefined function with the same
arguments:

src/parse.js
ASTCompiler.prototype.ifDefined = function(value, defaultValue) {
 return 'ifDefined(' + value + ',' + this.escape(defaultValue) + ')';
};

This function is passed in to the generated JavaScript function:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {body: [], nextId: 0, vars: []};
 this.recurse(ast);
 var fnString = 'var fn=function(s,l){' +
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''
) +
 this.state.body.join('') +
 '}; return fn;';
 /* jshint -W054 */
 return new Function(
 'ensureSafeMemberName',
 'ensureSafeObject',
 'ensureSafeFunction',
 'ifDefined',
 fnString)(
 ensureSafeMemberName,
 ensureSafeObject,
 ensureSafeFunction,
 ifDefined);
 /* jshint +W054 */
};

And finally, the actual implementation of ifDefined returns the value itself if it is defined, and
otherwise the default value:

src/parse.js
function ifDefined(value, defaultValue) {

Unary Operators 14

283 Errata© Tero Parviainen 2016

 return typeof value === 'undefined' ? defaultValue : value;
}

We don’t use LoDash here as it may not be available to expression code at runtime.

That takes care of the unary +, and lets us jump right into the next unary operator, which is a lot
more interesting since it actually does something:

test/parse_spec.js
it('parses a unary !', function() {
 expect(parse('!true')()).toBe(false);
 expect(parse('!42')()).toBe(false);
 expect(parse('!a')({a: false})).toBe(true);
 expect(parse('!!a')({a: false})).toBe(false);
});

The not operator has the same semantics as JavaScript’s. The final expectation in this test shows
how it can also be applied multiple times in succession.

Let’s also add this operator into the OPERATORS object:

src/parse.js
var OPERATORS = {
 '+': true,
 '!': true
};

In the AST builder we can now expect either + or ! in unary. We also can no longer hardcode +
in the AST node’s operator, but must use the actual operator we found instead:

src/parse.js
AST.prototype.unary = function() {
 var token;
 if ((token = this.expect('+', '!'))) {
 return {
 type: AST.UnaryExpression,
 operator: token.text,
 argument: this.primary()
 };
 } else {
 return this.primary();
 }
};

This partially fixes our test case already, as we don’t need to make any changes to the AST com-
piler to make this work. The test is still failing though, because we don’t have the ability to apply !
several times in a row. The trick to fix it is to simply expect another unary expression as the argu-

Unary Operators 14

284 Errata© Tero Parviainen 2016

ment of unary:

src/parse.js
AST.prototype.unary = function() {
 var token;
 if ((token = this.expect('+', '!'))) {
 return {
 type: AST.UnaryExpression,
 operator: token.text,
 argument: this.unary()
 };
 } else {
 return this.primary();
 }
};

The third and final unary operator we’ll support is - for numeric negation:

test/parse_spec.js
it('parses a unary -', function() {
 expect(parse('-42')()).toBe(-42);
 expect(parse('-a')({a: -42})).toBe(42);
 expect(parse('--a')({a: -42})).toBe(-42);
 expect(parse('-a')({})).toBe(0);
});

This too should first be added to the OPERATORS object:

src/parse.js
var OPERATORS = {
 '+': true,
 '!': true,
 '-': true
};

Then it should be expected by the AST builder in a unary position:

src/parse.js
AST.prototype.unary = function() {
 var token;
 if ((token = this.expect('+', '!', '-'))) {
 return {
 type: AST.UnaryExpression,
 operator: token.text,
 argument: this.unary()
 };
 } else {
 return this.primary();
 }

Unary Operators 14

285 Errata© Tero Parviainen 2016

};

Now that we are matching characters with keys in the OPERATORS object, we have inadvertently
introduced a bug into string expressions. Consider a string that contains a single exclamation mark
- which also happens to be an operator when used outside of a string:

test/parse_spec.js
it('parses a ! in a string', function() {
 expect(parse('"!"')()).toBe('!');
});

This now causes an error, because the string token contains a text attribute with a value of !,
which the AST builder interprets as a unary ! operator! This should certainly not happen.

We need to modify our string tokens so that their text attribute does not hold the characters inside
the string, but instead holds the whole original string token including the surrounding quotation
marks. This way it will not be confused with operators. We’ll collect the “raw” original string into
a rawString variable in the readString method of the Lexer:

src/parse.js
Lexer.prototype.readString = function(quote) {
 this.index++;
 var string = '';
 var rawString = quote;
 var escape = false;
 while (this.index < this.text.length) {
 var ch = this.text.charAt(this.index);
 rawString += ch;
 if (escape) {
 if (ch === 'u') {
 var hex = this.text.substring(this.index + 1, this.index + 5);
 if (!hex.match(/[\da-f]{4}/i)) {
 throw 'Invalid unicode escape';
 }
 this.index += 4;
 string += String.fromCharCode(parseInt(hex, 16));
 } else {
 var replacement = ESCAPES[ch];
 if (replacement) {
 string += replacement;
 } else {
 string += ch;
 }
 }
 escape = false;
 } else if (ch === quote) {
 this.index++;
 this.tokens.push({
 text: rawString,

Multiplicative Operators 14

286 Errata© Tero Parviainen 2016

 value: string
 });
 return;
 } else if (ch === '\\') {
 escape = true;
 } else {
 string += ch;
 }
 this.index++;
 }
};

And that’s it for unary operators!

Multiplicative Operators

After unary operators, the operators with the highest precedence are numeric multiplicative operators:
Multiplication, division, and remainder. Unsurprisingly, they all work just like they do in JavaScript:

test/parse_spec.js
it('parses a multiplication', function() {
 expect(parse('21 * 2')()).toBe(42);
});

it('parses a division', function() {
 expect(parse('84 / 2')()).toBe(42);
});

it('parses a remainder', function() {
 expect(parse('85 % 43')()).toBe(42);
});

First we’ll put them in the collection of OPERATORS so that they will be emitted by the Lexer:

src/parse.js
var OPERATORS = {
 '+': true,
 '!': true,
 '-': true,
 '*': true,
 '/': true,
 '%': true
};

In the AST builder these operators are handled by a new method called multiplicative. It
emits a BinaryExpression node (which means it’s an expression with two arguments). Both the
left and right hand arguments of the expression are expected to be unary expressions:

Multiplicative Operators 14

287 Errata© Tero Parviainen 2016

src/parse.js
AST.prototype.multiplicative = function() {
 var left = this.unary();
 var token;
 if ((token = this.expect('*', '/', '%'))) {
 left = {
 type: AST.BinaryExpression,
 left: left,
 operator: token.text,
 right: this.unary()
 };
 }
 return left;
};

Note that just like many of our previous AST builder methods, this method also has a fallback
mode: It just returns a unary expression if it cannot match a multiplicative expression.

The new AST node type needs to be added:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';
AST.Identifier = 'Identifier';
AST.ThisExpression = 'ThisExpression';
AST.LocalsExpression = 'LocalsExpression';
AST.MemberExpression = 'MemberExpression';
AST.CallExpression = 'CallExpression';
AST.AssignmentExpression = 'AssignmentExpression';
AST.UnaryExpression = 'UnaryExpression';
AST.BinaryExpression = 'BinaryExpression';

Now, in AST.assignment we’ll replace the call to unary with a call to multiplicative so that
multiplicative operators actually get applied:

src/parse.js
AST.prototype.assignment = function() {
 var left = this.multiplicative();
 if (this.expect('=')) {
 var right = this.multiplicative();
 return {type: AST.AssignmentExpression, left: left, right: right};
 }
 return left;
};

In the AST compiler, we can now add support for binary expressions. They’re basically very sim-

Multiplicative Operators 14

288 Errata© Tero Parviainen 2016

ilar to unary expressions. The difference is just that there are two operands: One that goes on the
left side of the operator and one that goes on the right.

src/parse.js
case AST.BinaryExpression:
 return '(' + this.recurse(ast.left) + ')' +
 ast.operator +
 '(' + this.recurse(ast.right) + ')';

At the beginning of the chapter we discussed the importance of precedence rules. Now we’re
starting to see how they are actually defined. Instead of having a special “precedence order table”
somewhere, the precedence order is implicit in the order in which the different AST builder func-
tions call each other.

Right now, our “top-level” AST builder function is assignment. In turn, assignment invokes
multiplicative, which invokes unary, which finally invokes primary. The very first thing each
method does is to build their “left hand side” operand using the next function in the chain. That
means the final method in the chain is the one with the highest precedence. Our current prece-
dence order then is:

1. Primary
2. Unary
3. Multiplicative
4. Assignment

As we continue adding more operators, it will be the function(s) we call them from that defines their
precedence order.

We’re already successfully parsing multiplicative operations, but what happens if you have several
of them back to back?

test/parse_spec.js
it('parses several multiplicatives', function() {
 expect(parse('36 * 2 % 5')()).toBe(2);
});

This doesn’t work yet because multiplicative just parses at most one operation and then returns. If
there’s more to the expression than that, the rest just gets ignored.

The way to fix this is to keep consuming tokens in multiplicative as long as there are more
multiplicative operators to parse. The result of each step becomes the left hand side of the next
step, increasing the depth of the syntax tree. In concrete terms there’s actually nothing more to it
than switching the if in AST.multiplicative to a while:

src/parse.js

Additive Operators 14

289 Errata© Tero Parviainen 2016

AST.prototype.multiplicative = function() {
 var left = this.unary();
 var token;
 while ((token = this.expect('*', '/', '%'))) {
 left = {
 type: AST.BinaryExpression,
 left: left,
 operator: token.text,
 right: this.unary()
 };
 }
 return left;
};

Since all the three multiplicative operators have the same precedence, they’re applied from left to
right, which is what our function now does.

Additive Operators

Right on the heels of multiplicative operators come additive operators: Addition and subtraction. We’ve
already used both in a unary context, and now’s the time to look at them as binary functions:

test/parse_spec.js
it('parses an addition', function() {
 expect(parse('20 + 22')()).toBe(42);
});

it('parses a subtraction', function() {
 expect(parse('42 - 22')()).toBe(20);
});

As discussed, additives come after multiplicatives in precedence:

test/parse_spec.js
it('parses multiplicatives on a higher precedence than additives', function() {
 expect(parse('2 + 3 * 5')()).toBe(17);
 expect(parse('2 + 3 * 2 + 3')()).toBe(11);
});

In the OPERATORS object we already have these operators covered. On the AST building side, we’ll
make a new function called additive, which looks just like multiplicative except for the op-
erator characters it expects and the next operator functions it calls:

src/parse.js
AST.prototype.additive = function() {
 var left = this.multiplicative();
 var token;

Additive Operators 14

290 Errata© Tero Parviainen 2016

 while ((token = this.expect('+')) || (token = this.expect('-'))) {
 left = {
 type: AST.BinaryExpression,
 left: left,
 operator: token.text,
 right: this.multiplicative()
 };
 }
 return left;
};

Additive operations are inserted between assignments and multiplicative operations in the pre-
cence order, which means assignment should now call additive, as additive calls multi-
plicative:

src/parse.js
AST.prototype.assignment = function() {
 var left = this.additive();
 if (this.expect('=')) {
 var right = this.additive();
 return {type: AST.AssignmentExpression, left: left, right: right};
 }
 return left;
};

Since we already implemented AST compilation for binary expressions when we were adding
support for multiplicative operators, this actually already makes our test pass! From the compiler’s
point of view, there is no difference between multiplicative and additive operators - except for one
thing:

As we saw with the unary operators, a missing operand for + or - is treated as zero. This is also the
case for binary addition and subtraction. Either or both missing operands are replaced with zeros.

test/parse_spec.js
it('substitutes undefined with zero in addition', function() {
 expect(parse('a + 22')()).toBe(22);
 expect(parse('42 + a')()).toBe(42);
});

it('substitutes undefined with zero in subtraction', function() {
 expect(parse('a - 22')()).toBe(-22);
 expect(parse('42 - a')()).toBe(42);
});

The arguments in the compiled code need to be wrapped in ifDefined, but only for plus and mi-
nus:

src/parse.js

Relational And Equality Operators 14

291 Errata© Tero Parviainen 2016

case AST.BinaryExpression:
 if (ast.operator === '+' || ast.operator === '-') {
 return '(' + this.ifDefined(this.recurse(ast.left), 0) + ')' +
 ast.operator +
 '(' + this.ifDefined(this.recurse(ast.right), 0) + ')';
 } else {
 return '(' + this.recurse(ast.left) + ')' +
 ast.operator +
 '(' + this.recurse(ast.right) + ')';
 }
 break;

Relational And Equality Operators

After arithmetic in the precedence order there are the different ways to compare things. For num-
bers, there are the four relational operators:

test/parse_spec.js
it('parses relational operators', function() {
 expect(parse('1 < 2')()).toBe(true);
 expect(parse('1 > 2')()).toBe(false);
 expect(parse('1 <= 2')()).toBe(true);
 expect(parse('2 <= 2')()).toBe(true);
 expect(parse('1 >= 2')()).toBe(false);
 expect(parse('2 >= 2')()).toBe(true);
});

For numbers as well as other kinds of values, there are the equality checks and their negations.
Angular expressions support both the loose and strict equality operators of JavaScript:

test/parse_spec.js
it('parses equality operators', function() {
 expect(parse('42 == 42')()).toBe(true);
 expect(parse('42 == "42"')()).toBe(true);
 expect(parse('42 != 42')()).toBe(false);
 expect(parse('42 === 42')()).toBe(true);
 expect(parse('42 === "42"')()).toBe(false);
 expect(parse('42 !== 42')()).toBe(false);
});

Of these two families of operators, relationals take precedence:

test/parse_spec.js
it('parses relationals on a higher precedence than equality', function() {
 expect(parse('2 == "2" > 2 === "2"')()).toBe(false);
});

Relational And Equality Operators 14

292 Errata© Tero Parviainen 2016

The test here checks that the order of operations is:

1. 2 == “2” > 2 === “2”
2. 2 == false === “2”
3. false === “2”
4. false

Instead of:

1. 2 == “2” > 2 === “2”
2. true > false
3. 1 > 0
4. true

As per the ECMAScript specification, true is coerced to 1 and false to 0 when used in a numeric con-
text, which is what’s happening in step 3 above.

Both relational and equality operators have lower precedence than additive operations:

test/parse_spec.js
it('parses additives on a higher precedence than relationals', function() {
 expect(parse('2 + 3 < 6 - 2')()).toBe(false);
});

This test checks that the order of application is:

1. 2 + 3 < 6 - 2
2. 5 < 4
3. false

And not:

1. 2 + 3 < 6 - 2
2. 2 + true - 2
3. 2 + 1 - 2
4. 1

All of these eight new operators are added to the OPERATORS object:

src/parse.js
var OPERATORS = {
 '+': true,
 '-': true,
 '!': true,

http://www.ecma-international.org/ecma-262/5.1/#sec-9.3

Relational And Equality Operators 14

293 Errata© Tero Parviainen 2016

 '*': true,
 '/': true,
 '%': true,
 '==': true,
 '!=': true,
 '===': true,
 '!==': true,
 '<': true,
 '>': true,
 '<=': true,
 '>=': true
};

In the AST builder, two new functions are introduced - one for the equality operators and another
one for the relational operators. We can’t use one for both since that would break our precedence
rules. Both of these functions take a familiar form:

src/parse.js
AST.prototype.equality = function() {
 var left = this.relational();
 var token;
 while ((token = this.expect('==', '!=', '===', '!=='))) {
 left = {
 type: AST.BinaryExpression,
 left: left,
 operator: token.text,
 right: this.relational()
 };
 }
 return left;
};
AST.prototype.relational = function() {
 var left = this.additive();
 var token;
 while ((token = this.expect('<', '>', '<=', '>='))) {
 left = {
 type: AST.BinaryExpression,
 left: left,
 operator: token.text,
 right: this.additive()
 };
 }
 return left;
};

Equality is now our lowest precedence operator after assignment, so that is what assignment
should delegate to:

src/parse.js
AST.prototype.assignment = function() {

Relational And Equality Operators 14

294 Errata© Tero Parviainen 2016

 var left = this.equality();
 if (this.expect('=')) {
 var right = this.equality();
 return {type: AST.AssignmentExpression, left: left, right: right};
 }
 return left;
};

We also need to make some changes to Lexer.lex to support these functions. Earlier in the
chapter we introduced the conditional branch that looks operators up from the OPERATORS object.
However, all the operators we had back then consisted of just a single character. Now we have op-
erators that have two characters, such as ==, or even three characters, such as ===. These also need
to be supported by that conditional branch. It should first see if the next three characters match an
operator, then the next two characters, and finally just the next single character:

src/parse.js
Lexer.prototype.lex = function(text) {
 this.text = text;
 this.index = 0;
 this.ch = undefined;
 this.tokens = [];

 while (this.index < this.text.length) {
 this.ch = this.text.charAt(this.index);
 if (this.isNumber(this.ch) ||
 (this.is('.') && this.isNumber(this.peek()))) {
 this.readNumber();
 } else if (this.is('\'"')) {
 this.readString(this.ch);
 } else if (this.is('[],{}:.()=')) {
 this.tokens.push({
 text: this.ch
 });
 this.index++;
 } else if (this.isIdent(this.ch)) {
 this.readIdent();
 } else if (this.isWhitespace(this.ch)) {
 this.index++;
 } else {
 var ch = this.ch;
 var ch2 = this.ch + this.peek();
 var ch3 = this.ch + this.peek() + this.peek(2);
 var op = OPERATORS[ch];
 var op2 = OPERATORS[ch2];
 var op3 = OPERATORS[ch3];
 if (op || op2 || op3) {
 var token = op3 ? ch3 : (op2 ? ch2 : ch);
 this.tokens.push({text: token});
 this.index += token.length;
 } else {
 throw 'Unexpected next character: '+this.ch;

Relational And Equality Operators 14

295 Errata© Tero Parviainen 2016

 }
 }
 }

 return this.tokens;
};

This code uses a modified version of Lexer.peek that can peek at not just the next character, but
the nth character from the current index. It takes an optional argument for n, the default for which
is 1:

src/parse.js
Lexer.prototype.peek = function(n) {
 n = n || 1;
 return this.index + n < this.text.length ?
 this.text.charAt(this.index + n) :
 false;
};

The tests for equality operators still don’t pass, even though we should have everything in place.
The problem is that in the previous chapter we started consuming the equality character = as a text
token, which we needed to implement assignments. What’s happening now is that when the lexer
sees the first = in ==, it emits it right away without looking at the whole operator.

What we should do is firstly remove = from the collection of text tokens, by changing the line in
lex from:

} else if (this.is('[],{}:.()=')) {

to

} else if (this.is('[],{}:.()')) {

Then, we should add the single equals sign to our collection of operators:
src/parse.js
var OPERATORS = {
 '+': true,
 '-': true,
 '!': true,
 '*': true,
 '/': true,
 '%': true,
 '=': true,
 '==': true,
 '!=': true,
 '===': true,
 '!==': true,
 '<': true,

Logical Operators AND and OR 14

296 Errata© Tero Parviainen 2016

 '>': true,
 '<=': true,
 '>=': true
};

The single equals sign is now emitted as an operator token instead of a text token. It still gets built
into an assignment node, since both kinds of tokens have the text attribute with the value of =,
which is what the AST builder is interested in.

Logical Operators AND and OR

The two remaining binary operators we are going to implement are the logical operators && and ||.
Their functionality in expressions is just what you would expect:

test/parse_spec.js
it('parses logical AND', function() {
 expect(parse('true && true')()).toBe(true);
 expect(parse('true && false')()).toBe(false);
});

it('parses logical OR', function() {
 expect(parse('true || true')()).toBe(true);
 expect(parse('true || false')()).toBe(true);
 expect(parse('false || false')()).toBe(false);
});

Just like other binary operators, you can chain several logical operators back to back:

test/parse_spec.js
it('parses multiple ANDs', function() {
 expect(parse('true && true && true')()).toBe(true);
 expect(parse('true && true && false')()).toBe(false);
});

it('parses multiple ORs', function() {
 expect(parse('true || true || true')()).toBe(true);
 expect(parse('true || true || false')()).toBe(true);
 expect(parse('false || false || true')()).toBe(true);
 expect(parse('false || false || false')()).toBe(false);
});

An interesting detail about logical operators is that they are short-circuited. When the left hand
side of an AND expression is falsy, the right hand side expression does not get evaluated at all, just
like it would not in JavaScript:

test/parse_spec.js
it('short-circuits AND', function() {

Logical Operators AND and OR 14

297 Errata© Tero Parviainen 2016

 var invoked;
 var scope = {fn: function() { invoked = true; }};

 parse('false && fn()')(scope);

 expect(invoked).toBeUndefined();
});

Correspondingly, if the left hand side of an OR expression is truthy, the right hand side is not eval-
uated:

test/parse_spec.js
it('short-circuits OR', function() {
 var invoked;
 var scope = {fn: function() { invoked = true; }};

 parse('true || fn()')(scope);

 expect(invoked).toBeUndefined();
});

In precedence order, AND comes before OR:

test/parse_spec.js
it('parses AND with a higher precedence than OR', function() {
 expect(parse('false && true || true')()).toBe(true);
});

Here we test that the expression is evaluated as (false && true) || true rather than false
&& (true || true).

Equality comes before both OR and AND in precedence:

test/parse_spec.js
it('parses OR with a lower precedence than equality', function() {
 expect(parse('1 === 2 || 2 === 2')()).toBeTruthy();
});

The way these operators are implemented follows a pattern that’s familiar by now. In the OPERA-
TORS object we have two more entries:

src/parse.js
var OPERATORS = {
 '+': true,
 '-': true,
 '!': true,
 '*': true,

Logical Operators AND and OR 14

298 Errata© Tero Parviainen 2016

 '/': true,
 '%': true,
 '=': true,
 '==': true,
 '!=': true,
 '===': true,
 '!==': true,
 '<': true,
 '>': true,
 '<=': true,
 '>=': true,
 '&&': true,
 '||': true
};

In the AST builder we have two new functions that build the operators as LogicalExpression
nodes - one for OR and one for AND:

src/parse.js
AST.prototype.logicalOR = function() {
 var left = this.logicalAND();
 var token;
 while ((token = this.expect('||'))) {
 left = {
 type: AST.LogicalExpression,
 left: left,
 operator: token.text,
 right: this.logicalAND()
 };
 }
 return left;
};
AST.prototype.logicalAND = function() {
 var left = this.equality();
 var token;
 while ((token = this.expect('&&'))) {
 left = {
 type: AST.LogicalExpression,
 left: left,
 operator: token.text,
 right: this.equality()
 };
 }
 return left;
};

The LogicalExpression type is new:

src/parse.js
AST.Program = 'Program';

Logical Operators AND and OR 14

299 Errata© Tero Parviainen 2016

AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';
AST.Identifier = 'Identifier';
AST.ThisExpression = 'ThisExpression';
AST.LocalsExpression = 'LocalsExpression';
AST.MemberExpression = 'MemberExpression';
AST.CallExpression = 'CallExpression';
AST.AssignmentExpression = 'AssignmentExpression';
AST.UnaryExpression = 'UnaryExpression';
AST.BinaryExpression = 'BinaryExpression';
AST.LogicalExpression = 'LogicalExpression';

Once again, since we’re going from the operators with higher precedence downward, these opera-
tors are inserted to the building chain right after assignment:

src/parse.js
AST.prototype.assignment = function() {
 var left = this.logicalOR();
 if (this.expect('=')) {
 var right = this.logicalOR();
 return {type: AST.AssignmentExpression, left: left, right: right};
 }
 return left;
};

In the AST compiler we have a new branch for AST.LogicalExpression that first recurses the
left hand side argument and stores its value as the result of the whole expression:

src/parse.js
case AST.LogicalExpression:
 intoId = this.nextId();
 this.state.body.push(this.assign(intoId, this.recurse(ast.left)));
 return intoId;
It then generates a condition that evaluates the right hand side argument if the left hand side was
truthy (in the case of &&) or falsy (in the case of ||). If the right hand side is evaluated, its value
becomes the value of the whole expression:

src/parse.js
case AST.LogicalExpression:
 intoId = this.nextId();
 this.state.body.push(this.assign(intoId, this.recurse(ast.left)));
 this.if_(ast.operator === '&&' ? intoId : this.not(intoId),
 this.assign(intoId, this.recurse(ast.right)));
 return intoId;

And there we have implemented both && and || in terms of if! This special short-circuiting

The Ternary Operator 14

300 Errata© Tero Parviainen 2016

behavior is why we didn’t treat AND and OR as BinaryExpression nodes even though they’re
technically binary expressions.

The Ternary Operator

The final operator we’ll implement in this chapter (and the penultimate operator overall) is the
C-style ternary operator, with which you can return one of two alternative values based on a test
expression:

test/parse_spec.js
it('parses the ternary expression', function() {
 expect(parse('a === 42 ? true : false')({a: 42})).toBe(true);
 expect(parse('a === 42 ? true : false')({a: 43})).toBe(false);
});

The ternary operator is just below OR in the precedence chain, so ORs will get evaluated first:

test/parse_spec.js
it('parses OR with a higher precedence than ternary', function() {
 expect(parse('0 || 1 ? 0 || 2 : 0 || 3')()).toBe(2);
});

You can also nest ternary operators, though you could argue doing that doesn’t result in very clear
code:

test/parse_spec.js
it('parses nested ternaries', function() {
 expect(
 parse('a === 42 ? b === 42 ? "a and b" : "a" : c === 42 ? "c" : "none"')({
 a: 44,
 b: 43,
 c: 42
 })).toEqual('c');
});

Unlike most of the operators we’ve seen in this chapter, the ternary operator is not implemented as
an operator function in the OPERATORS object. Since there are two different parts to the operator -
the ? and the : - its presence is more convenient to detect in the AST building phase.

What the Lexer does need to do is emit the ? character, which we haven’t been doing so far.
Change the line in Lexer.lex that considers text tokens to:

src/parse.js
} else if (this.is('[],{}:.()?')) {

The Ternary Operator 14

301 Errata© Tero Parviainen 2016

In AST we’ll introduce a new function ternary that builds this operator. It consumes the three op-
erands as well as the two parts of the operator itself, and emits a ConditionalExpression node:

src/parse.js
AST.prototype.ternary = function() {
 var test = this.logicalOR();
 if (this.expect('?')) {
 var consequent = this.assignment();
 if (this.consume(':')) {
 var alternate = this.assignment();
 return {
 type: AST.ConditionalExpression,
 test: test,
 consequent: consequent,
 alternate: alternate
 };
 }
 }
 return test;
};

Note that the “middle” and “right” expressions may be any expressions, since we consume them as
assignments. Also note that while the method does have a fallback to logicalOR, once the consequent
part ? of the operator has been detected, the alternate : part is required and doesn’t have a fallback.
That’s because we use consume for it, which throws an exception when not matched.

The ConditionalExpression type needs to be introduced:

src/parse.js
AST.Program = 'Program';
AST.Literal = 'Literal';
AST.ArrayExpression = 'ArrayExpression';
AST.ObjectExpression = 'ObjectExpression';
AST.Property = 'Property';
AST.Identifier = 'Identifier';
AST.ThisExpression = 'ThisExpression';
AST.LocalsExpression = 'LocalsExpression';
AST.MemberExpression = 'MemberExpression';
AST.CallExpression = 'CallExpression';
AST.AssignmentExpression = 'AssignmentExpression';
AST.UnaryExpression = 'UnaryExpression';
AST.BinaryExpression = 'BinaryExpression';
AST.LogicalExpression = 'LogicalExpression';
AST.ConditionalExpression = 'ConditionalExpression';

And once again we change the next operator looked at from assignment, now to ternary:

src/parse.js

Altering The Precedence Order with Parentheses 14

302 Errata© Tero Parviainen 2016

AST.prototype.assignment = function() {
 var left = this.ternary();
 if (this.expect('=')) {
 var right = this.ternary();
 return {type: AST.AssignmentExpression, left: left, right: right};
 }
 return left;
};

When the ConditionalExpression is compiled, it first stores the value of the test expression in
a variable:

src/parse.js
case AST.ConditionalExpression:
 var testId = this.nextId();
 this.state.body.push(this.assign(testId, this.recurse(ast.test)));

It then executes either the consequent or the alternate expression based on the value of the test
expression. One of the former is then returned as the value of the expression:

src/parse.js
case AST.ConditionalExpression:
 intoId = this.nextId();
 var testId = this.nextId();
 this.state.body.push(this.assign(testId, this.recurse(ast.test)));
 this.if_(testId,
 this.assign(intoId, this.recurse(ast.consequent)));
 this.if_(this.not(testId),
 this.assign(intoId, this.recurse(ast.alternate)));
 return intoId;

The final precedence order of the operators can be read by looking at the order in which the AST
builder’s methods are called in reverse:

1. Primary expressions: Lookups, function calls, method calls.
2. Unary expressions: +a, -a, !a.
3. Multiplicative arithmetic expressions: a * b, a / b, and a % b.
4. Additive arithmetic expressions: a + b and a - b.
5. Relational expressions: a < b, a > b, a <= b, and a >= b.
6. Equality testing expressions: a == b, a != b, a === b, and a !== b.
7. Logical AND expressions: a && b.
8. Logical OR expressions: a || b.
9. Ternary expressions: a ? b : c.
10. Assignments: a = b.

Altering The Precedence Order with Parentheses

Altering The Precedence Order with Parentheses 14

303 Errata© Tero Parviainen 2016

Of course, the natural precedence order is not always what you want, and just like JavaScript and
many other languages, Angular expressions give you the means to alter the precedence order by
grouping operations using parentheses:

test/parse_spec.js
it('parses parentheses altering precedence order', function() {
 expect(parse('21 * (3 - 1)')()).toBe(42);
 expect(parse('false && (true || true)')()).toBe(false);
 expect(parse('-((a % 2) === 0 ? 1 : 2)')({a: 42})).toBe(-1);
});

The way this is implemented is actually remarkably simple. Since parentheses cut through the
whole precedence table, they should be the very first thing we test for when building an expression
or a subexpression. In concrete terms, that means they should be the first thing we test for in the
primary function.

If an opening parenthesis is seen at the beginning of a primary expression, a whole new prece-
dence chain is started for the expression that goes inside the parentheses. This effectively forces
anything that’s in parentheses to be evaluated before anything else around it:

src/parse.js
AST.prototype.primary = function() {
 var primary;
 if (this.expect('(')) {
 primary = this.assignment();
 this.consume(')');
 } else if (this.expect('[')) {
 primary = this.arrayDeclaration();
 } else if (this.expect('{')) {
 primary = this.object();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 primary = this.constants[this.consume().text];
 } else if (this.peek().identifier) {
 primary = this.identifier();
 } else {
 primary = this.constant();
 }
 var next;
 while ((next = this.expect('.', '[', '('))) {
 if (next.text === '[') {
 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.primary(),
 computed: true
 };
 this.consume(']');
 } else if (next.text === '.') {

Statements 14

304 Errata© Tero Parviainen 2016

 primary = {
 type: AST.MemberExpression,
 object: primary,
 property: this.identifier(),
 computed: false
 };
 } else if (next.text === '(') {
 primary = {
 type: AST.CallExpression,
 callee: primary,
 arguments: this.parseArguments()
 };
 this.consume(')');
 }
 }
 return primary;
};

Statements

Before we conclude the chapter, we’ll look at a way you can execute multiple things in a single
Angular expression.

Everything we’ve seen so far has been all about one expression that, in the end, results in one
return value. However, this is not a hard limitation. You can actually have multiple, independent
expressions in one expression string, if you just separate them with semicolons:

test/parse_spec.js
it('parses several statements', function() {
 var fn = parse('a = 1; b = 2; c = 3');
 var scope = {};
 fn(scope);
 expect(scope).toEqual({a: 1, b: 2, c: 3});
});

When you do this, it is the value of the last expression that becomes the return value of the com-
bined expression. The return values of any preceding expressions are effectively thrown away:

test/parse_spec.js
it('returns the value of the last statement', function() {
 expect(parse('a = 1; b = 2; a + b')({})).toBe(3);
});

This means that if you have multiple expressions, every expression but the last one is probably go-
ing to be something that produces a side effect, such as an attribute assignment or a function call.
Anything else would have no visible effect except for consuming CPU cycles. In imperative pro-
gramming languages constructs like these are often called statements, as opposed to expressions,

Summary 14

305 Errata© Tero Parviainen 2016

which is where the name we use comes from.

To implement statements, we first need the semicolon character to be emitted from the lexer so we
can identify it in the AST builder. Let’s add it to the growing collection of text token characters in
Lexer.lex:

src/parse.js
} else if (this.is('[],{}:.()?;')) {

In the AST builder, we’re going to change the nature of the AST.Program node type so that its
body is no longer just a single expression, but an array of expressions. We form the body array by
consuming expressions as long as we’re able to match semicolons between them:

src/parse.js
AST.prototype.program = function() {
 var body = [];
 while (true) {
 if (this.tokens.length) {
 body.push(this.assignment());
 }
 if (!this.expect(';')) {
 return {type: AST.Program, body: body};
 }
 }
};

When an expression has no semicolons, which is the most common case, the body array will hold
exactly one item when the loop is done.

At compilation time, all but the last statements in the body are first generated, each one terminat-
ing in a semicolon. Then, a return statement for the last statement in the body is generated:

src/parse.js
case AST.Program:
 .forEach(.initial(ast.body), _.bind(function(stmt) {
 this.state.body.push(this.recurse(stmt), ';');
 }, this));
 this.state.body.push('return ', this.recurse(_.last(ast.body)), ';');
 break;

Summary

We’ve grown our expression language to something that can derive values from other values using
operators. It lets application developers have some actual logic in their watch expressions and data
binding expressions. Compared to full-blown JavaScript, the logic we allow is very restricted and
simple, but it is enough for most use cases. You could say that anything more complicated should

Summary 14

306 Errata© Tero Parviainen 2016

not be put in expressions anyway, since they’re really designed for data binding and watches rather
than your application logic.

In this chapter you’ve learned:

• What operators the Angular expression language supports and how they’re implemented.
• The precedence order of operators and the way the precedence order is baked into the AST

builder
• How the precedence order may be altered with parentheses
• How arithmetic expressions are more forgiving than JavaScript arithmetic when it comes to

missing operands
• That expressions may consist of multiple statements, of which all but the last one are executed

purely for side effects.

In the next chapter we’ll complete our implementation of the Angular expression language by im-
plementing filters - the only major language feature Angular expressions have that JavaScript does
not have.

 15

307 Errata© Tero Parviainen 2016

Chapter 9

Filters

 15

308 Errata© Tero Parviainen 2016

The expression language we have implemented has one remaining feature that we need to cover:
Filters.

Filters are all about processing the value of an expression in order to turn it into something else.
When you apply a filter to an expression, a filter function is called with the expression value, and
the return value of that call becomes the final value of the expression.

You can apply a filter by adding a Unix-style pipe character and the name of a filter to your ex-
pression string. For example, Angular’s built-in uppercase filter takes a string and converts it into
uppercase:

myExpression | uppercase

Filter may be composed, by applying several of them back to back:

myNumbers | odd | increment

The key thing to understand about filters is that they’re really nothing but plain functions. They
take the value of the input expression, and return another value, which will become the value of
the output expression (or the input of the next filter). The expression above is roughly equivalent
to this:

increment(odd(myNumbers))

The main difference between filters and plain functions is that you don’t have to put filters on the
Scope in order to invoke them. Instead, you register them into your Angular application and then
just use them wherever you need them. When you use the pipe operator, Angular will find the
corresponding filter from its filter registry.

Unlike all the expression features we’ve seen so far, filters are not something that exists in the
JavaScript language. In JavaScript the pipe operator | denotes a bitwise OR operation, but the
Angular expression language uses the same syntax for filtering instead.

In this chapter we’ll implement filter support into our expression system. We will also implement
one of the filters that Angular ships with: The surprisingly versatile, and interestingly named fil-
ter filter.

Angular ships with a number of other built-in filters, such as ones for formatting numbers and
currencies. We will not be implementing the full filter suite, but if any of the other built-in filters
interests you, the source code should be easy enough to follow.

Download the code for the starting point of this chapter.

https://docs.angularjs.org/api/ng/filter/uppercase
https://docs.angularjs.org/api/ng/filter
https://github.com/angular/angular.js/tree/master/src/ng/filter
https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter8-operator-expressions

Filter Registration 15

309 Errata© Tero Parviainen 2016

Filter Registration

Before filters can be used in expressions, they need to be registered somewhere. Angular ships with
a special filter service for this purpose. It supplies functionality both for registering filters and for
looking up filters that have been previously registered.

At this point we’re going to implement a simple version of the service using a couple of stand-
alone functions, register and filter. Later on we will further develop this implementation so
that it is fully integrated with the dependency injection system.

First of all, the filter service allows registering filters. It is done by calling the registration function
with the name of the filter and a factory function. The factory function is expected to the return the
filter. Later, the registered filter can be obtained using the filter function. The test for this goes
into a new test file:

test/filter_spec.js
'use strict';

var register = require('../src/filter').register;
var filter = require('../src/filter').filter;

describe('filter', function() {

 it('can be registered and obtained', function() {
 var myFilter = function() { };
 var myFilterFactory = function() {
 return myFilter;
 };
 register('my', myFilterFactory);
 expect(filter('my')).toBe(myFilter);
 });

});

We can implement these two functions in a straightforward way. They both access a storage object
whose keys are filter names and values are filters. When a filter is registered, the return value of
the factory function is placed in the object. The implementation for this also goes into a new file:

src/filter.js
'use strict';

var filters = {};

function register(name, factory) {
 var filter = factory();
 filters[name] = filter;

Filter Registration 15

310 Errata© Tero Parviainen 2016

 return filter;
}

function filter(name) {
 return filters[name];
}

module.exports = {register: register, filter: filter};

The registration function also supports a shorthand for registering several filters in a single call.
You can do it by passing in an object where the keys are filter names and the values are the corre-
sponding filter factories:

test/filter_spec.js
it('allows registering multiple filters with an object', function() {
 var myFilter = function() { };
 var myOtherFilter = function() { };
 register({
 my: function() {
 return myFilter;
 },
 myOther: function() {
 return myOtherFilter;
 }
 });

 expect(filter('my')).toBe(myFilter);
 expect(filter('myOther')).toBe(myOtherFilter);
});

In the implementation, if the first argument is an object, we recursively invoke register for each
key-value pair in the object:

src/filter.js
'use strict';

var _ = require('lodash');

var filters = {};

function register(name, factory) {
 if (_.isObject(name)) {
 return _.map(name, function(factory, name) {
 return register(name, factory);
 });
 } else {
 var filter = factory();
 filters[name] = filter;
 return filter;
 }

Filter Expressions 15

311 Errata© Tero Parviainen 2016

}

function filter(name) {
 return filters[name];
}

module.exports = {register: register, filter: filter};

This will do for the implementation of the filter service itself for now. As mentioned already, we
will return to it once we have a dependency injection system.

Filter Expressions

We’re now all set to start looking at the implementation of filters in the expression parser. What
we expect to get is the ability to use pipe characters in expressions in order to modify the expres-
sion’s value. After the pipe we should be able to provide the name of a filter that we have previous-
ly registered, which will then get called with the input value:

test/parse_spec.js
it('can parse filter expressions', function() {
 register('upcase', function() {
 return function(str) {
 return str.toUpperCase();
 };
 });
 var fn = parse('aString | upcase');
 expect(fn({aString: 'Hello'})).toEqual('HELLO');
});

We need to require the register function to our tests:

test/parse_spec.js
'use strict';

var _ = require('lodash');
var parse = require('../src/parse');
var register = require('../src/filter').register;

We are going to handle the pipe as an operator expression, and thus we’ll begin by adding it to the
list of operators supported by the Lexer:

src/parse.js
var OPERATORS = {
 '+': true,
 '-': true,
 '!': true,

Filter Expressions 15

312 Errata© Tero Parviainen 2016

 '*': true,
 '/': true,
 '%': true,
 '=': true,
 '==': true,
 '!=': true,
 '===': true,
 '!==': true,
 '<': true,
 '>': true,
 '<=': true,
 '>=': true,
 '&&': true,
 '||': true,
 '|': true
};

This causes a token to be emitted by the Lexer when it encouters the single pipe character.

Next, we are going to build up an AST node for filter expressions. They’re handled by a new AST
builder method called filter. It first consumes an assignment expression (or some higher-prece-
dence expression) as the left hand side, and then sees if there’s a pipe character following it:

src/parse.js
AST.prototype.filter = function() {
 var left = this.assignment();
 if (this.expect('|')) {

 }
 return left;
};

If there is a pipe, a CallExpression node is created. The callee will be the filter name, which we
consume as an identifier node. The sole argument to the call will be the left hand side consumed
earlier:

src/parse.js
AST.prototype.filter = function() {
 var left = this.assignment();
 if (this.expect('|')) {
 left = {
 type: AST.CallExpression,
 callee: this.identifier(),
 arguments: [left]
 };
 }
 return left;
};

Filter Expressions 15

313 Errata© Tero Parviainen 2016

Earlier we discussed that filters are really just function calls. Here we see it in concrete form: We
have a call expression where the function is the filter, and the argument to the function is the ex-
pression to the left of the filter.

We do need to do some work in the AST compiler as well, but before we get to it, let’s add filter
to the chain of calls in the AST builder. We can already see how filter falls back to assignment,
which hints that filter has lower precedence than assignment. This is in fact the case - filter
expressions are the expressions with the lowest precedence of all. Thus, they are the first thing we
invoke when consuming an expression statement:

src/parse.js
AST.prototype.program = function() {
 var body = [];
 while (true) {
 if (this.tokens.length) {
 body.push(this.filter());
 }
 if (!this.expect(';')) {
 return {type: AST.Program, body: body};
 }
 }
};

Filters are also the first thing we try to parse when precedence is re-set using parentheses:

src/parse.js
AST.prototype.primary = function() {
 var primary;
 if (this.expect('(')) {
 primary = this.filter();
 this.consume(')');
 } else if (this.expect('[')) {
 primary = this.arrayDeclaration();
 } else if (this.expect('{')) {
 primary = this.object();
 } else if (this.constants.hasOwnProperty(this.tokens[0].text)) {
 primary = this.constants[this.consume().text];
 } else if (this.peek().identifier) {
 primary = this.identifier();
 } else {
 primary = this.constant();
 }
 // ...
};

Before the AST compiler will be able to do something useful with the CallExpression, it will
need to know that it is specifically a filter CallExpression. That’s because in normal call expres-
sions, the function or method to be called (the callee) is expected to be on the Scope, which won’t

Filter Expressions 15

314 Errata© Tero Parviainen 2016

be the case for filters. Let’s add a filter boolean flag to the AST node to let the compiler know
about this:

src/parse.js
AST.prototype.filter = function() {
 var left = this.assignment();
 if (this.expect('|')) {
 left = {
 type: AST.CallExpression,
 callee: this.identifier(),
 arguments: [left],
 filter: true
 };
 }
 return left;
};

In the compiler we can now introduce an if block in which we can handle the filter call separately
from other call expressions:

src/parse.js
case AST.CallExpression:
 var callContext, callee, args;
 if (ast.filter) {

 } else {
 callContext = {};
 callee = this.recurse(ast.callee, callContext);
 args = _.map(ast.arguments, _.bind(function(arg) {
 return 'ensureSafeObject(' + this.recurse(arg) + ')';
 }, this));
 if (callContext.name) {
 this.addEnsureSafeObject(callContext.context);
 if (callContext.computed) {
 callee = this.computedMember(callContext.context, callContext.name);
 } else {
 callee = this.nonComputedMember(callContext.context, callContext.name);
 }
 }
 this.addEnsureSafeFunction(callee);
 return callee + '&&ensureSafeObject(' + callee + '(' + args.join(',') + '))';
 }
 break;

What we’re going to do here is use a new helper method called filter to obtain the JavaScript we
need for the filter function. Then we’ll resolve the arguments using recurse, and return a piece of
code that combines the function and the arguments:

Filter Expressions 15

315 Errata© Tero Parviainen 2016

src/parse.js
case AST.CallExpression:
 var callContext, callee, args;
 if (ast.filter) {
 callee = this.filter(ast.callee.name);
 args = _.map(ast.arguments, _.bind(function(arg) {
 return this.recurse(arg);
 }, this));
 return callee + '(' + args + ')';
 } else {
 // ...
 }
 break;

We are now expecting the filter method of the compiler to return an expression, which at run-
time evaluates to the filter function the user wanted to apply. We know we can get it using the filter
service, but how do we embed it to the JavaScript generated for the expression?

Firstly, we’ll expect the filter function to be available at runtime in some variable. Let’s just gener-
ate a variable and return it:

src/parse.js
ASTCompiler.prototype.filter = function(name) {
 var filterId = this.nextId();
 return filterId;
};

This variable will naturally be undefined as we haven’t written anything that would assign some-
thing to it. We need to somehow assign the filter function to it. Specifically, we’ll need to generate
some code that gets the filter from the filter service and puts it in this variable at runtime.

We will need to keep track of which filters have been used in the expression before we can make
them available. We can store that information in the compiler state, in a new attribute:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {
 body: [],
 nextId: 0,
 vars: [],
 filters: {}
 };
 // ...
};

When filter is called, we’ll now store information about it in the state object. We can use the
filter name as the key and the variable name that the filter should be assigned to as the value:

Filter Expressions 15

316 Errata© Tero Parviainen 2016

src/parse.js
ASTCompiler.prototype.filter = function(name) {
 var filterId = this.nextId();
 this.state.filters[name] = filterId;
 return filterId;
};

If the filter has already been used previously, we should reuse the variable name generated the last
time instead of generating a new one:

src/parse.js
ASTCompiler.prototype.filter = function(name) {
 if (!this.state.filters.hasOwnProperty(name)) {
 this.state.filters[name] = this.nextId();
 }
 return this.state.filters[name];
};

At this point, once the AST has been recursed, state.filters will contain all the filters that were
used in the expression. Now we should generate the code that populates the filter variables. For
that we need to have the filter service at runtime, so let’s pass it in to the generated function, like
we’ve done for several other functions earlier:

src/parse.js
return new Function(
 'ensureSafeMemberName',
 'ensureSafeObject',
 'ensureSafeFunction',
 'ifDefined',
 'filter',
 fnString)(
 ensureSafeMemberName,
 ensureSafeObject,
 ensureSafeFunction,
 ifDefined,
 filter);

The filter service isn’t required into parse.js yet so let’s do that:

src/parse.js
'use strict';

var _ = require('lodash');
var filter = require('./filter').filter;

The JavaScript code for the filter lookup will be the very first thing we generate into the function.

Filter Expressions 15

317 Errata© Tero Parviainen 2016

We’ll do it with a helper function called filterPrefix:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {
 body: [],
 nextId: 0,
 vars: [],
 filters: {}
 };
 this.recurse(ast);
 var fnString = this.filterPrefix() +
 'var fn=function(s,l){' +
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''
) +
 this.state.body.join('') +
 '}; return fn;';
 // ...
};

This method returns an empty string if no filters were applied in the expression:

src/parse.js
ASTCompiler.prototype.filterPrefix = function() {
 if (_.isEmpty(this.state.filters)) {
 return '';
 } else {

 }
};

If there were filters, the method will build up a collection of variable initializations and generate a
var statement for them:

src/parse.js
ASTCompiler.prototype.filterPrefix = function() {
 if (_.isEmpty(this.state.filters)) {
 return '';
 } else {
 var parts = [];

 return 'var ' + parts.join(',') + ';';
 }
};

For each filter used, we emit the variable name generated earlier in ASTCompiler.prototype.

Filter Expressions 15

318 Errata© Tero Parviainen 2016

filter and an initialization that looks up the filter using the filter service, which we now have
access to in the generated code:

src/parse.js
ASTCompiler.prototype.filterPrefix = function() {
 if (_.isEmpty(this.state.filters)) {
 return '';
 } else {
 var parts = _.map(this.state.filters, _.bind(function(varName, filterName) {
 return varName + '=' + 'filter(' + this.escape(filterName) + ')';
 }, this));
 return 'var ' + parts.join(',') + ';';
 }
};

There’s one remaining issue here, which is that when we generated the variable names using
nextId, we also caused them to be added into the vars state variable, because that’s what nex-
tId does. This means that they’ll actually also be declared inside the expression function, which
will shadow the filter variables we have just created. What essentially happens is that if we have an
expression like this:

42 | increment

What gets generated is something like this:

function(ensureSafeMemberName, ensureSafeObject, ensureSafeFunction,
 ifDefined, filter) {
 var v0 = filter('increment');
 var fn = function(s, l) {
 var v0;
 return v0(42);
 };
 return fn;
}

That second var v0 is the problem. What we can do is invoke nextId with a special flag that tells
it to just generate the variable id and skip the declaration - because we’re handling the declaration
separately in filterPrefix:

src/parse.js
ASTCompiler.prototype.filter = function(name) {
 if (!this.state.filters.hasOwnProperty(name)) {
 this.state.filters[name] = this.nextId(true);
 }
 return this.state.filters[name];
};

In nextId we only put the generated id to state.vars if this flag is falsy, which it will be for

Filter Chain Expressions 15

319 Errata© Tero Parviainen 2016

everything except the variables generated from filter:

src/parse.js
ASTCompiler.prototype.nextId = function(skip) {
 var id = 'v' + (this.state.nextId++);
 if (!skip) {
 this.state.vars.push(id);
 }
 return id;
};

And now we have a passing test suite again. We are able to apply filters in expressions!

Filter Chain Expressions

An important aspect of filters is how you can compose them to form filter chains. That means you
can apply an arbitrary number of filters back to back by just adding pipe characters to the expres-
sion:

test/parse_spec.js
it('can parse filter chain expressions', function() {
 register('upcase', function() {
 return function(s) {
 return s.toUpperCase();
 };
 });
 register('exclamate', function() {
 return function(s) {
 return s + '!';
 };
 });
 var fn = parse('"hello" | upcase | exclamate');
 expect(fn()).toEqual('HELLO!');
});

Right now we’re just terminating the expression after the first filter.

We can actually quite simply just replace the if statement in AST.prototype.filter with a
while. As long as we find pipe characters, we apply more filters. The result of one CallExpres-
sion becomes the argument of the next one:
src/parse.js
AST.prototype.filter = function() {
 var left = this.assignment();
 while (this.expect('|')) {
 left = {
 type: AST.CallExpression,
 callee: this.identifier(),

Additional Filter Arguments 15

320 Errata© Tero Parviainen 2016

 arguments: [left],
 filter: true
 };
 }
 return left;
};

Additional Filter Arguments

The filters we have so far always have exactly one argument: The input expression’s value. But fil-
ters can actually have additional arguments too. This is quite useful because you can then parame-
terize a single filter to behave differently in different situations.

For example, if you have a filter that repeats a string a number of times, you’ll want to specify the
number of times to repeat. You can do it by using a colon character and a number following the
filter’s name. The number becomes the second argument of the filter function:

test/parse_spec.js
it('can pass an additional argument to filters', function() {
 register('repeat', function() {
 return function(s, times) {
 return _.repeat(s, times);
 };
 });
 var fn = parse('"hello" | repeat:3');
 expect(fn()).toEqual('hellohellohello');
});

You can pass more arguments than just one, by just repeating the colon character for each addi-
tional argument:

test/parse_spec.js
it('can pass several additional arguments to filters', function() {
 register('surround', function() {
 return function(s, left, right) {
 return left + s + right;
 };
 });
 var fn = parse('"hello" | surround:"*":"!"');
 expect(fn()).toEqual('*hello!');
});

The colon character is already being emitted by the Lexer (since we’ve used it in the ternary oper-
ator). The AST compiler is also already all set to handle any number of filter arguments, since it
emits the code for them in a loop. The only part that’s missing is the building of the AST for these
arguments.

The Filter Filter 15

321 Errata© Tero Parviainen 2016

We’ll firstly pull out the argument array from CallExpression into a variable:

src/parse.js
AST.prototype.filter = function() {
 var left = this.assignment();
 while (this.expect('|')) {
 var args = [left];
 left = {
 type: AST.CallExpression,
 callee: this.identifier(),
 arguments: args,
 filter: true
 };
 }
 return left;
};

Now, we can add a loop that consumes colon characters, followed by arbitrary (non-filter) expres-
sions as long as we find them. Each one will become an argument that we append to the args
array:

src/parse.js
AST.prototype.filter = function() {
 var left = this.assignment();
 while (this.expect('|')) {
 var args = [left];
 left = {
 type: AST.CallExpression,
 callee: this.identifier(),
 arguments: args,
 filter: true
 };
 while (this.expect(':')) {
 args.push(this.assignment());
 }
 }
 return left;
};

This completes our parser’s filter expression support!

The Filter Filter

Now that we have filter support, let’s dedicate the remainder of the chapter to the implementation
of one particular filter that Angular ships with: The filter filter.

In a nutshell, the purpose of the filter filter is to filter arrays that you use in expressions into some
subset. You specify a criteria for the items that you want to match in an array, and the result of
the expression is another array of only the items that matched your criteria. It’s a bit like querying

The Filter Filter 15

322 Errata© Tero Parviainen 2016

arrays for items that match certain patterns.

The filter filter is often used together with ngRepeat, when you want to repeat a piece of DOM
for items in an array, but limit it to only certain kinds of items instead of the whole array. But the
filter is in no way limited to ngRepeat and can be used whenever you have an array in an expres-
sion.

Let’s begin by asserting that the filter filter should in fact exist and be available through the filter
service. This goes in a new test file:

test/filter_filter_spec.js
'use strict';

var filter = require('../src/filter').filter;

describe('filter filter', function() {

 it('is available', function() {
 expect(filter('filter')).toBeDefined();
 });

});

The factory function for the filter is introduced and exported in its own source file:

src/filter_filter.js
'use strict';

function filterFilter() {
 return function() {

 };
}

module.exports = filterFilter;

We’ll handle the registration of this filter in filter.js:

src/filter.js
'use strict';

var _ = require('lodash');

var filters = {};

function register(name, factory) {
 if (_.isObject(name)) {
 return _.map(name, function(factory, name) {

Filtering With Predicate Functions 15

323 Errata© Tero Parviainen 2016

 return register(name, factory);
 });
 } else {
 var filter = factory();
 filters[name] = filter;
 return filter;
 }
}

function filter(name) {
 return filters[name];
}

register('filter', require('./filter_filter'));

module.exports = {register: register, filter: filter};

With the setup out of the way, let’s start exploring what this filter should actually be able to do.

Filtering With Predicate Functions

The most simple way to use the filter filter - in terms of implementation - is to give it a reference
to a predicate function. It will use that function to return another array with only the elements for
which the predicate returns a truthy value:

test/filter_filter_spec.js
it('can filter an array with a predicate function', function() {
 var fn = parse('[1, 2, 3, 4] | filter:isOdd');
 var scope = {
 isOdd: function(n) {
 return n % 2 !== 0;
 }
 };
 expect(fn(scope)).toEqual([1, 3]);
});

We now need to require parse into this spec file:

test/filter_filter_spec.js
'use strict';

var parse = require('../src/parse');
var filter = require('../src/filter').filter;

The reason this is so simple to implement is that we can simply delegate to the LoDash filter func-
tion. It takes an array and a predicate function and returns a new array:

https://lodash.com/docs#filter
https://lodash.com/docs#filter

Filtering With Strings 15

324 Errata© Tero Parviainen 2016

src/filter_filter.js
'use strict';

var _ = require('lodash');

function filterFilter() {
 return function(array, filterExpr) {
 return _.filter(array, filterExpr);
 };
}

module.exports = filterFilter;

Filtering With Strings

Having to set up a predicate function each time you want to use the filter is not hugely convenient
from the application developer’s perspective. That’s why the filter provides a number of conve-
niences for getting around that requirement. For instance, you can just give the filter a string, and it
will filter the input array for items that match that string:

test/filter_filter_spec.js
it('can filter an array of strings with a string', function() {
 var fn = parse('arr | filter:"a"');
 expect(fn({arr: ['a', 'b', 'a']})).toEqual(['a', 'a']);
});

We need to start checking the type of the filter expression given. If it’s a function, we use it as a
predicate like before, but if it’s a string, we need to create a predicate function. If the filter expres-
sion is something we don’t recognize, we just return the input array as-is since we don’t know how
we should filter it:

src/filter_filter.js
function filterFilter() {
 return function(array, filterExpr) {
 var predicateFn;
 if (_.isFunction(filterExpr)) {
 predicateFn = filterExpr;
 } else if (_.isString(filterExpr)) {
 predicateFn = createPredicateFn(filterExpr);
 } else {
 return array;
 }
 return _.filter(array, predicateFn);
 };
}

For now, we can just create a predicate function that compares each item to the input expression
string using strict equality comparison:

Filtering With Strings 15

325 Errata© Tero Parviainen 2016

src/filter_filter.js
function createPredicateFn(expression) {
 return function predicateFn(item) {
 return item === expression;
 };
}

In actuality the filter is not this strict though. It actually matches any string that contains the given
input string:

test/filter_filter_spec.js
it('filters an array of strings with substring matching', function() {
 var fn = parse('arr | filter:"o"');
 expect(fn({arr: ['quick', 'brown', 'fox']})).toEqual(['brown', 'fox']);
});

We can change our predicate to check if each item contains the input expression:

src/filter_filter.js
function createPredicateFn(expression) {
 return function predicateFn(item) {
 return item.indexOf(expression) !== -1;
 };
}

The filter also does its comparisons in a case-insensitive manner:

test/filter_filter_spec.js
it('filters an array of strings ignoring case', function() {
 var fn = parse('arr | filter:"o"');
 expect(fn({arr: ['quick', 'BROWN', 'fox']})).toEqual(['BROWN', 'fox']);
});

We’ll convert both the expression and each item into lower case before checking if there is a
match:

src/filter_filter.js
function createPredicateFn(expression) {
 return function predicateFn(item) {
 var actual = item.toLowerCase();
 var expected = expression.toLowerCase();
 return actual.indexOf(expected) !== -1;
 };
}

What’s even more interesting is that when you have an array of objects as the input and a string

Filtering With Strings 15

326 Errata© Tero Parviainen 2016

filter, any values inside the objects will be matched. This means we can also filter non-primitives:

test/filter_filter_spec.js
it('filters an array of objects where any value matches', function() {
 var fn = parse('arr | filter:"o"');
 expect(fn({arr: [
 {firstName: 'John', lastName: 'Brown'},
 {firstName: 'Jane', lastName: 'Fox'},
 {firstName: 'Mary', lastName: 'Quick'}
]})).toEqual([
 {firstName: 'John', lastName: 'Brown'},
 {firstName: 'Jane', lastName: 'Fox'}
]);
});

Before making this work, let’s refactor the current implementation in order to separate some con-
cerns. The responsibility of comparing two values can be extracted to its own comparator func-
tion:

src/filter_filter.js
function createPredicateFn(expression) {

 function comparator(actual, expected) {
 actual = actual.toLowerCase();
 expected = expected.toLowerCase();
 return actual.indexOf(expected) !== -1;
 }

 return function predicateFn(item) {
 return comparator(item, expression);
 };
}

Now we can introduce another function that takes an actual and expected value and a comparator.
It knows how to “deeply compare” the values so that if the actual value is an object, it looks into
that object and returns true if any value inside matches. Otherwise it just uses the comparator
directly:

src/filter_filter.js
function deepCompare(actual, expected, comparator) {
 if (_.isObject(actual)) {
 return _.some(actual, function(value) {
 return comparator(value, expected);
 });
 } else {
 return comparator(actual, expected);
 }
}

Filtering With Strings 15

327 Errata© Tero Parviainen 2016

If the predicate function now delegates to this new helper, our test starts passing:

src/filter_filter.js
function createPredicateFn(expression) {

 function comparator(actual, expected) {
 actual = actual.toLowerCase();
 expected = expected.toLowerCase();
 return actual.indexOf(expected) !== -1;
 }

 return function predicateFn(item) {
 return deepCompare(item, expression, comparator);
 };
}

We have now split the predicate’s work into three functions:

• comparator compares two primitive values
• deepCompare compares two primitive values or an object of primitives to a primitive
• predicateFn weaves deepCompare and comparator together to form the final filter predi-

cate.

The filter should also be able to recurse into nested objects into arbitrary depths:

test/filter_filter_spec.js
it('filters an array of objects where a nested value matches', function() {
 var fn = parse('arr | filter:"o"');
 expect(fn({arr: [
 {name: {first: 'John', last: 'Brown'}},
 {name: {first: 'Jane', last: 'Fox'}},
 {name: {first: 'Mary', last: 'Quick'}}
]})).toEqual([
 {name: {first: 'John', last: 'Brown'}},
 {name: {first: 'Jane', last: 'Fox'}}
]);
});

This goes for arrays too. If we have an array of arrays, the filter returns all the nested arrays in
which anything was matched:

test/filter_filter_spec.js
it('filters an array of arrays where a nested value matches', function() {
 var fn = parse('arr | filter:"o"');
 expect(fn({arr: [
 [{name: 'John'}, {name: 'Mary'}],
 [{name: 'Jane'}]
]})).toEqual([

Filtering With Other Primitives 15

328 Errata© Tero Parviainen 2016

 [{name: 'John'}, {name: 'Mary'}]
]);
});

This can be enabled by turning deepCompare into a recursive function. All values inside objects
(and arrays) are again given to deepCompare, and compare is only called when a leaf level primi-
tive is seen:
src/filter_filter.js
function deepCompare(actual, expected, comparator) {
 if (_.isObject(actual)) {
 return _.some(actual, function(value) {
 return deepCompare(value, expected, comparator);
 });
 } else {
 return comparator(actual, expected);
 }
}

Filtering With Other Primitives

The filter expression given to the filter need not be a string. It may also be a number:

test/filter_filter_spec.js
it('filters with a number', function() {
 var fn = parse('arr | filter:42');
 expect(fn({arr: [
 {name: 'Mary', age: 42},
 {name: 'John', age: 43},
 {name: 'Jane', age: 44}
]})).toEqual([
 {name: 'Mary', age: 42}
]);
});

Or a boolean:

test/filter_filter_spec.js
it('filters with a boolean value', function() {
 var fn = parse('arr | filter:true');
 expect(fn({arr: [
 {name: 'Mary', admin: true},
 {name: 'John', admin: true},
 {name: 'Jane', admin: false}
]})).toEqual([
 {name: 'Mary', admin: true},
 {name: 'John', admin: true}
]);
});

Filtering With Other Primitives 15

329 Errata© Tero Parviainen 2016

We should create predicate functions for these types of expressions too:

src/filter_filter.js
function filterFilter() {
 return function(array, filterExpr) {
 var predicateFn;
 if (_.isFunction(filterExpr)) {
 predicateFn = filterExpr;
 } else if (_.isString(filterExpr) ||
 _.isNumber(filterExpr) ||
 _.isBoolean(filterExpr)) {
 predicateFn = createPredicateFn(filterExpr);
 } else {
 return array;
 }
 return _.filter(array, predicateFn);
 };
}

Then we’ll just coerce them into strings inside the comparator:

src/filter_filter.js
function comparator(actual, expected) {
 actual = ('' + actual).toLowerCase();
 expected = ('' + expected).toLowerCase();
 return actual.indexOf(expected) !== -1;
}

It is notable that filtering with a number (or a boolean) does not mean that numeric equality is
required of the items. Everything is turned into a string, and thus even string items that happen to
contain the given number will match, as the following (passing) test case illustrates:
test/filter_filter_spec.js
it('filters with a substring numeric value', function() {
 var fn = parse('arr | filter:42');
 expect(fn({arr: ['contains 42']})).toEqual(['contains 42']);
});

You can also filter null values. When you do, only items that are null are returned. In this case,
strings that contain the substring ’null’ are not matched:

test/filter_filter_spec.js
it('filters matching null', function() {
 var fn = parse('arr | filter:null');
 expect(fn({arr: [null, 'not null']})).toEqual([null]);
});

Flipping things around, if you filter with the string ’null’, values that are actually null will also

Filtering With Other Primitives 15

330 Errata© Tero Parviainen 2016

not be matched. Only strings:

test/filter_filter_spec.js
it('does not match null value with the string null', function() {
 var fn = parse('arr | filter:"null"');
 expect(fn({arr: [null, 'not null']})).toEqual(['not null']);
});

We should create a predicate for a null expression too:

src/filter_filter.js
function filterFilter() {
 return function(array, filterExpr) {
 var predicateFn;
 if (_.isFunction(filterExpr)) {
 predicateFn = filterExpr;
 } else if (_.isString(filterExpr) ||
 _.isNumber(filterExpr) ||
 _.isBoolean(filterExpr) ||
 _.isNull(filterExpr)) {
 predicateFn = createPredicateFn(filterExpr);
 } else {
 return array;
 }
 return _.filter(array, predicateFn);
 };
}

In the comparator we’ll introduce a special case for null. If either of the actual or expected values
is null, the other one needs to be null too if it is to be considered a match:

src/filter_filter.js
function comparator(actual, expected) {
 if (_.isNull(actual) || _.isNull(expected)) {
 return actual === expected;
 }
 actual = ('' + actual).toLowerCase();
 expected = ('' + expected).toLowerCase();
 return actual.indexOf(expected) !== -1;
}

When there are undefined values in the array, they should not be matched to the string ’unde-
fined’:

test/filter_filter_spec.js
it('does not match undefined values', function() {
 var fn = parse('arr | filter:"undefined"');
 expect(fn({arr: [undefined, 'undefined']})).toEqual(['undefined']);

Negated Filtering With Strings 15

331 Errata© Tero Parviainen 2016

});

The rule here is that an undefined item never passes the filter:

src/filter_filter.js
function comparator(actual, expected) {
 if (_.isUndefined(actual)) {
 return false;
 }
 if (_.isNull(actual) || _.isNull(expected)) {
 return actual === expected;
 }
 actual = ('' + actual).toLowerCase();
 expected = ('' + expected).toLowerCase();
 return actual.indexOf(expected) !== -1;
}

Negated Filtering With Strings

It is often useful to filter an array for items that don’t match a criterion, instead of filtering for items
that do. You can do that with string filters by prefixing the string with !:

test/filter_filter_spec.js
it('allows negating string filter', function() {
 var fn = parse('arr | filter:"!o"');
 expect(fn({arr: ['quick', 'brown', 'fox']})).toEqual(['quick']);
});

The implementation for this is quite simple. When we get to deepCompare with a string criteri-
on that begins with !, we call ourselves again with a string that doesn’t have the ! and negate the
result:

src/filter_filter.js
function deepCompare(actual, expected, comparator) {
 if (_.isString(expected) && _.startsWith(expected, '!')) {
 return !deepCompare(actual, expected.substring(1), comparator);
 }
 if (_.isObject(actual)) {
 return _.some(actual, function(value, key) {
 return deepCompare(value, expected, comparator);
 });
 } else {
 return comparator(actual, expected);
 }
}

Filtering With Object Criteria 15

332 Errata© Tero Parviainen 2016

Filtering With Object Criteria

When you have an array of objects to filter, just using a primitive value as the filter criteria may be
too blunt an instrument. For example, you may want to filter items where a specific attribute has a
specific value.

You can do this by providing an object as the filter criteria. Here is one that looks for matches in the
name attributes of the items in the input array. The items also have role attributes but the filter
ignores them:

test/filter_filter_spec.js
it('filters with an object', function() {
 var fn = parse('arr | filter:{name: "o"}');
 expect(fn({arr: [
 {name: 'Joe', role: 'admin'},
 {name: 'Jane', role: 'moderator'}
]})).toEqual([
 {name: 'Joe', role: 'admin'}
]);
});

When you specify several criteria in the filter object, only items that match all of the criteria are
returned:

test/filter_filter_spec.js
it('must match all criteria in an object', function() {
 var fn = parse('arr | filter:{name: "o", role: "m"}');
 expect(fn({arr: [
 {name: 'Joe', role: 'admin'},
 {name: 'Jane', role: 'moderator'}
]})).toEqual([
 {name: 'Joe', role: 'admin'}
]);
});

It follows from this that when the criteria object is empty, everything passes the filter:

test/filter_filter_spec.js
it('matches everything when filtered with an empty object', function() {
 var fn = parse('arr | filter:{}');
 expect(fn({arr: [
 {name: 'Joe', role: 'admin'},
 {name: 'Jane', role: 'moderator'}
]})).toEqual([
 {name: 'Joe', role: 'admin'},
 {name: 'Jane', role: 'moderator'}
]);

Filtering With Object Criteria 15

333 Errata© Tero Parviainen 2016

});

The criteria object may also contain nested objects. This allows you to reach into the data to any
depth to find matches:

test/filter_filter_spec.js
it('filters with a nested object', function() {
 var fn = parse('arr | filter:{name: {first: "o"}}');
 expect(fn({arr: [
 {name: {first: 'Joe'}, role: 'admin'},
 {name: {first: 'Jane'}, role: 'moderator'}
]})).toEqual([
 {name: {first: 'Joe'}, role: 'admin'}
]);
});

You can also negate a criterion inside the criteria object, by using a ! prefix, just like we did with
primitive string criteria:

test/filter_filter_spec.js
it('allows negation when filtering with an object', function() {
 var fn = parse('arr | filter:{name: {first: "!o"}}');
 expect(fn({arr: [
 {name: {first: 'Joe'}, role: 'admin'},
 {name: {first: 'Jane'}, role: 'moderator'}
]})).toEqual([
 {name: {first: 'Jane'}, role: 'moderator'}
]);
});
That provides a nice initial test harness for what we now need to implement. First of all, let’s set
things up so that a predicate function is created for object filters:

src/filter_filter.js
function filterFilter() {
 return function(array, filterExpr) {
 var predicateFn;
 if (_.isFunction(filterExpr)) {
 predicateFn = filterExpr;
 } else if (_.isString(filterExpr) ||
 _.isNumber(filterExpr) ||
 _.isBoolean(filterExpr) ||
 _.isNull(filterExpr) ||
 _.isObject(filterExpr)) {
 predicateFn = createPredicateFn(filterExpr);
 } else {
 return array;
 }
 return _.filter(array, predicateFn);
 };

Filtering With Object Criteria 15

334 Errata© Tero Parviainen 2016

}

In deepCompare, if we have an object as the expected value, we can’t compare the actual value to
it directly. We’ll do something else instead:

src/filter_filter.js
function deepCompare(actual, expected, comparator) {
 if (_.isString(expected) && _.startsWith(expected, '!')) {
 return !deepCompare(actual, expected.substring(1), comparator);
 }
 if (_.isObject(actual)) {
 if (_.isObject(expected)) {

 } else {
 return _.some(actual, function(value, key) {
 return deepCompare(value, expected, comparator);
 });
 }
 } else {
 return comparator(actual, expected);
 }
}

What we do is loop over the expected criteria object, and for each value deep-compare the
corresponding value in the actual object. If all of the criteria in the object are
matched, we have a match:

src/filter_filter.js
function deepCompare(actual, expected, comparator) {
 if (_.isString(expected) && _.startsWith(expected, '!')) {
 return !deepCompare(actual, expected.substring(1), comparator);
 }
 if (_.isObject(actual)) {
 if (_.isObject(expected)) {
 return _.every(
 _.toPlainObject(expected),
 function(expectedVal, expectedKey) {
 return deepCompare(actual[expectedKey], expectedVal, comparator);
 }
);
 } else {
 return _.some(actual, function(value, key) {
 return deepCompare(value, expected, comparator);
 });
 }
 } else {
 return comparator(actual, expected);
 }
}

Filtering With Object Criteria 15

335 Errata© Tero Parviainen 2016

This also takes care of the nested criteria objects, because of the recursive invocation to deepCom-
pare that will again check if the nested value is an object.

We additionally use a toPlainObject call for the criteria. If the criteria happens to use prototypal inheri-
tance, this flattens the inheritance so that all inherited properties are also checked.

If some values in the criteria object are undefined, they are ignored:

test/filter_filter_spec.js
it('ignores undefined values in expectation object', function() {
 var fn = parse('arr | filter:{name: thisIsUndefined}');
 expect(fn({arr: [
 {name: 'Joe', role: 'admin'},
 {name: 'Jane', role: 'moderator'}
]})).toEqual([
 {name: 'Joe', role: 'admin'},
 {name: 'Jane', role: 'moderator'}
]);
});

The way this works is that undefined values in the expectation object are considered to always be
matches:

src/filter_filter.js
return _.every(
 _.toPlainObject(expected),
 function(expectedVal, expectedKey) {
 if (_.isUndefined(expectedVal)) {
 return true;
 }
 return deepCompare(actual[expectedKey], expectedVal, comparator);
 }
);

If there are nested arrays inside objects, the objects are considered matches if any item in the nest-
ed array matches. The criteria object effectively “jumps” a level here, so that you don’t need to do
anything special to make it match items inside arrays as well:

test/filter_filter_spec.js
it('filters with a nested object in array', function() {
 var fn = parse('arr | filter:{users: {name: {first: "o"}}}');
 expect(fn({arr: [
 {users: [{name: {first: 'Joe'}, role: 'admin'},
 {name: {first: 'Jane'}, role: 'moderator'}]},
 {users: [{name: {first: 'Mary'}, role: 'admin'}]}
]})).toEqual([
 {users: [{name: {first: 'Joe'}, role: 'admin'},

https://lodash.com/docs#toPlainObject

 15

336 Errata© Tero Parviainen 2016

 {name: {first: 'Jane'}, role: 'moderator'}]}
]);
});

We need to introduce a special case for this in deepCompare. When we see an array as the actual
value, we recursively call deepCompare for each item and return true if any item matched:

src/filter_filter.js
function deepCompare(actual, expected, comparator) {
 if (_.isString(expected) && _.startsWith(expected, '!')) {
 return !deepCompare(actual, expected.substring(1), comparator);
 }
 if (_.isArray(actual)) {
 return _.some(actual, function(actualItem) {
 return deepCompare(actualItem, expected, comparator);
 });
 }
 if (_.isObject(actual)) {
 if (_.isObject(expected)) {
 return _.every(
 _.toPlainObject(expected),
 function(expectedVal, expectedKey) {
 if (_.isUndefined(expectedVal)) {
 return true;
 }
 return deepCompare(actual[expectedKey], expectedVal, comparator);
 }
);
 } else {
 return _.some(actual, function(value, key) {
 return deepCompare(value, expected, comparator);
 });
 }
 } else {
 return comparator(actual, expected);
 }
}

The object criteria matching we’ve implemented is now quite flexible, but it turns out it’s still a
little bit too lenient. When there is a criteria like {user: {name: ‘Bob’}}, we want it to only
match objects that have a user attribute that in turn has a name attribute that contains Bob. We do
not want to match Bob on any other level:

test/filter_filter_spec.js
it('filters with nested objects on the same level only', function() {
 var items = [{user: 'Bob'},
 {user: {name: 'Bob'}},
 {user: {name: {first: 'Bob', last: 'Fox'}}}];
 var fn = parse('arr | filter:{user: {name: "Bob"}}');
 expect(fn({arr: [

 15

337 Errata© Tero Parviainen 2016

 {user: 'Bob'},
 {user: {name: 'Bob'}},
 {user: {name: {first: 'Bob', last: 'Fox'}}}
]})).toEqual([
 {user: {name: 'Bob'}}
]);
});

This test fails because we’re also matching {user: {name: {first: ‘Bob’, last: ‘Fox’}}}
with our criteria. Why is this happening?

The reason is that once we traverse into the name attribute of both the expected and actual objects,
the expected value becomes the primitive string ’Bob’. As we saw when we implemented primi-
tive string matching, deepCompare matches a primitive against all nested properties of the actual
object. But in this case we don’t want to do that. We want to match the primitive only at the level
we are currently at.

We need to extend deepCompare so that it can be used either to match any property of the actual
object, or just the one currently being inspected. This is controlled with a new argument match-
AnyProperty. Only when it is true do we traverse into the actual object to check for matches.
Otherwise we attempt a simple primitive comparison:

src/filter_filter.js
function deepCompare(actual, expected, comparator, matchAnyProperty) {
 if (_.isString(expected) && _.startsWith(expected, '!')) {
 return !deepCompare(actual, expected.substring(1), comparator);
 }
 if (_.isArray(actual)) {
 return _.some(actual, function(actualItem) {
 return deepCompare(actualItem, expected, comparator);
 });
 }
 if (_.isObject(actual)) {
 if (_.isObject(expected)) {
 return _.every(
 _.toPlainObject(expected),
 function(expectedVal, expectedKey) {
 if (_.isUndefined(expectedVal)) {
 return true;
 }
 return deepCompare(actual[expectedKey], expectedVal, comparator);
 }
);
 } else if (matchAnyProperty) {
 return _.some(actual, function(value, key) {
 return deepCompare(value, expected, comparator);
 });
 } else {
 return comparator(actual, expected);

 15

338 Errata© Tero Parviainen 2016

 }
 } else {
 return comparator(actual, expected);
 }
}

From the predicate function we now need to pass in true for this argument to restore the default
behavior where we do want to match any properties:

src/filter_filter.js
return function predicateFn(item) {
 return deepCompare(item, expression, comparator, true);
};

We also need to maintain this argument in all the recursive calls we make inside deepCompare,
with the exception of the one inside the _.every function where we specifically don’t want to
match all properties:

src/filter_filter.js
function deepCompare(actual, expected, comparator, matchAnyProperty) {
 if (_.isString(expected) && _.startsWith(expected, '!')) {
 return !deepCompare(actual, expected.substring(1),
 comparator, matchAnyProperty);
 }
 if (_.isArray(actual)) {
 return _.some(actual, function(actualItem) {
 return deepCompare(actualItem, expected,
 comparator, matchAnyProperty);
 });
 }
 if (_.isObject(actual)) {
 if (_.isObject(expected)) {
 return _.every(
 _.toPlainObject(expected),
 function(expectedVal, expectedKey) {
 if (_.isUndefined(expectedVal)) {
 return true;
 }
 return deepCompare(actual[expectedKey], expectedVal, comparator);
 }
);
 } else if (matchAnyProperty) {
 return _.some(actual, function(value, key) {
 return deepCompare(value, expected,
 comparator, matchAnyProperty);
 });
 } else {
 return comparator(actual, expected);
 }
 } else {

Filtering With Object Wildcards 15

339 Errata© Tero Parviainen 2016

 return comparator(actual, expected);
 }
}

Filtering With Object Wildcards

If you want to say “I want any of the properties in an object to match this value”, you can use a
special wildcard key $ in the criteria object:

test/filter_filter_spec.js
it('filters with a wildcard property', function() {
 var fn = parse('arr | filter:{$: "o"}');
 expect(fn({arr: [
 {name: 'Joe', role: 'admin'},
 {name: 'Jane', role: 'moderator'},
 {name: 'Mary', role: 'admin'}
]})).toEqual([
 {name: 'Joe', role: 'admin'},
 {name: 'Jane', role: 'moderator'}
]);
});

Unlike regular object properties, the wildcard property matches values in nested objects too - on
any level:

test/filter_filter_spec.js
it('filters nested objects with a wildcard property', function() {
 var fn = parse('arr | filter:{$: "o"}');
 expect(fn({arr: [
 {name: {first: 'Joe'}, role: 'admin'},
 {name: {first: 'Jane'}, role: 'moderator'},
 {name: {first: 'Mary'}, role: 'admin'}
]})).toEqual([
 {name: {first: 'Joe'}, role: 'admin'},
 {name: {first: 'Jane'}, role: 'moderator'}
]);
});

So far this doesn’t really differ from using a simple primitive filter instead. Why use {$: “o”} and
not just ”o”? The main reason is when you nest a wildcard inside another object criterion. This
scopes the wildcard inside its parent:

test/filter_filter_spec.js
it('filters wildcard properties scoped to parent', function() {
 var fn = parse('arr | filter:{name: {$: "o"}}');
 expect(fn({arr: [
 {name: {first: 'Joe', last: 'Fox'}, role: 'admin'},

Filtering With Object Wildcards 15

340 Errata© Tero Parviainen 2016

 {name: {first: 'Jane', last: 'Quick'}, role: 'moderator'},
 {name: {first: 'Mary', last: 'Brown'}, role: 'admin'}
]})).toEqual([
 {name: {first: 'Joe', last: 'Fox'}, role: 'admin'},
 {name: {first: 'Mary', last: 'Brown'}, role: 'admin'}
]);
});

As we are traversing the contents of an expectation object, we should check if the key is $. If it is,
we want to match the whole actual object against it, not just the matching key in it (which would
require the actual object to include a $ key):

src/filter_filter.js
return _.every(
 _.toPlainObject(expected),
 function(expectedVal, expectedKey) {
 if (_.isUndefined(expectedVal)) {
 return true;
 }
 var isWildcard = (expectedKey === '$');
 var actualVal = isWildcard ? actual : actual[expectedKey];
 return deepCompare(actualVal, expectedVal, comparator);
 }
);

Additionally, in this case we do want to match any property inside the actual object. It is precisely what
the wildcard is for. Thus, we need to pass in the fourth argument to the recusive deepCompare call:

src/filter_filter.js
return _.every(
 _.toPlainObject(expected),
 function(expectedVal, expectedKey) {
 if (_.isUndefined(expectedVal)) {
 return true;
 }
 var isWildcard = (expectedKey === '$');
 var actualVal = isWildcard ? actual : actual[expectedKey];
 return deepCompare(actualVal, expectedVal, comparator, isWildcard);
 }
);

When you use a wildcard criterion on the top level of the criteria object, it actually matches the
wildcard against arrays of primitives as well:

test/filter_filter_spec.js
it('filters primitives with a wildcard property', function() {
 var fn = parse('arr | filter:{$: "o"}');
 expect(fn({arr: ['Joe', 'Jane', 'Mary']})).toEqual(['Joe']);
});

Filtering With Object Wildcards 15

341 Errata© Tero Parviainen 2016

In the predicate function we simply use the value of the $ property of the original filter expression
- if there was one - when matching against a non-object:

src/filter_filter.js
function createPredicateFn(expression) {
 var shouldMatchPrimitives =
 _.isObject(expression) && ('$' in expression);

 function comparator(actual, expected) {
 if (_.isUndefined(actual)) {
 return false;
 }
 if (_.isNull(actual) || _.isNull(expected)) {
 return actual === expected;
 }
 actual = ('' + actual).toLowerCase();
 expected = ('' + expected).toLowerCase();
 return actual.indexOf(expected) !== -1;
 }

 return function predicateFn(item) {
 if (shouldMatchPrimitives && !_.isObject(item)) {
 return deepCompare(item, expression.$, comparator);
 }
 return deepCompare(item, expression, comparator, true);
 };
}

Finally, wildcard properties can also be nested. When you do that, you require some value to be
present at least some number of levels deep in the object:

test/filter_filter_spec.js
it('filters with a nested wildcard property', function() {
 var fn = parse('arr | filter:{$: {$: "o"}}');
 expect(fn({arr: [
 {name: {first: 'Joe'}, role: 'admin'},
 {name: {first: 'Jane'}, role: 'moderator'},
 {name: {first: 'Mary'}, role: 'admin'}
]})).toEqual([
 {name: {first: 'Joe'}, role: 'admin'}
]);
});

This currently also matches role: ‘moderator’ though it should only match the ’o’ at least
two levels deep since that’s what our criteria object specifies.

We can fix this by first passing in a fourth argument to deepCompare, called inWildcard. We
only set it to true when recursing from a wildcard criterion:

Filtering With Object Wildcards 15

342 Errata© Tero Parviainen 2016

src/filter_filter.js
function deepCompare(
 actual, expected, comparator, matchAnyProperty, inWildcard) {
 if (_.isString(expected) && _.startsWith(expected, '!')) {
 return !deepCompare(actual, expected.substring(1),
 comparator, matchAnyProperty);
 }
 if (_.isArray(actual)) {
 return _.some(actual, function(actualItem) {
 return deepCompare(actualItem, expected,
 comparator, matchAnyProperty);
 });
 }

 if (_.isObject(actual)) {
 if (_.isObject(expected)) {
 return _.every(
 _.toPlainObject(expected),
 function(expectedVal, expectedKey) {
 if (_.isUndefined(expectedVal)) {
 return true;
 }
 var isWildcard = (expectedKey === '$');
 var actualVal = isWildcard ? actual : actual[expectedKey];
 return deepCompare(actualVal, expectedVal,
 comparator, isWildcard, isWildcard);
 }
);
 } else if (matchAnyProperty) {
 return _.some(actual, function(value, key) {
 return deepCompare(value, expected, comparator, matchAnyProperty);
 });
 } else {
 return comparator(actual, expected);
 }
 } else {
 return comparator(actual, expected);
 }
}

We can then prevent object criteria from being used when in a wildcard search, by guarding the
corresponding if statement. That means we end up in the second conditional branch (else if
(matchAnyProperty)), which jumps into the next level of nesting. In the recursive deepCom-
pare calls done there, the inWildcard flag becomes falsy again, and we apply the second wild-
card in the correct scope:

src/filter_filter.js
function deepCompare(
 actual, expected, comparator, matchAnyProperty, inWildcard) {

Filtering With Custom Comparators 15

343 Errata© Tero Parviainen 2016

 if (_.isString(expected) && _.startsWith(expected, '!')) {
 return !deepCompare(actual, expected.substring(1),
 comparator, matchAnyProperty);
 }
 if (_.isArray(actual)) {
 return _.some(actual, function(actualItem) {
 return deepCompare(actualItem, expected,
 comparator, matchAnyProperty);
 });
 }

 if (_.isObject(actual)) {
 if (_.isObject(expected) && !inWildcard) {
 return _.every(
 _.toPlainObject(expected),
 function(expectedVal, expectedKey) {
 if (_.isUndefined(expectedVal)) {
 return true;
 }
 var isWildcard = (expectedKey === '$');
 var actualVal = isWildcard ? actual : actual[expectedKey];
 return deepCompare(actualVal, expectedVal,
 comparator, isWildcard, isWildcard);
 }
);
 } else if (matchAnyProperty) {
 return _.some(actual, function(value, key) {
 return deepCompare(value, expected, comparator, matchAnyProperty);
 });
 } else {
 return comparator(actual, expected);
 }
 } else {
 return comparator(actual, expected);
 }
}

Filtering With Custom Comparators

You may also customize the strategy by which the filter compares two values by providing your
own comparator function as the second additional argument. For example, here we provide a com-
parator that compares two values using the strict equality operator ===:

test/filter_filter_spec.js
it('allows using a custom comparator', function() {
 var fn = parse('arr | filter:{$: "o"}:myComparator');
 expect(fn({
 arr: ['o', 'oo', 'ao', 'aa'],
 myComparator: function(left, right) {
 return left === right;

Filtering With Custom Comparators 15

344 Errata© Tero Parviainen 2016

 }
 })).toEqual(['o']);
});

This is different from providing a filter predicate function as seen earlier in the chapter. Whereas a
filter predicate decides, based on arbitrary criteria, whether a given item should pass the filter or
not, a comparator function compares a given item to the filter value (or a part of it) and decides
how they should be compared.

We need to accept this third argument to the filter function, and pass it to predicate function cre-
ation:

src/filter_filter.js
function filterFilter() {
 return function(array, filterExpr, comparator) {
 var predicateFn;
 if (_.isFunction(filterExpr)) {
 predicateFn = filterExpr;
 } else if (_.isString(filterExpr) ||
 _.isNumber(filterExpr) ||
 _.isBoolean(filterExpr) ||
 _.isNull(filterExpr) ||
 _.isObject(filterExpr)) {
 predicateFn = createPredicateFn(filterExpr, comparator);
 } else {
 return array;
 }
 return _.filter(array, predicateFn);
 };
}

In createPredicateFn we should now only form the custom comparator if one wasn’t given
already:

src/filter_filter.js
function createPredicateFn(expression, comparator) {
 var shouldMatchPrimitives =
 _.isObject(expression) && ('$' in expression);

 if (!_.isFunction(comparator)) {
 comparator = function(actual, expected) {
 if (_.isUndefined(actual)) {
 return false;
 }
 if (_.isNull(actual) || _.isNull(expected)) {
 return actual === expected;
 }
 actual = ('' + actual).toLowerCase();
 expected = ('' + expected).toLowerCase();

Filtering With Custom Comparators 15

345 Errata© Tero Parviainen 2016

 return actual.indexOf(expected) !== -1;
 };
 }

 return function predicateFn(item) {
 if (shouldMatchPrimitives && !_.isObject(item)) {
 return deepCompare(item, expression.$, comparator);
 }
 return deepCompare(item, expression, comparator, true);
 };
}

You may also let the filter know that it should use strict value equality for comparison (instead of
the more lenient substring matching), by passing the special value true in place of the compara-
tor:

test/filter_filter_spec.js
it('allows using an equality comparator', function() {
 var fn = parse('arr | filter:{name: "Jo"}:true');
 expect(fn({arr: [
 {name: 'Jo'},
 {name: 'Joe'}
]})).toEqual([
 {name: 'Jo'}
]);
});

This is useful if you indeed want to match your filter to the values precisely and don’t want to ac-
cept partial string matches.

When the comparator value is true, createPredicateFn will use the LoDash _.isEqual function
as the comparator. It returns true if two values are exactly equal:

src/filter_filter.js
function createPredicateFn(expression, comparator) {
 var shouldMatchPrimitives =
 _.isObject(expression) && ('$' in expression);

 if (comparator === true) {
 comparator = _.isEqual;
 } else if (!_.isFunction(comparator)) {
 comparator = function(actual, expected) {
 if (_.isUndefined(actual)) {
 return false;
 }
 if (_.isNull(actual) || _.isNull(expected)) {
 return actual === expected;
 }
 actual = ('' + actual).toLowerCase();

https://lodash.com/docs#isEqual

Summary 15

346 Errata© Tero Parviainen 2016

 expected = ('' + expected).toLowerCase();
 return actual.indexOf(expected) !== -1;
 };
 }

 return function predicateFn(item) {
 if (shouldMatchPrimitives && !_.isObject(item)) {
 return deepCompare(item, expression.$, comparator);
 }
 return deepCompare(item, expression, comparator, true);
 };
}

Summary

During this chapter we’ve added the final missing feature to our implementation of the Angular
expression language. Filters are an often useful way to modify the resulting value of an expression
using predefined filter functions that may be reused all across your application.

In this chapter you’ve learned:

• That filters are applied to expressions using the pipe operator |.
• That Angular expressions don’t support bitwise operators, and that the bitwise OR would con-

flict with the filter operator.
• That filters are registered and obtained using the filter service.
• How you can register several filters in bulk by giving the filter service an object.
• How filter expressions are processed as call expressions by the AST builder and compiler.
• That filter expressions have the lowest precedence of all expressions.
• How the AST compiler generates JavaScript code to look up all the filters used in an expression

from the filter service at runtime.
• How several filter invocations can be chained.
• How additional arguments can be passed to filters, and how they’re given to the filter function

as the second, third, etc. arguments.
• How the built-in filter filter works: With predicate functions, primitives, or objects as the filter

expression. With nested objects and arrays. With wildcard $ keys, and with custom compara-
tors.

 16

347 Errata© Tero Parviainen 2016

Chapter 10

Watching Expressions

Integrating Expressions to Scopes 16

348 Errata© Tero Parviainen 2016

We now have a complete implementation of dirty-checking and a complete implementation of the
Angular expression language, but we have not yet integrated them in any way. As all Angular users
know, the true power of Angular’s dirty-checking system is in the combination of these two things.
After this chapter we’ll have that combination.

This chapter concludes our coverage of expressions and scopes by putting them together. In addi-
tion to the basic integration between these two systems, we’ll build a few powerful optimizations:
Constant detection, One-time binding and input tracking. We’ll then wrap things up by looking at how
expressions can not only be evaluated, but also reassigned.

Download the code for the starting point of this chapter.

Integrating Expressions to Scopes

The external API of Scope should accept not only raw functions, but also expression strings in the
following methods:

• $watch
• $watchCollection
• $eval (and, by association, $apply and $evalAsync)

Internally, Scope will use the parse function (and later, the $parse service) to parse those expres-
sions into functions.

Since Scope will still support the use of raw functions, we will need to check whether the argu-
ments given are strings, or if they are functions already. We can do this in parse, so that if you try
to parse a function, it’ll just return that function back to you:

test/parse_spec.js
it('returns the function itself when given one', function() {
 var fn = function() { };
 expect(parse(fn)).toBe(fn);
});

In parse, we’ll make a decision about what to do based on the type of the argument. If it is a
string, we parse it as before. If it is a function, we just return it. In other cases, we return _.noop,
which is a Lo-Dash-provided function that does nothing:

src/parse.js
function parse(expr) {
 switch (typeof expr) {
 case 'string':
 var lexer = new Lexer();
 var parser = new Parser(lexer);
 return parser.parse(expr);

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter9-filters

Integrating Expressions to Scopes 16

349 Errata© Tero Parviainen 2016

 case 'function':
 return expr;
 default:
 return _.noop;
 }
}

Now, in scope.js, let’s first pull in the parse function from parse.js:

src/scope.js
'use strict';

var _ = require('lodash');
var parse = require('./parse');

The first instance where we accept expressions is the watch function of $watch. Let’s make a test
for that (in the describe(‘digest’) test block:

test/scope_spec.js
it('accepts expressions for watch functions', function() {
 var theValue;

 scope.aValue = 42;
 scope.$watch('aValue', function(newValue, oldValue, scope) {
 theValue = newValue;
 });
 scope.$digest();

 expect(theValue).toBe(42);
});

All we need to do to make this work is invoke parse for the given watch function, and store its
return value in the watch object instead of the original argument:

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn, valueEq) {
 var self = this;
 var watcher = {
 watchFn: parse(watchFn),
 listenerFn: listenerFn || function() { },
 last: initWatchVal,
 valueEq: !!valueEq
 };
 this.$$watchers.unshift(watcher);
 this.$$root.$$lastDirtyWatch = null;
 return function() {
 var index = self.$$watchers.indexOf(watcher);
 if (index >= 0) {
 self.$$watchers.splice(index, 1);

Integrating Expressions to Scopes 16

350 Errata© Tero Parviainen 2016

 self.$$root.$$lastDirtyWatch = null;
 }
 };
};

Since $watch now accepts expressions, $watchCollection should accept them as well. Add a
new test to the describe(‘$watchCollection’) test block:

test/scope_spec.js
it('accepts expressions for watch functions', function() {
 var theValue;

 scope.aColl = [1, 2, 3];
 scope.$watchCollection('aColl', function(newValue, oldValue, scope) {
 theValue = newValue;
 });
 scope.$digest();

 expect(theValue).toEqual([1, 2, 3]);
});

To make this work, we also need to call parse for the watch function in $watchCollection:

src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {
 var self = this;
 var newValue;
 var oldValue;
 var oldLength;
 var veryOldValue;
 var trackVeryOldValue = (listenerFn.length > 1);
 var changeCount = 0;
 var firstRun = true;

 watchFn = parse(watchFn);

 // The rest of the function unchanged
};

Next, we should also support expressions in $eval. Add the following in the describe(‘$eval’)
test block:

test/scope_spec.js
it('accepts expressions in $eval', function() {
 expect(scope.$eval('42')).toBe(42);
});

Also, since $apply and $evalAsync are built on top of $eval, they will also support expressions.

Literal And Constant Expressions 16

351 Errata© Tero Parviainen 2016

Add these to the describe(‘$apply’) and describe(‘$evalAsync’) test blocks, respectively:

test/scope_spec.js
it('accepts expressions in $apply', function() {
 scope.aFunction = _.constant(42);
 expect(scope.$apply('aFunction()')).toBe(42);
});

it('accepts expressions in $evalAsync', function(done) {
 var called;
 scope.aFunction = function() {
 called = true;
 };

 scope.$evalAsync('aFunction()');

 scope.$$postDigest(function() {
 expect(called).toBe(true);
 done();
 });
});

In $eval we can just parse the incoming expression and then invoke it:

src/scope.js
Scope.prototype.$eval = function(expr, locals) {
 return parse(expr)(this, locals);
};

Since $apply and $evalAsync are implemented in terms of $eval, this change immediately
adds expression support for them as well.

Note that we’re passing the locals argument on to the expression function. As we saw when we
implemented lookup expressions, it may be used to override scope field access.

Literal And Constant Expressions

We’ve seen how the parser returns a function that can be used to evaluate the original expression.
The returned function should not be just a plain function, though. It should have a couple of extra
attributes attached to it:

• literal - a boolean value denoting whether the expression was a literal value, such as an inte-
ger or array literal.

• constant - a boolean value denoting whether the expression was a constant, i.e. a literal prim-
itive, or a literal collection of constant values. When an expression is constant, its value will
never change over time.

Literal And Constant Expressions 16

352 Errata© Tero Parviainen 2016

For example, 42 is both literal and constant, as is [42, ‘abc’]. On the other hand, something
like [42, ‘abc’, aVariable] is a literal but it is not a constant since aVariable is not a con-
stant.

Users of the $parse service occasionally use these two flags to make decisions about how to use
the expression. The constant flag in particular will be used in this chapter to apply some optimi-
zations in expression watching.

There’s also a third attribute, called assign, in the returned functions. We will get to know it later in this
chapter.

Let’s talk about the literal flag first as it is simpler to implement. All kinds of simple literal val-
ues, including numbers, strings, and booleans should be marked as literal:

test/parse_spec.js
it('marks integers literal', function() {
 var fn = parse('42');
 expect(fn.literal).toBe(true);
});

it('marks strings literal', function() {
 var fn = parse('"abc"');
 expect(fn.literal).toBe(true);
});

it('marks booleans literal', function() {
 var fn = parse('true');
 expect(fn.literal).toBe(true);
});

Both array and object literals should also be marked as literal:

test/parse_spec.js
it('marks arrays literal', function() {
 var fn = parse('[1, 2, aVariable]');
 expect(fn.literal).toBe(true);
});

it('marks objects literal', function() {
 var fn = parse('{a: 1, b: aVariable}');
 expect(fn.literal).toBe(true);
});

Anything else should be marked non-literal:

test/parse_spec.js
it('marks unary expressions non-literal', function() {

Literal And Constant Expressions 16

353 Errata© Tero Parviainen 2016

 var fn = parse('!false');
 expect(fn.literal).toBe(false);
});

it('marks binary expressions non-literal', function() {
 var fn = parse('1 + 2');
 expect(fn.literal).toBe(false);
});

What we’ll do is check if the AST is literal using a helper function isLiteral. Then we’ll attach
the result in the compiled expression function:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {
 body: [],
 nextId: 0,
 vars: [],
 filters: {}
 };
 this.recurse(ast);
 var fnString = this.filterPrefix() +
 'var fn=function(s,l){' +
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''
) +
 this.state.body.join('') +
 '}; return fn;';
 /* jshint -W054 */
 var fn = new Function(
 'ensureSafeMemberName',
 'ensureSafeObject',
 'ensureSafeFunction',
 'ifDefined',
 'filter',
 fnString)(
 ensureSafeMemberName,
 ensureSafeObject,
 ensureSafeFunction,
 ifDefined,
 filter);
 /* jshint +W054 */
 fn.literal = isLiteral(ast);
 return fn;
};

The isLiteral function is defined as follows:

• An empty program is literal

Literal And Constant Expressions 16

354 Errata© Tero Parviainen 2016

• A non-empty program is literal if it has just one expression whose type is a literal, an array, or
an object.

Expressed in code:

src/parse.js
function isLiteral(ast) {
 return ast.body.length === 0 ||
 ast.body.length === 1 && (
 ast.body[0].type === AST.Literal ||
 ast.body[0].type === AST.ArrayExpression ||
 ast.body[0].type === AST.ObjectExpression);
}

Setting the constant flag is a little bit more involved. We’re going to need to consider each AST
node type separately to see how its “constantness” should be determined.

Let’s begin from simple literals. Numbers, strings, and booleans are all constants:

test/parse_spec.js
it('marks integers constant', function() {
 var fn = parse('42');
 expect(fn.constant).toBe(true);
});

it('marks strings constant', function() {
 var fn = parse('"abc"');
 expect(fn.constant).toBe(true);
});

it('marks booleans constant', function() {
 var fn = parse('true');
 expect(fn.constant).toBe(true);
});

The generated function will have a constant flag, just like it has a literal flag. The value of the
flag is read from the root AST node:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 this.state = {
 body: [],
 nextId: 0,
 vars: [],
 filters: {}
 };
 this.recurse(ast);
 var fnString = this.filterPrefix() +

Literal And Constant Expressions 16

355 Errata© Tero Parviainen 2016

 'var fn=function(s,l){' +
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''
) +
 this.state.body.join('') +
 '}; return fn;';
 /* jshint -W054 */
 var fn = new Function(
 'ensureSafeMemberName',
 'ensureSafeObject',
 'ensureSafeFunction',
 'ifDefined',
 'filter',
 fnString)(
 ensureSafeMemberName,
 ensureSafeObject,
 ensureSafeFunction,
 ifDefined,
 filter);
 /* jshint +W054 */
 fn.literal = isLiteral(ast);
 fn.constant = ast.constant;
 return fn;
};

The problem is that the root AST node has no such flag yet. How does it end up there? Well, what
we are going to do is pre-process the AST before compilation, using a function called markCon-
stantExpressions. We expect the constant flag to be set during that pre-processing:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantExpressions(ast);
 this.state = {
 body: [],
 nextId: 0,
 vars: [],
 filters: {}
 };
 this.recurse(ast);
 var fnString = this.filterPrefix() +
 'var fn=function(s,l){' +
 (this.state.vars.length ?
 'var ' + this.state.vars.join(',') + ';' :
 ''
) +
 this.state.body.join('') +
 '}; return fn;';
 /* jshint -W054 */
 var fn = new Function(

Literal And Constant Expressions 16

356 Errata© Tero Parviainen 2016

 'ensureSafeMemberName',
 'ensureSafeObject',
 'ensureSafeFunction',
 'ifDefined',
 'filter',
 fnString)(
 ensureSafeMemberName,
 ensureSafeObject,
 ensureSafeFunction,
 ifDefined,
 filter);
 /* jshint +W054 */
 fn.literal = isLiteral(ast);
 fn.constant = ast.constant;
 return fn;
};

A bit like recurse, markConstantExpressions will be a recursive function that consists of one
big switch statement. For instance, literal expressions will all be constant, so when markCon-
stantExpressions is called with a literal AST node, it will set its constant flag to true:

src/parse.js
function markConstantExpressions(ast) {
 switch (ast.type) {
 case AST.Literal:
 ast.constant = true;
 break;
 }
}

Before we get our test cases to pass we need to consider the fact that the root node of an AST is al-
ways of type Program. A program consists of a number of subexpressions. When markConstan-
tExpressions sees a program, it needs to recursively call itself for each of those subexpressions:

src/parse.js
function markConstantExpressions(ast) {
 switch (ast.type) {
 case AST.Program:
 _.forEach(ast.body, function(expr) {
 markConstantExpressions(expr);
 });
 break;
 case AST.Literal:
 ast.constant = true;
 break;
 }
}

The Program node can then be marked as constant if all of the subexpressions are constant:

Literal And Constant Expressions 16

357 Errata© Tero Parviainen 2016

src/parse.js
function markConstantExpressions(ast) {
 var allConstants;
 switch (ast.type) {
 case AST.Program:
 allConstants = true;
 _.forEach(ast.body, function(expr) {
 markConstantExpressions(expr);
 allConstants = allConstants && expr.constant;
 });
 ast.constant = allConstants;
 break;
 case AST.Literal:
 ast.constant = true;
 break;
 }
}

Identifier expressions are never constant - we can’t know if they will change over time:

test/parse_spec.js
it('marks identifiers non-constant', function() {
 var fn = parse('a');
 expect(fn.constant).toBe(false);
});

The implementation for this is straightforward:

src/parse.js
case AST.Identifier:
 ast.constant = false;
 break;

Array expressions are constant if and only if all of their elements are constant:

test/parse_spec.js
it('marks arrays constant when elements are constant', function() {
 expect(parse('[1, 2, 3]').constant).toBe(true);
 expect(parse('[1, [2, [3]]]').constant).toBe(true);
 expect(parse('[1, 2, a]').constant).toBe(false);
 expect(parse('[1, [2, [a]]]').constant).toBe(false);
});

We can check arrays very similarly as we did programs: We recurse to each element in the array,
and mark the array based on what we saw:

src/parse.js

Literal And Constant Expressions 16

358 Errata© Tero Parviainen 2016

case AST.ArrayExpression:
 allConstants = true;
 _.forEach(ast.elements, function(element) {
 markConstantExpressions(element);
 allConstants = allConstants && element.constant;
 });
 ast.constant = allConstants;
 break;

Similarly for objects, constantness depends on whether each of the values inside the object is con-
stant. (Object keys are just strings, which are by definition always constant, so we need not consid-
er them.)

test/parse_spec.js
it('marks objects constant when values are constant', function() {
 expect(parse('{a: 1, b: 2}').constant).toBe(true);
 expect(parse('{a: 1, b: {c: 3}}').constant).toBe(true);
 expect(parse('{a: 1, b: something}').constant).toBe(false);
 expect(parse('{a: 1, b: {c: something}}').constant).toBe(false);
});

We implement this by iterating over the object properties and marking their values:

src/parse.js
case AST.ObjectExpression:
 allConstants = true;
 _.forEach(ast.properties, function(property) {
 markConstantExpressions(property.value);
 allConstants = allConstants && property.value.constant;
 });
 ast.constant = allConstants;
 break;

this is not constant. It can’t be, since its value is the runtime Scope:

test/parse_spec.js
it('marks this as non-constant', function() {
 expect(parse('this').constant).toBe(false);
});

The implementations of markConstantExpressions for ThisExpression and LocalsEx-
pression are unsurprising:

src/parse.js
case AST.ThisExpression:
case AST.LocalsExpression:
 ast.constant = false;
 break;

Literal And Constant Expressions 16

359 Errata© Tero Parviainen 2016

For non-computed lookup expressions, constantness is defined in terms of the constantness of the
object from which we’re looking things up:

test/parse_spec.js
it('marks non-computed lookup constant when object is constant', function() {
 expect(parse('{a: 1}.a').constant).toBe(true);
 expect(parse('obj.a').constant).toBe(false);
});

When we have a lookup, we first visit the object and then set the constant flag:

src/parse.js
case AST.MemberExpression:
 markConstantExpressions(ast.object);
 ast.constant = ast.object.constant;
 break;

When we extend our consideration to computed lookups, we should also see if the lookup key is
constant or not:

test/parse_spec.js
it('marks computed lookup constant when object and key are', function() {
 expect(parse('{a: 1}["a"]').constant).toBe(true);
 expect(parse('obj["a"]').constant).toBe(false);
 expect(parse('{a: 1}[something]').constant).toBe(false);
 expect(parse('obj[something]').constant).toBe(false);
});

If the lookup is computed, we additionally visit the property node:

src/parse.js
case AST.MemberExpression:
 markConstantExpressions(ast.object);
 if (ast.computed) {
 markConstantExpressions(ast.property);
 }
 ast.constant = ast.object.constant &&
 (!ast.computed || ast.property.constant);
 break;

A call expression is not constant - we cannot make such assumptions about the nature of the func-
tion being called:

test/parse_spec.js
it('marks function calls non-constant', function() {
 expect(parse('aFunction()').constant).toBe(false);

Literal And Constant Expressions 16

360 Errata© Tero Parviainen 2016

});

We can just set the flag to false:

src/parse.js
case AST.CallExpression:
 ast.constant = false;
 break;

A special case for this are filters. They are also call expressions but unlike regular function calls,
they are considered constant if their input expressions are constant:

test/parse_spec.js
it('marks filters constant if arguments are', function() {
 register('aFilter', function() {
 return _.identity;
 });
 expect(parse('[1, 2, 3] | aFilter').constant).toBe(true);
 expect(parse('[1, 2, a] | aFilter').constant).toBe(false);
 expect(parse('[1, 2, 3] | aFilter:42').constant).toBe(true);
 expect(parse('[1, 2, 3] | aFilter:a').constant).toBe(false);
});

We can repeat the same trick here as we did with arrays and objects: Iterate over the arguments
array and set the constant flag only if everything in it is constant. Note that we initialize the value
based on the filter flag of the node, so that for non-filter calls the flag never becomes true:

src/parse.js
case AST.CallExpression:
 allConstants = ast.filter ? true : false;
 _.forEach(ast.arguments, function(arg) {
 markConstantExpressions(arg);
 allConstants = allConstants && arg.constant;
 });
 ast.constant = allConstants;
 break;

There are cases where filter calls are not constant even if their arguments are. We will return to this later in
the chapter.

An assignment expression is in fact constant when both of its sides are constant, even though an
assignment with a constant left-hand side is otherwise nonsensical:

test/parse_spec.js
it('marks assignments constant when both sides are', function() {
 expect(parse('1 = 2').constant).toBe(true);
 expect(parse('a = 2').constant).toBe(false);

Literal And Constant Expressions 16

361 Errata© Tero Parviainen 2016

 expect(parse('1 = b').constant).toBe(false);
 expect(parse('a = b').constant).toBe(false);
});

We should visit both sides of the assignment and set the constant flag based on the results:

src/parse.js
case AST.AssignmentExpression:
 markConstantExpressions(ast.left);
 markConstantExpressions(ast.right);
 ast.constant = ast.left.constant && ast.right.constant;
 break;

A unary operator expression is constant if and only if its argument is constant:

test/parse_spec.js
it('marks unaries constant when arguments are constant', function() {
 expect(parse('+42').constant).toBe(true);
 expect(parse('+a').constant).toBe(false);
});

In the implementation we first visit the argument and then check the flag based on that:

case AST.UnaryExpression:
 markConstantExpressions(ast.argument);
 ast.constant = ast.argument.constant;
 break;

The constantness of binary and logical expressions is based on the constantness of their left and
right arguments. If both arguments are constant, the whole expression is constant:

test/parse_spec.js
it('marks binaries constant when both arguments are constant', function() {
 expect(parse('1 + 2').constant).toBe(true);
 expect(parse('1 + 2').literal).toBe(false);
 expect(parse('1 + a').constant).toBe(false);
 expect(parse('a + 1').constant).toBe(false);
 expect(parse('a + a').constant).toBe(false);
});

it('marks logicals constant when both arguments are constant', function() {
 expect(parse('true && false').constant).toBe(true);
 expect(parse('true && false').literal).toBe(false);
 expect(parse('true && a').constant).toBe(false);
 expect(parse('a && false').constant).toBe(false);
 expect(parse('a && b').constant).toBe(false);
});

Optimizing Constant Expression Watching 16

362 Errata© Tero Parviainen 2016

In the implementation for these two we first visit the left and right argument nodes and then form
the constant flag for the expression itself:

src/parse.js
case AST.BinaryExpression:
case AST.LogicalExpression:
 markConstantExpressions(ast.left);
 markConstantExpressions(ast.right);
 ast.constant = ast.left.constant && ast.right.constant;
 break;

Finally, the ternary operator is constant if all of the three of its operands are constant:

test/parse_spec.js
it('marks ternaries constant when all arguments are', function() {
 expect(parse('true ? 1 : 2').constant).toBe(true);
 expect(parse('a ? 1 : 2').constant).toBe(false);
 expect(parse('true ? a : 2').constant).toBe(false);
 expect(parse('true ? 1 : b').constant).toBe(false);
 expect(parse('a ? b : c').constant).toBe(false);
});

Here we visit each of the three operand nodes first, before forming the result:

src/parse.js
case AST.ConditionalExpression:
 markConstantExpressions(ast.test);
 markConstantExpressions(ast.consequent);
 markConstantExpressions(ast.alternate);
 ast.constant =
 ast.test.constant && ast.consequent.constant && ast.alternate.constant;
 break;

And now we have implemented a full tree-walking function for marking all kinds of expressions as
constant or non-constant.

Optimizing Constant Expression Watching

Using expression strings in watches enables us to add a new optimization that will in some cases
make the digest loop go faster. In the previous section we saw how constant expressions have their
constant flag set to true. A constant expression will always return the same value. This means
that after a watch with a constant expression has been triggered for the first time, it’ll never become
dirty again. That means we can safely remove the watch so that we don’t have to incur the cost of
dirty-checking in future digests. Add this test in the describe(‘$digest’) test block of scope_
spec.js:

Optimizing Constant Expression Watching 16

363 Errata© Tero Parviainen 2016

test/scope_spec.js
it('removes constant watches after first invocation', function() {
 scope.$watch('[1, 2, 3]', function() {});
 scope.$digest();

 expect(scope.$$watchers.length).toBe(0);
});

This test case throws a “10 iterations reached” exception at the moment, because the expression
generates a new array each time it’s evaluated, and the reference watch considers it a new value.
Since [1, 2, 3] is a constant, it should not be evaluated more than once.

This optimization can be implemented with a new expression feature called watch delegates. A
watch delegate is a function that may be attached to an expression. When an expression with a
watch delegate is encountered in Scope.$watch, that delegate is used to bypass normal watch
creation. Instead of creating a watcher, we delegate that job to the expression itself:

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn, valueEq) {
 var self = this;

 watchFn = parse(watchFn);

 if (watchFn.$$watchDelegate) {
 return watchFn.$$watchDelegate(self, listenerFn, valueEq, watchFn);
 }

 var watcher = {
 watchFn: watchFn,
 listenerFn: listenerFn || function() { },
 last: initWatchVal,
 valueEq: !!valueEq
 };
 this.$$watchers.unshift(watcher);
 this.$$root.$$lastDirtyWatch = null;
 return function() {
 var index = self.$$watchers.indexOf(watcher);
 if (index >= 0) {
 self.$$watchers.splice(index, 1);
 self.$$root.$$lastDirtyWatch = null;
 }
 };
};

The delegate is given everything it might need to know to construct the watch correctly: The scope
instance, the listener function, the value/reference equality flag, and the watch expression itself.

As the two dollar signs in the name attest, watch delegates are designed to be an internal facility in the An-
gular framework, not something for application developers to use directly.

Optimizing Constant Expression Watching 16

364 Errata© Tero Parviainen 2016

The expression parser can now attach watch delegates to expressions whenever it wants something
special to happen when those expressions are used in watches. One instance of this is constant
expressions, for which we can now introduce a constant watch delegate:

src/parse.js
function parse(expr) {
 switch (typeof expr) {
 case 'string':
 var lexer = new Lexer();
 var parser = new Parser(lexer);
 var parseFn = parser.parse(expr);
 if (parseFn.constant) {
 parseFn.$$watchDelegate = constantWatchDelegate;
 }
 return parseFn;
 case 'function':
 return expr;
 default:
 return _.noop;
 }
}

The constant watch delegate is a watcher that behaves like any other watcher, except that it re-
moves itself immediately upon first invocation:

src/parse.js
function constantWatchDelegate(scope, listenerFn, valueEq, watchFn) {
 var unwatch = scope.$watch(
 function() {
 return watchFn(scope);
 },
 function(newValue, oldValue, scope) {
 if (_.isFunction(listenerFn)) {
 listenerFn.apply(this, arguments);
 }
 unwatch();
 },
 valueEq
);
 return unwatch;
}

Note that we don’t use the original watchFn directly as the first argument to $watch, because if
we did, $watch would find the $$watchDelegate from it again, resulting in infinite recursion.
Instead we wrap it in a function that has no $$watchDelegate.

Note also that we return the unwatch function. Even though a constant watch removes itself after
its first invocation, it can also be removed by using the return value from Scope.$watch, just like

One-Time Expressions 16

365 Errata© Tero Parviainen 2016

any other watch.

One-Time Expressions

As Angular application developers we often run into situations where we know that after some
watch first gets a value, that value will never change. A typical example of this is something like a
list of objects:

<li ng-repeat="user in users">
 {{user.firstName}} {{user.lastName}}

This snippet uses a collection watcher with ng-repeat, but it also uses two more watchers per each
user - one for the first name and one for the last name.

It is quite common that in a list like this, the first and last names of a given user don’t change,
because they are read-only - there is no application logic that mutates them. Nevertheless, Angu-
lar now has to dirty-check them in each digest, because it doesn’t know you have no intention of
changing them. This kind of unnecessary dirty-checking can be a significant performance issue in
large applications and on low end devices.

Angular has a feature called one-time binding for getting around this. When you know that the value
of a watcher will never change as long as the watcher exists, you can let Angular know about that
by prefixing the watch expression with two colon characters:

<li ng-repeat="user in users">
 {{::user.firstName}} {{::user.lastName}}

The one-time watching syntax is implemented in the expression engine and you can use it in any
watch expression:

test/scope_spec.js
it('accepts one-time watches', function() {
 var theValue;

 scope.aValue = 42;
 scope.$watch('::aValue', function(newValue, oldValue, scope) {
 theValue = newValue;
 });
 scope.$digest();

 expect(theValue).toBe(42);
});

The crucial difference between one-time watchers and regular watchers is that when a one-time

One-Time Expressions 16

366 Errata© Tero Parviainen 2016

watcher has been resolved, it is automatically removed so that it doesn’t put any more pressure on
the digest loop:

test/scope_spec.js
it('removes one-time watches after first invocation', function() {
 scope.aValue = 42;
 scope.$watch('::aValue', function() { });
 scope.$digest();

 expect(scope.$$watchers.length).toBe(0);
});

One-time watching is handled completely within parse.js, by making use of the watch delegate
system we introduced in the previous section. If the expression is preceded by two colons, a “one-
time watch delegate” will be attached to it:

src/parse.js
function parse(expr) {
 switch (typeof expr) {
 case 'string':
 var lexer = new Lexer();
 var parser = new Parser(lexer);
 var oneTime = false;
 if (expr.charAt(0) === ':' && expr.charAt(1) === ':') {
 oneTime = true;
 expr = expr.substring(2);
 }
 var parseFn = parser.parse(expr);
 if (parseFn.constant) {
 parseFn.$$watchDelegate = constantWatchDelegate;
 } else if (oneTime) {
 parseFn.$$watchDelegate = oneTimeWatchDelegate;
 }
 return parseFn;
 case 'function':
 return expr;
 default:
 return _.noop;
 }
}

On the surface level, the contract of the one-time watch delegate seems exactly the same as that of
the constant watch delegate: Run the watch once and then remove it. Indeed, our current test suite
passes if we implement the one-time watch delegate with identical behavior as the constant watch
delegate:

src/parse.js
function oneTimeWatchDelegate(scope, listenerFn, valueEq, watchFn) {
 var unwatch = scope.$watch(

One-Time Expressions 16

367 Errata© Tero Parviainen 2016

 function() {
 return watchFn(scope);
 }, function(newValue, oldValue, scope) {
 if (_.isFunction(listenerFn)) {
 listenerFn.apply(this, arguments);
 }
 unwatch();
 }, valueEq
);
 return unwatch;
}

There is a problem with this though, which is that unlike constants, a one-time expression might
not always have a value when it is evaluated for the first time. We might still be waiting for the
data to come back from a server, for example. One-time expressions are much more useful if they
can support these kinds of asynchronous use cases. That’s why they should only be removed when their
value becomes something else than undefined:

test/scope_spec.js
it('does not remove one-time-watches until value is defined', function() {
 scope.$watch('::aValue', function() { });

 scope.$digest();
 expect(scope.$$watchers.length).toBe(1);

 scope.aValue = 42;
 scope.$digest();
 expect(scope.$$watchers.length).toBe(0);
});

We can make this test pass by guarding the unwatch() invocation with an if statement:

src/parse.js
function oneTimeWatchDelegate(scope, listenerFn, valueEq, watchFn) {
 var unwatch = scope.$watch(
 function() {
 return watchFn(scope);
 }, function(newValue, oldValue, scope) {
 if (_.isFunction(listenerFn)) {
 listenerFn.apply(this, arguments);
 }
 if (!_.isUndefined(newValue)) {
 unwatch();
 }
 }, valueEq
);
 return unwatch;
}

One-Time Expressions 16

368 Errata© Tero Parviainen 2016

This is still not quite good enough though. As we’ve seen, a lot of things may happen during a
digest, and one of those things may be that the expression value becomes undefined again. Angu-
lar’s one-time expressions are only removed when the value is stabilized, which means that it must
be something else than undefined at the end of a digest:

test/scope_spec.js
it('does not remove one-time-watches until value stays defined', function() {
 scope.aValue = 42;

 scope.$watch('::aValue', function() { });
 var unwatchDeleter = scope.$watch('aValue', function() {
 delete scope.aValue;
 });

 scope.$digest();
 expect(scope.$$watchers.length).toBe(2);

 scope.aValue = 42;
 unwatchDeleter();
 scope.$digest();
 expect(scope.$$watchers.length).toBe(0);
});

In this test we have a second watcher that causes the value of the one-time watcher to become
undefined during the digest. While that second watcher is still alive, the one-time watcher does not
stabilize and should not be removed.

We must keep track of the last value seen by the one-time watch, and after the digest check whether
it is defined. Only then do we remove the watcher. We can defer the removal using the $$postDi-
gest method:

src/parse.js
function oneTimeWatchDelegate(scope, listenerFn, valueEq, watchFn) {
 var lastValue;
 var unwatch = scope.$watch(
 function() {
 return watchFn(scope);
 }, function(newValue, oldValue, scope) {
 lastValue = newValue;
 if (_.isFunction(listenerFn)) {
 listenerFn.apply(this, arguments);
 }
 if (!_.isUndefined(newValue)) {
 scope.$$postDigest(function() {
 if (!_.isUndefined(lastValue)) {
 unwatch();
 }
 });
 }

One-Time Expressions 16

369 Errata© Tero Parviainen 2016

 }, valueEq
);
 return unwatch;
}

This is already pretty good, but there’s one more special case one-time watches should handle for
us: When used with a collection literal, such as an array or an object, one-time watches check if the
values inside the literal are all defined before removing itself. For example, when one-time watch-
ing an array literal, the watch is only removed after the array does not have any undefined items in
it:

test/scope_spec.js
it('does not remove one-time watches before all array items defined', function() {
 scope.$watch('::[1, 2, aValue]', function() { }, true);

 scope.$digest();
 expect(scope.$$watchers.length).toBe(1);

 scope.aValue = 3;
 scope.$digest();
 expect(scope.$$watchers.length).toBe(0);
});

The same is true for objects. A one-time watch for an object literal is only removed when the ob-
ject has no undefined values:

test/scope_spec.js
it('does not remove one-time watches before all object vals defined', function() {
 scope.$watch('::{a: 1, b: aValue}', function() { }, true);

 scope.$digest();
 expect(scope.$$watchers.length).toBe(1);

 scope.aValue = 3;
 scope.$digest();
 expect(scope.$$watchers.length).toBe(0);
});

This feature enables one-time binding in directives that are configured with an object literal syntax, such as
ngClass and ngStyle.

If the expression is a literal, we should use a special “one time literal watch” delegate for it, in-
stead of the normal one time watch delegate:

src/parse.js
function parse(expr) {
 switch (typeof expr) {
 case 'string':

One-Time Expressions 16

370 Errata© Tero Parviainen 2016

 var lexer = new Lexer();
 var parser = new Parser(lexer);
 var oneTime = false;
 if (expr.charAt(0) === ':' && expr.charAt(1) === ':') {
 oneTime = true;
 expr = expr.substring(2);
 }
 var parseFn = parser.parse(expr);

 if (parseFn.constant) {
 parseFn.$$watchDelegate = constantWatchDelegate;
 } else if (oneTime) {
 parseFn.$$watchDelegate = parseFn.literal ? oneTimeLiteralWatchDelegate :
 oneTimeWatchDelegate;
 }

 return parseFn;
 case 'function':
 return expr;
 default:
 return _.noop;
 }
}

This new delegate is similar to the one-time watch delegate, but instead of checking if the expres-
sion value itself is defined, it assumes it is a collection and checks whether all of its
contained items are defined:

src/parse.js
function oneTimeLiteralWatchDelegate(scope, listenerFn, valueEq, watchFn) {
 function isAllDefined(val) {
 return !_.any(val, _.isUndefined);
 }
 var unwatch = scope.$watch(
 function() {
 return watchFn(scope);
 }, function(newValue, oldValue, scope) {
 if (_.isFunction(listenerFn)) {
 listenerFn.apply(this, arguments);
 }
 if (isAllDefined(newValue)) {
 scope.$$postDigest(function() {
 if (isAllDefined(newValue)) {
 unwatch();
 }
 });
 }
 }, valueEq
);
 return unwatch;
}

Input Tracking 16

371 Errata© Tero Parviainen 2016

Literal numbers, strings, booleans and undefined are also literals, but they never get passed to one-
TimeLiteralWatchDelegate because they are also constants and thus get delegated to constant-
WatchDelegate. The one-time literal delegate is only applied for arrays and objects that hold at least one
non-constant item.

Input Tracking

There’s one more optimization we can do with expression watching, which is something called
input tracking. The idea is that when an expression is composed of one or more input expressions
(like ’a * b’ is composed of ’a’ and ’b’), there is no need to re-evaluate the expression unless
at least one of its inputs has changed.

For example, an array literal expression should not change if none of its contained items has
changed:

test/scope_spec.js
it('does not re-evaluate an array if its contents do not change', function() {
 var values = [];

 scope.a = 1;
 scope.b = 2;
 scope.c = 3;

 scope.$watch('[a, b, c]', function(value) {
 values.push(value);
 });

 scope.$digest();
 expect(values.length).toBe(1);
 expect(values[0]).toEqual([1, 2, 3]);

 scope.$digest();
 expect(values.length).toBe(1);

 scope.c = 4;
 scope.$digest();
 expect(values.length).toBe(2);
 expect(values[1]).toEqual([1, 2, 4]);

});

Here we are watching a non-constant array. We digest three times. On the first time we expect the
listener to trigger with the value of the array. On the second time we expect the listener not to trig-
ger because the array contents haven’t changed. On the third time we mutate the contents of the
array and expect the listener to trigger again.

What actually occurs is a “10 $digest iterations reached” exception, because we are using a refer-

Input Tracking 16

372 Errata© Tero Parviainen 2016

ence watch, and the expression generates a new array reference on each invocation. It should not
do that.

What we’ll do is have each expression function created by the parser include information about
its input expressions - the expressions that may cause the whole expression’s value to change. We’re
essentially going to extend our AST compiler so that it compiles not only the full expression func-
tion, but also a collection of input expression functions for each of the full expression’s inputs.

Let’s consider the watcher side of the implementation first, before digging into the AST compiler.
As we parse an expression, if it is not constant or one-time but it does have inputs, it should have
an inputs attribute. If it does, we’ll use a special inputsWatchDelegate to watch it:

src/parse.js
function parse(expr) {
 switch (typeof expr) {
 case 'string':
 var lexer = new Lexer();
 var parser = new Parser(lexer);
 var oneTime = false;
 if (expr.charAt(0) === ':' && expr.charAt(1) === ':') {
 oneTime = true;
 expr = expr.substring(2);
 }
 var parseFn = parser.parse(expr);

 if (parseFn.constant) {
 parseFn.$$watchDelegate = constantWatchDelegate;
 } else if (oneTime) {
 parseFn.$$watchDelegate = parseFn.literal ? oneTimeLiteralWatchDelegate :
 oneTimeWatchDelegate;
 } else if (parseFn.inputs) {
 parseFn.$$watchDelegate = inputsWatchDelegate;
 }

 return parseFn;
 case 'function':
 return expr;
 default:
 return _.noop;
 }
}

The inputs watch delegate will implement a watcher in terms of the inputs of the given expression:

src/parse.js
function inputsWatchDelegate(scope, listenerFn, valueEq, watchFn) {
 var inputExpressions = watchFn.inputs;

 return scope.$watch(function() {

Input Tracking 16

373 Errata© Tero Parviainen 2016

 }, listenerFn, valueEq);
}

The input tracking is done by maintaining an array of the values of the input expressions. The
array is initalized with some initial “unique” values (an empty function literal), and then updated
on each watch run by evaluating each input expression against the scope:

src/parse.js
function inputsWatchDelegate(scope, listenerFn, valueEq, watchFn) {
 var inputExpressions = watchFn.inputs;

 var oldValues = _.times(inputExpressions.length, _.constant(function() { }));

 return scope.$watch(function() {
 _.forEach(inputExpressions, function(inputExpr, i) {
 var newValue = inputExpr(scope);
 if (!expressionInputDirtyCheck(newValue, oldValues[i])) {
 oldValues[i] = newValue;
 }
 });
 }, listenerFn, valueEq);
}

The actual dirty-checking is delegated to helper function that does a simple NaN-aware reference
equality check:

src/parse.js
function expressionInputDirtyCheck(newValue, oldValue) {
 return newValue === oldValue ||
 (typeof newValue === 'number' && typeof oldValue === 'number' &&
 isNaN(newValue) && isNaN(oldValue));
}

On each watch run, a changed flag is set if any of the inputs have actually changed:

src/parse.js
function inputsWatchDelegate(scope, listenerFn, valueEq, watchFn) {
 var inputExpressions = watchFn.inputs;

 var oldValues = _.times(inputExpressions.length, _.constant(function() { }));

 return scope.$watch(function() {
 var changed = false;
 _.forEach(inputExpressions, function(inputExpr, i) {
 var newValue = inputExpr(scope);
 if (changed || !expressionInputDirtyCheck(newValue, oldValues[i])) {
 changed = true;
 oldValues[i] = newValue;

Input Tracking 16

374 Errata© Tero Parviainen 2016

 }
 });
 }, listenerFn, valueEq);
}

If a change has occurred, a new value for the compound expression itself is evaluated. It is used as
the return value of the watch:

src/parse.js
function inputsWatchDelegate(scope, listenerFn, valueEq, watchFn) {
 var inputExpressions = watchFn.inputs;

 var oldValues = _.times(inputExpressions.length, _.constant(function() { }));
 var lastResult;

 return scope.$watch(function() {
 var changed = false;
 _.forEach(inputExpressions, function(inputExpr, i) {
 var newValue = inputExpr(scope);
 if (changed || !expressionInputDirtyCheck(newValue, oldValues[i])) {
 changed = true;
 oldValues[i] = newValue;
 }
 });
 if (changed) {
 lastResult = watchFn(scope);
 }
 return lastResult;
 }, listenerFn, valueEq);
}

The lastResult variable will continue holding the same value until at least one of the input ex-
pressions changes again.

The Angular.js implementation has one additional optimization in inputsWatchDelegate for expres-
sions that have a single input only. In those cases it skips the creation of the oldValues array, removing
some memory and computation overhead. We will skip that optimization here.

With the watch delegate taken care of, let’s think about how that inputs array it uses comes to be.
This brings us back to the AST compiler.

The process for forming inputs begins by determining what the inputs of an expression are.
Different kinds of expressions have different kinds of inputs, so the input nodes of each AST node
type need to be determined separately. This means we’re going to need a similar tree-walking func-
tion as the one we created for constant checking.

In fact, we’re not going to create a new tree-walking function, but extend the existing function so
that it does input checking in addition to constant checking. Let’s first rename it so it reflects its

Input Tracking 16

375 Errata© Tero Parviainen 2016

new purpose better:

src/parse.js
function markConstantAndWatchExpressions(ast) {
 var allConstants;
 switch (ast.type) {
 case AST.Program:
 allConstants = true;
 _.forEach(ast.body, function(expr) {
 markConstantAndWatchExpressions(expr);
 allConstants = allConstants && expr.constant;
 });
 ast.constant = allConstants;
 break;
 case AST.Literal:
 ast.constant = true;
 break;
 case AST.Identifier:
 ast.constant = false;
 break;
 case AST.ArrayExpression:
 allConstants = true;
 _.forEach(ast.elements, function(element) {
 markConstantAndWatchExpressions(element);
 allConstants = allConstants && element.constant;
 });
 ast.constant = allConstants;
 break;
 case AST.ObjectExpression:
 allConstants = true;
 _.forEach(ast.properties, function(property) {
 markConstantAndWatchExpressions(property.value);
 allConstants = allConstants && property.value.constant;
 });
 ast.constant = allConstants;
 break;
 case AST.ThisExpression:
 case AST.LocalsExpression:
 ast.constant = false;
 break;
 case AST.MemberExpression:
 markConstantAndWatchExpressions(ast.object);
 if (ast.computed) {
 markConstantAndWatchExpressions(ast.property);
 }
 ast.constant = ast.object.constant &&
 (!ast.computed || ast.property.constant);
 break;
 case AST.CallExpression:
 allConstants = ast.filter ? true : false;
 _.forEach(ast.arguments, function(arg) {
 markConstantAndWatchExpressions(arg);

Input Tracking 16

376 Errata© Tero Parviainen 2016

 allConstants = allConstants && arg.constant;
 });
 ast.constant = allConstants;
 break;
 case AST.AssignmentExpression:
 markConstantAndWatchExpressions(ast.left);
 markConstantAndWatchExpressions(ast.right);
 ast.constant = ast.left.constant && ast.right.constant;
 break;
 case AST.UnaryExpression:
 markConstantAndWatchExpressions(ast.argument);
 ast.constant = ast.argument.constant;
 break;
 case AST.BinaryExpression:
 case AST.LogicalExpression:
 markConstantAndWatchExpressions(ast.left);
 markConstantAndWatchExpressions(ast.right);
 ast.constant = ast.left.constant && ast.right.constant;
 break;
 case AST.ConditionalExpression:
 markConstantAndWatchExpressions(ast.test);
 markConstantAndWatchExpressions(ast.consequent);
 markConstantAndWatchExpressions(ast.alternate);
 ast.constant =
 ast.test.constant && ast.consequent.constant && ast.alternate.constant;
 break;
 }
}

The name change needs to be reflected in ASTCompiler.compile as well:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 // ...
};

What we’re now going to do in this function, in addition to marking constants, is gather the input
nodes of each AST node into a toWatch attribute. We’ll need a variable to gather those inputs in,
so let’s introduce it first:

src/parse.js
function markConstantAndWatchExpressions(ast) {
 var allConstants;
 var argsToWatch;
 // ...
}

Now, let’s consider the inputs of each node type in turn. For each node type, we need to think

Input Tracking 16

377 Errata© Tero Parviainen 2016

“when would the value of this expression change?”

For literals, there is nothing to watch - simple literals never change:

src/parse.js
case AST.Literal:
 ast.constant = true;
 ast.toWatch = [];
 break;

For identifier expressions, what needs to be watched is the expression itself. There are no smaller
parts that it could be broken into:

src/parse.js
case AST.Identifier:
 ast.constant = false;
 ast.toWatch = [ast];
 break;

For arrays, we need to watch all the inputs of any non-constant elements in the array:

src/parse.js
case AST.ArrayExpression:
 allConstants = true;
 argsToWatch = [];
 _.forEach(ast.elements, function(element) {
 markConstantAndWatchExpressions(element);
 allConstants = allConstants && element.constant;
 if (!element.constant) {
 argsToWatch.push.apply(argsToWatch, element.toWatch);
 }
 });
 ast.constant = allConstants;
 ast.toWatch = argsToWatch;
 break;

Ditto for objects, inputs are based on the inputs of non-constant values inside the object:

src/parse.js
case AST.ObjectExpression:
 allConstants = true;
 argsToWatch = [];
 _.forEach(ast.properties, function(property) {
 markConstantAndWatchExpressions(property.value);
 allConstants = allConstants && property.value.constant;
 if (!property.value.constant) {
 argsToWatch.push.apply(argsToWatch, property.value.toWatch);
 }

Input Tracking 16

378 Errata© Tero Parviainen 2016

 });
 ast.constant = allConstants;
 ast.toWatch = argsToWatch;
 break;

this and $locals have no inputs:

src/parse.js
case AST.ThisExpression:
case AST.LocalsExpression:
 ast.constant = false;
 ast.toWatch = [];
 break;

A member expression, like an identifier, has no separate inputs. What needs to be watched is the
expression itself:

src/parse.js
case AST.MemberExpression:
 markConstantAndWatchExpressions(ast.object);
 if (ast.computed) {
 markConstantAndWatchExpressions(ast.property);
 }
 ast.constant = ast.object.constant &&
 (!ast.computed || ast.property.constant);
 ast.toWatch = [ast];
 break;

A call expression’s input is considered to be the call itself, unless it is a filter, in which case the
inputs are formed of its non-constant arguments:

src/parse.js
case AST.CallExpression:
 allConstants = ast.filter ? true : false;
 argsToWatch = [];
 _.forEach(ast.arguments, function(arg) {
 markConstantAndWatchExpressions(arg);
 allConstants = allConstants && arg.constant;
 if (!arg.constant) {
 argsToWatch.push.apply(argsToWatch, arg.toWatch);
 }
 });
 ast.constant = allConstants;
 ast.toWatch = ast.filter ? argsToWatch : [ast];
 break;

For assignments, the input is the node itself:

Input Tracking 16

379 Errata© Tero Parviainen 2016

src/parse.js
case AST.AssignmentExpression:
 markConstantAndWatchExpressions(ast.left);
 markConstantAndWatchExpressions(ast.right);
 ast.constant = ast.left.constant && ast.right.constant;
 ast.toWatch = [ast];
 break;

For unary operator expressions we should watch the inputs of the argument - there’s no need to
apply the operator again except when the argument changes:

src/parse.js
case AST.UnaryExpression:
 markConstantAndWatchExpressions(ast.argument);
 ast.constant = ast.argument.constant;
 ast.toWatch = ast.argument.toWatch;
 break;

For binary expressions we need to watch the inputs of both the left and right arguments:

src/parse.js
case AST.BinaryExpression:
case AST.LogicalExpression:
 markConstantAndWatchExpressions(ast.left);
 markConstantAndWatchExpressions(ast.right);
 ast.constant = ast.left.constant && ast.right.constant;
 ast.toWatch = ast.left.toWatch.concat(ast.right.toWatch);
 break;

We should be careful not to apply this for logical operator expressions though. If we watch both
the left and right side inputs, we may end up breaking the short-circuiting behavior of AND and
OR. So at this point we need to separate the implementations for BinaryExpression and Logi-
calExpression, and set the input of LogicalExpression to itself:

src/parse.js
case AST.BinaryExpression:
 markConstantAndWatchExpressions(ast.left);
 markConstantAndWatchExpressions(ast.right);
 ast.constant = ast.left.constant && ast.right.constant;
 ast.toWatch = ast.left.toWatch.concat(ast.right.toWatch);
 break;
case AST.LogicalExpression:
 markConstantAndWatchExpressions(ast.left);
 markConstantAndWatchExpressions(ast.right);
 ast.constant = ast.left.constant && ast.right.constant;
 ast.toWatch = [ast];
 break;

Input Tracking 16

380 Errata© Tero Parviainen 2016

Finally, for conditional expressions the input is again the expression itself. Here too we need to be
careful not to undo the short-circuiting so we can’t break the expression into its inputs:

src/parse.js
case AST.ConditionalExpression:
 markConstantAndWatchExpressions(ast.test);
 markConstantAndWatchExpressions(ast.consequent);
 markConstantAndWatchExpressions(ast.alternate);
 ast.constant =
 ast.test.constant && ast.consequent.constant && ast.alternate.constant;
 ast.toWatch = [ast];
 break;

At this point we have an implementation of markConstantAndWatchExpressions after which
every node in the AST (except for Program) will have a toWatch array. When possible, each node
points to the input nodes of that node. When input tracking is not possible, the array will contain
the node itself. In any case, we can now make use of this information to implement input tracking.

We have the toWatch arrays in AST nodes, and expect to have the inputs arrays in expression
functions. What remains to be done is to connect those two. The AST compiler will need to sepa-
rately compile the input nodes of the main expression node.

Let’s first refactor the compiler so that it can actually have several compilation targets. Currently
we are emitting all JavaScript into the array this.state.body and all variable names into this.
state.vars. Since we’re soon going to need to compile multiple functions, we need to change
this so that the body and vars may go into different places depending on what we’re currently com-
piling.

Let’s “wrap” the body and vars in the compiler state into an intermediate object called fn:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {}
 };
 // ...
};

Then, let’s set a computing attribute on the state to the value ’fn’ before calling recurse:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);

Input Tracking 16

381 Errata© Tero Parviainen 2016

 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {}
 };
 this.state.computing = 'fn';
 this.recurse(ast);

What this says is “whatever you emit, put it in the fn object of state because that’s what we’re
currently computing”. Let’s fulfill that requirement by updating all the locations where we emit
code or vars to use the computing attribute.

In the AST.Program branch of recurse:

src/parse.js
case AST.Program:
 .forEach(.initial(ast.body), _.bind(function(stmt) {
 this.state[this.state.computing].body.push(this.recurse(stmt), ';');
 }, this));
 this.state[this.state.computing].body.push(
 'return ', this.recurse(_.last(ast.body)), ';');
 break;

In the AST.LogicalExpression branch of recurse:

src/parse.js

case AST.LogicalExpression:
 intoId = this.nextId();
 this.state[this.state.computing].body.push(
 this.assign(intoId, this.recurse(ast.left)));
 this.if_(ast.operator === '&&' ? intoId : this.not(intoId),
 this.assign(intoId, this.recurse(ast.right)));
 return intoId;

In the AST.ConditionalExpression branch of recurse:

src/parse.js
case AST.ConditionalExpression:
 intoId = this.nextId();
 var testId = this.nextId();
 this.state[this.state.computing].body.push(
 this.assign(testId, this.recurse(ast.test)));
 this.if_(testId,
 this.assign(intoId, this.recurse(ast.consequent)));
 this.if_(this.not(testId),
 this.assign(intoId, this.recurse(ast.alternate)));

Input Tracking 16

382 Errata© Tero Parviainen 2016

 return intoId;

In nextId:

src/parse.js
ASTCompiler.prototype.nextId = function(skip) {
 var id = 'v' + (this.state.nextId++);
 if (!skip) {
 this.state[this.state.computing].vars.push(id);
 }
 return id;
};

In if_:

src/parse.js
ASTCompiler.prototype.if_ = function(test, consequent) {
 this.state[this.state.computing].body.push(
 'if(', test, '){', consequent, '}');
};

And in addEnsureSafeMemberName, addEnsureSafeObject, and addEnsureSafeFunction:

src/parse.js
ASTCompiler.prototype.addEnsureSafeMemberName = function(expr) {
 this.state[this.state.computing].body.push(
 'ensureSafeMemberName(' + expr + ');');
};
ASTCompiler.prototype.addEnsureSafeObject = function(expr) {
 this.state[this.state.computing].body.push(
 'ensureSafeObject(' + expr + ');');
};
ASTCompiler.prototype.addEnsureSafeFunction = function(expr) {
 this.state[this.state.computing].body.push(
 'ensureSafeFunction(' + expr + ');');
};

Now that we’ve changed the location of our generated code, we need to also change where we
read it from when generating the function:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {}

Input Tracking 16

383 Errata© Tero Parviainen 2016

 };
 this.state.computing = 'fn';
 this.recurse(ast);
 var fnString = this.filterPrefix() +
 'var fn=function(s,l){' +
 (this.state.fn.vars.length ?
 'var ' + this.state.fn.vars.join(',') + ';' :
 ''
) +
 this.state.fn.body.join('') +
 '}; return fn;';
 /* jshint -W054 */
 var fn = new Function(
 'ensureSafeMemberName',
 'ensureSafeObject',
 'ensureSafeFunction',
 'ifDefined',
 'filter',
 fnString)(
 ensureSafeMemberName,
 ensureSafeObject,
 ensureSafeFunction,
 ifDefined,
 filter);
 /* jshint +W054 */
 fn.literal = isLiteral(ast);
 fn.constant = ast.constant;
 return fn;
};
The reason we did all this refactoring is that now we can reuse all that compilation code to also
compile the input functions based on the toWatch attribute of AST nodes. We’re going to track
the generated inputs using an inputs array in the compiler state:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {},
 inputs: []
 };
 // ...
};

The compilation of input functions will be done right before we compile the main expression func-
tion itself:

src/parse.js

Input Tracking 16

384 Errata© Tero Parviainen 2016

ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {},
 inputs: []
 };
 _.forEach(getInputs(ast.body), function(input) {

 });
 this.state.computing = 'fn';
 this.recurse(ast);
 // ...
};

The getInputs helper function used here is where we get the inputs of the top-level AST node.
We only do it if the program body consists of one expression and if the expression’s inputs are
something else than the expression itself:

src/parse.js
function getInputs(ast) {
 if (ast.length !== 1) {
 return;
 }
 var candidate = ast[0].toWatch;
 if (candidate.length !== 1 || candidate[0] !== ast[0]) {
 return candidate;
 }
}

Inside the loop we will now compile each input expression function. We generate a unique “input
key” for each input, initialize the compiler state for it, and then set it as the value of computing.
When we then call recurse, the generated code will go into the right place. Finally we generate
the final return statement for the function, and add the input key to the inputs array.

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {},
 inputs: []
 };
 _.forEach(getInputs(ast.body), _.bind(function(input, idx) {
 var inputKey = 'fn' + idx;
 this.state[inputKey] = {body: [], vars: []};

Input Tracking 16

385 Errata© Tero Parviainen 2016

 this.state.computing = inputKey;
 this.state[inputKey].body.push('return ' + this.recurse(input) + ';');
 this.state.inputs.push(inputKey);
 }, this));
 this.state.computing = 'fn';
 this.recurse(ast);
 // ...
};

At this point we have the names of each generated input expression in state.inputs and also
the generated code nested inside the state. What remains to be done is the attachment of the gener-
ated input functions into the main expression function. We’ll do it using a method called watch-
Fns:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {},
 inputs: []
 };
 _.forEach(getInputs(ast.body), _.bind(function(input, idx) {
 var inputKey = 'fn' + idx;
 this.state[inputKey] = {body: [], vars: []};
 this.state.computing = inputKey;
 this.state[inputKey].body.push('return ' + this.recurse(input) + ';');
 this.state.inputs.push(inputKey);
 }, this));
 this.state.computing = 'fn';
 this.recurse(ast);
 var fnString = this.filterPrefix() +
 'var fn=function(s,l){' +
 (this.state.fn.vars.length ?
 'var ' + this.state.fn.vars.join(',') + ';' :
 ''
) +
 this.state.fn.body.join('') +
 '};' +
 this.watchFns() +
 ' return fn;';
 // ...
};

What watchFns does is go through the inputs we have collected into the compiler state. It col-
lects an array of JavaScript code fragments and joins them into a single string that it then returns:

src/parse.js

Input Tracking 16

386 Errata© Tero Parviainen 2016

ASTCompiler.prototype.watchFns = function() {
 var result = [];
 _.forEach(this.state.inputs, _.bind(function(inputName) {

 }, this));
 return result.join('');
};

A JavaScript function is generated for each of the inputs, based on the vars and body stored in the
compiler state for that input key. The function is generated similarly as the main expression func-
tion: Var declarations first, then the body. The function takes a single argument, which is (presum-
ably) a scope:

src/parse.js
ASTCompiler.prototype.watchFns = function() {
 var result = [];
 _.forEach(this.state.inputs, _.bind(function(inputName) {
 result.push('var ', inputName, '=function(s) {',
 (this.state[inputName].vars.length ?
 'var ' + this.state[inputName].vars.join(',') + ';' :
 ''
),
 this.state[inputName].body.join(''),
 '};');
 }, this));
 return result.join('');
};

A statement that actually puts the input array in the generated main function is also generated. It
contains references to all the generated input functions:

src/parse.js
ASTCompiler.prototype.watchFns = function() {
 var result = [];
 _.forEach(this.state.inputs, _.bind(function(inputName) {
 result.push('var ', inputName, '=function(s) {',
 (this.state[inputName].vars.length ?
 'var ' + this.state[inputName].vars.join(',') + ';' :
 ''
),
 this.state[inputName].body.join(''),
 '};');
 }, this));
 if (result.length) {
 result.push('fn.inputs = [', this.state.inputs.join(','), '];');
 }
 return result.join('');
};

The one remaining factor we have to consider before our test passes is the role of locals in input

Input Tracking 16

387 Errata© Tero Parviainen 2016

expressions. As you may have noticed, the input functions generated in watchFns do not take the
locals l argument. That is because in inputs we do not consider locals at all.

The problem with this is that we have some code generated in the AST.Identifier branch of
recurse that requires l to always be present. We need to change this. Let’s set an attribute on
the compiler that marks whether what is currently being compiled are input functions or the main
expression function:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {},
 inputs: []
 };
 this.stage = 'inputs';
 _.forEach(getInputs(ast.body), _.bind(function(input, idx) {
 var inputKey = 'fn' + idx;
 this.state[inputKey] = {body: [], vars: []};
 this.state.computing = inputKey;
 this.state[inputKey].body.push('return ' + this.recurse(input) + ';');
 this.state.inputs.push(inputKey);
 }, this));
 this.stage = 'main';
 this.state.computing = 'fn';
 this.recurse(ast);
 // ...
};

Now, when generating the code for AST.Identifier, we’ll do the locals property check differently
based on the compiler stage. When compiling inputs, it’s always going to be false. When compil-
ing the main function, it will be based on the getHasOwnProperty check as before:

src/parse.js
case AST.Identifier:
 ensureSafeMemberName(ast.name);
 intoId = this.nextId();
 var localsCheck;
 if (this.stage === 'inputs') {
 localsCheck = 'false';
 } else {
 localsCheck = this.getHasOwnProperty('l', ast.name);
 }
 this.if_(localsCheck,
 this.assign(intoId, this.nonComputedMember('l', ast.name)));
 if (create) {

Stateful Filters 16

388 Errata© Tero Parviainen 2016

 this.if_(this.not(localsCheck) +
 ' && s && ' +
 this.not(this.getHasOwnProperty('s', ast.name)),
 this.assign(this.nonComputedMember('s', ast.name), '{}'));
 }
 this.if_(this.not(localsCheck) + ' && s',
 this.assign(intoId, this.nonComputedMember('s', ast.name)));
 if (context) {
 context.context = localsCheck + '?l:s';
 context.name = ast.name;
 context.computed = false;
 }
 this.addEnsureSafeObject(intoId);
 return intoId;

And there we have an implementation of input tracking. It ended up involving quite a large num-
ber of changes, but it can also be a very powerful optimization. In summary, this is what now
happens:

1. The compiler visits each AST node and sets its toWatch attribute based on its input nodes,
when applicable.

2. The compiler generates a separate JavaScript function body for each input of the top-level ex-
pression. The inputs are determined based on the toWatch attribute populated in the previous
step.

3. The compiler’s watchFns method generates input expression functions for each of the bodies
copiled in the previous step. It attaches them to the inputs attribute of the main expression
function.

4. An inputs watch delegate is attached to the expression when it is being watched.
5. Instead of watching the main expression function, the inputs watch delegate watches each of

the functions it finds in inputs.

Stateful Filters

As we’ve implemented the constant optimizations and input tracking in this chapter, we’ve seen
how filter call expressions are considered different from regular function call expressions: Filter
expressions are constant if their arguments are constant and only their inputs are watched for
changes.

There is a fairly significant assumption underlying this implementation, which is that a filter is
always expected to return the same result given the same inputs. In other words, it is expected that filters
are pure functions.

For most filters - including the filter filter that we implemented earlier - this is in fact the case. It
doesn’t matter when you call the filter filter, or how many times you call it. It will always return
the same value given the same input arguments. This is a nice property for functions to have, both
because it makes them easier to understand and because it allows for the kinds of optimizations

https://en.wikipedia.org/wiki/Pure_function

Stateful Filters 16

389 Errata© Tero Parviainen 2016

we have made: When the filter filter is used in an expression, we don’t actually need to recalculate
it unless its input array (or one of its other arguments) changes. This ends up being a very signifi-
cant performance gain in many applications.

Sometimes, however, this assumption does not hold. It is conceivable to have a filter whose value
may change even when its inputs don’t. One example of such a filter is one that embeds the cur-
rent time in the expression output. Angular allows you to put a special $stateful attribute on
these kinds of filters. If you set it to true, the constant and input tracking optimizations are not
applied to it:

test/scope_spec.js
it('allows $stateful filter value to change over time', function(done) {

 register('withTime', function() {
 return _.extend(function(v) {
 return new Date().toISOString() + ': ' + v;
 }, {
 $stateful: true
 });
 });

 var listenerSpy = jasmine.createSpy();
 scope.$watch('42 | withTime', listenerSpy);
 scope.$digest();
 var firstValue = listenerSpy.calls.mostRecent().args[0];

 setTimeout(function() {
 scope.$digest();
 var secondValue = listenerSpy.calls.mostRecent().args[0];
 expect(secondValue).not.toEqual(firstValue);
 done();
 }, 100);
});

We need to pull in the register function to scope_spec.js since we’re using it in the tests:

test/scope_spec.js
'use strict';

var _ = require('lodash');
var Scope = require('../src/scope');
var register = require('../src/filter').register;

This test fails because the watch is evaluating to the same value each time. That’s because it has a
constant input which doesn’t change. What we need to do is go to parse.js and disable the con-
stant and input tracking optimization for stateful filter calls.

src/parse.js

External Assignment 16

390 Errata© Tero Parviainen 2016

case AST.CallExpression:
 var stateless = ast.filter && !filter(ast.callee.name).$stateful;
 allConstants = stateless ? true : false;
 argsToWatch = [];
 _.forEach(ast.arguments, function(arg) {
 markConstantAndWatchExpressions(arg);
 allConstants = allConstants && arg.constant;
 if (!arg.constant) {
 argsToWatch.push.apply(argsToWatch, arg.toWatch);
 }
 });
 ast.constant = allConstants;
 ast.toWatch = stateless ? argsToWatch : [ast];
 break;

External Assignment

When expressions are evaluated, the point is usually to obtain their current value on a Scope. That
is what the whole data binding system in Angular is based on.

In some cases, a different mode of calling expressions is called for. That is to assign new values for
them on a Scope. Such a mode is exposed through the assign method that expression functions
have.

For example, if you have an expression like a.b. You can call it on a scope:

var exprFn = parse('a.b');
var scope = {a: {b: 42}};
exprFn(scope); // => 42

But you can also assign it on a scope, which means that we actually go and replace the expression’s
value on the given scope:

var exprFn = parse('a.b');
var scope = {a: {b: 42}};
exprFn.assign(scope, 43);
scope.a.b; // => 43

Later in the book we will make use of assign as we implement two-way binding for isolate
scopes.

This is essentially the logic of AssignmentExpression exposed externally as a function. Ex-
pressed as test cases, one should be able to assign both simple identifiers and nested members:

test/parse_spec.js
it('allows calling assign on identifier expressions', function() {
 var fn = parse('anAttribute');

External Assignment 16

391 Errata© Tero Parviainen 2016

 expect(fn.assign).toBeDefined();

 var scope = {};
 fn.assign(scope, 42);
 expect(scope.anAttribute).toBe(42);
});

it('allows calling assign on member expressions', function() {
 var fn = parse('anObject.anAttribute');
 expect(fn.assign).toBeDefined();

 var scope = {};
 fn.assign(scope, 42);
 expect(scope.anObject).toEqual({anAttribute: 42});
});

What we’re going to do is generate one more expression function, which will be attached as the
assign method of the main expression function. It has its own compiler state and compiler stage:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {},
 assign: {body: [], vars: []},
 inputs: []
 };
 this.stage = 'inputs';
 _.forEach(getInputs(ast.body), _.bind(function(input, idx) {
 var inputKey = 'fn' + idx;
 this.state[inputKey] = {body: [], vars: []};
 this.state.computing = inputKey;
 this.state[inputKey].body.push('return ' + this.recurse(input) + ';');
 this.state.inputs.push(inputKey);
 }, this));
 this.stage = 'assign';

 this.stage = 'main';
 this.state.computing = 'fn';
 this.recurse(ast);
 // ...
};

The assign method will only be generated if we can form something called an “assignable AST”
for the expression:

src/parse.js

External Assignment 16

392 Errata© Tero Parviainen 2016

ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {},
 assign: {body: [], vars: []},
 inputs: []
 };
 this.stage = 'inputs';
 _.forEach(getInputs(ast.body), _.bind(function(input, idx) {
 var inputKey = 'fn' + idx;
 this.state[inputKey] = {body: [], vars: []};
 this.state.computing = inputKey;
 this.state[inputKey].body.push('return ' + this.recurse(input) + ';');
 this.state.inputs.push(inputKey);
 }, this));
 this.stage = 'assign';
 var assignable = assignableAST(ast);
 if (assignable) {

 }
 this.stage = 'main';
 this.state.computing = 'fn';
 this.recurse(ast);
 // ...
};

An assignable AST is formed only if the expression has just one statement whose type is either
identifier or member:

src/parse.js
function isAssignable(ast) {
 return ast.type === AST.Identifier || ast.type == AST.MemberExpression;
}

function assignableAST(ast) {
 if (ast.body.length == 1 && isAssignable(ast.body[0])) {

 }
}

What the assignable AST actually is is the original expression wrapped inside an AST.Assign-
mentExpression. The right hand side of the assignment is special - its type is AST.NGValuePa-
rameter, and it denotes a parameterized value that is supplied at runtime (as an argument to the
external-facing assign method). It’s essentially a placeholder for the value that will only become
known when the assignment happens:

src/parse.js

External Assignment 16

393 Errata© Tero Parviainen 2016

function assignableAST(ast) {
 if (ast.body.length == 1 && isAssignable(ast.body[0])) {
 return {
 type: AST.AssignmentExpression,
 left: ast.body[0],
 right: {type: AST.NGValueParameter}
 };
 }
}

Now that we (potentially) have the assignable AST, we can go ahead and compile it using re-
curse:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {},
 assign: {body: [], vars: []},
 inputs: []
 };
 this.stage = 'inputs';
 _.forEach(getInputs(ast.body), _.bind(function(input, idx) {
 var inputKey = 'fn' + idx;
 this.state[inputKey] = {body: [], vars: []};
 this.state.computing = inputKey;
 this.state[inputKey].body.push('return ' + this.recurse(input) + ';');
 this.state.inputs.push(inputKey);
 }, this));
 this.stage = 'assign';
 var assignable = assignableAST(ast);
 if (assignable) {
 this.state.computing = 'assign';
 this.state.assign.body.push(this.recurse(assignable));
 }
 this.stage = 'main';
 this.state.computing = 'fn';
 this.recurse(ast);
 // ...
};

From the compilation result we’ll generate the assign function. It takes three arguments: A scope,
the value to assign, and the locals. We put the code of this function into a new variable called ex-
tra and append it to the main expression function as well:

src/parse.js
ASTCompiler.prototype.compile = function(text) {

External Assignment 16

394 Errata© Tero Parviainen 2016

 var ast = this.astBuilder.ast(text);
 var extra = '';
 markConstantAndWatchExpressions(ast);
 this.state = {
 nextId: 0,
 fn: {body: [], vars: []},
 filters: {},
 assign: {body: [], vars: []},
 inputs: []
 };
 this.stage = 'inputs';
 _.forEach(getInputs(ast.body), _.bind(function(input, idx) {
 var inputKey = 'fn' + idx;
 this.state[inputKey] = {body: [], vars: []};
 this.state.computing = inputKey;
 this.state[inputKey].body.push('return ' + this.recurse(input) + ';');
 this.state.inputs.push(inputKey);
 }, this));
 this.stage = 'assign';
 var assignable = assignableAST(ast);
 if (assignable) {
 this.state.computing = 'assign';
 this.state.assign.body.push(this.recurse(assignable));
 extra = 'fn.assign = function(s,v,l){' +
 (this.state.assign.vars.length ?
 'var ' + this.state.assign.vars.join(',') + ';' :
 ''
) +
 this.state.assign.body.join('') +
 '};';
 }
 this.stage = 'main';
 this.state.computing = 'fn';
 this.recurse(ast);
 var fnString = this.filterPrefix() +
 'var fn=function(s,l){' +
 (this.state.fn.vars.length ?
 'var ' + this.state.fn.vars.join(',') + ';' :
 ''
) +
 this.state.fn.body.join('') +
 '};' +
 this.watchFns() +
 extra +
 ' return fn;';
 /* jshint -W054 */
 var fn = new Function(
 'ensureSafeMemberName',
 'ensureSafeObject',
 'ensureSafeFunction',
 'ifDefined',
 'filter',
 fnString)(

Summary 16

395 Errata© Tero Parviainen 2016

 ensureSafeMemberName,
 ensureSafeObject,
 ensureSafeFunction,
 ifDefined,
 filter);
 /* jshint +W054 */
 fn.literal = isLiteral(ast);
 fn.constant = ast.constant;
 return fn;
};

The only missing part now is the compilation of the NGValueParameter node in recurse. Its job
is to denote the location in the generated code where the parameter given to the external assign
should be applied. The name we just gave to that parameter in the generated code is v, so we can
simply compile this AST node to v and things will fall into place:

src/parse.js
case AST.NGValueParameter:
 return 'v';

Summary

Combining the Scope system with the expression system has resulted in a powerful and expressive
dirty-checking implementation, which can be used as a standalone tool, but will also prove very
useful when combined with the directive system later in the book.

The combination of scopes and expressions has also allowed for some new powerful features:
Constant optimization, one-time binding, and input tracking. They provide potentially very signifi-
cant performance improvements to application developers.

In this chapter you have learned:

• How Scope uses the expression parser to allow expressions to be used as watches.
• How Scope uses the expression parser to allow expressions to be evaled.
• How expressions get marked as constant and/or literal.
• That the expression parser sometimes provides watch delegates that bypass the normal watch

behavior
• How the constant watch delegate removes watches for constant values immediately after their

first invocation.
• How one-time binding works, and how it’s implemented with a one-time watch delegate that

removes the watch after it has stabilized in some defined value.
• That one-time binding supports array and object literals by waiting for all of their contained

items to stabilize.
• How the expression parser uses input tracking to minimize the evaluation of compound expres-

sions by only doing it when their input expressions change.

Summary 16

396 Errata© Tero Parviainen 2016

• How filters can be marked as stateful, causing the constant and input tracking optimizations to
be disabled for them.

• How the assign method on expression functions allows the value of the expression to be reas-
signed on a given scope.

 17

397 Errata© Tero Parviainen 2016

Part 3

Modules and
Dependency

Injection
Dependency Injection

Scopes Expressions

Directives
(+ controllers)

$q

$http

 17

398 Errata© Tero Parviainen 2016

Dependency injection is one of the defining features of Angular, as well as one of its major sell-
ing points. To an Angular application developer, it is the glue that holds everything together. All
the other Angular features are really just (semi-)independent tools that all happen to ship within
the same codebase, but it is dependency injection that brings everything together into a coherent
framework you can build your applications on.

Because the DI framework is so central to every Angular application, it is important to know how
it works. Unfortunately, it also seems to be one of the more difficult parts of Angular to grasp,
judging by the questions you see online almost on a daily basis. This is probably partly due to
documentation, and partly due to the terminology used in the implementation, but it is also due to
the fact that the DI framework solves a nontrivial problem: Wiring together the different parts of
an application.

Dependency injection is also one of the more controversial features of Angular. When people
criticise Angular, DI is often the reason they give for why they don’t like it. Some people criticise
the Angular injector implementation and some people criticise the idea of DI in JavaScript in
general. In both cases, the critics may have valid points but there also often seems to be an element
of confusion present about what the Angular injector actually does, and why. Hopefully this part
of the book will help you not only in application development, but also in alleviating some of the
confusion people exhibit when discussing these things.

 18

399 Errata© Tero Parviainen 2016

Chapter 11

Modules and
The Injector

The angular Global 18

400 Errata© Tero Parviainen 2016

This chapter lays the groundwork for the dependency injection features of Angular. We will intro-
duce the two main concepts involved - modules and injectors - and see how they allow for register-
ing application components and then injecting them to where they are needed.

Of these two concepts, modules is the one most application developers deal with directly. Modules
are collections of application configuration information. They are where you register your ser-
vices, controllers, directives, filters, and other application components.

But it is the injector that really brings an application to life. While modules are where you register
your components, no components are actually created until you create an injector and give it some
modules to instantiate.

In this chapter we’ll see how to create modules and then how to create an injector that loads those
modules.

Download the code for the starting point of this chapter.

The angular Global

If you have ever used Angular, you have probably interacted with the global angular object. This
is the point where we introduce that object.

The reason we need the object now is that it is where information about registered Angular mod-
ules is stored. As we begin creating modules and injectors, we’ll need that storage.

The framework component that deals with modules is called the module loader and implemented
in a file called loader.js. This is where we’ll introduce the angular global. But first, as always,
let’s add a test for it in a new test file:

test/loader_spec.js
'use strict';

var setupModuleLoader = require('../src/loader');

describe('setupModuleLoader', function() {

 it('exposes angular on the window', function() {
 setupModuleLoader(window);
 expect(window.angular).toBeDefined();
 });

});

This test assumes there is a function called setupModuleLoader made available by a file called

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter10-expressions-and-watches

Initializing The Global Just Once 18

401 Errata© Tero Parviainen 2016

loader.js. It also assumes you can call that function with a window object. When you’ve done
that, there will be an angular attribute on the same window object.

Let’s then create loader.js and make this test pass:

src/loader.js
'use strict';

function setupModuleLoader(window) {
 var angular = window.angular = {};
}

module.exports = setupModuleLoader;

That’ll give us something to start from.

Initializing The Global Just Once

Since the angular global provides storage for registered modules, it is essentially a holder for
global state. That means we need to take some measures to manage that state. First of all, we want
to start with a clean slate for each and every unit test, so we’ll need to get rid of any existing an-
gular globals at the beginning of every test:

test/loader_spec.js
beforeEach(function() {
 delete window.angular;
});

Also, in setupModuleLoader we need to be careful not to override an existing angular if there
is one, even if someone or something was to call the function several times. When you call setup-
ModuleLoader twice on the same window, after both calls the angular global should point to the
same exact object:

test/loader_spec.js
it('creates angular just once', function() {
 setupModuleLoader(window);
 var ng = window.angular;
 setupModuleLoader(window);
 expect(window.angular).toBe(ng);
});

This can be fixed with a simple check for an existing window.angular:

src/loader.js
function setupModuleLoader(window) {

The module Method 18

402 Errata© Tero Parviainen 2016

 var angular = (window.angular = window.angular || {});
}
We’ll be reusing this “load once” pattern soon though, so let’s abstract it out to a generic function
called ensure, that takes an object, an attribute name, and a “factory function” that produces a
value. The function uses the factory function to produce the attribute, but only if it does not al-
ready exist:

src/loader.js
function setupModuleLoader(window) {
 var ensure = function(obj, name, factory) {
 return obj[name] || (obj[name] = factory());
 };

 var angular = ensure(window, 'angular', Object);
}

In this case we’ll assign an empty object to window.angular using the call Object(), which, for
all intents and purposes, is the same as calling new Object().

The module Method

The first method we’ll introduce to angular is one we’ll be using in this and the following chap-
ters a lot: module. Let’s assert that this method in fact exists in a newly created angular global:

test/loader_spec.js
it('exposes the angular module function', function() {
 setupModuleLoader(window);
 expect(window.angular.module).toBeDefined();
});

Just like the global object itself, the module method should not be overridden when setupMod-
uleLoader is called several times:

test/loader_spec.js
it('exposes the angular module function just once', function() {
 setupModuleLoader(window);
 var module = window.angular.module;
 setupModuleLoader(window);
 expect(window.angular.module).toBe(module);
});

We can now reuse our new ensure function to construct this method:

src/loader.js
function setupModuleLoader(window) {
 var ensure = function(obj, name, factory) {

Registering A Module 18

403 Errata© Tero Parviainen 2016

 return obj[name] || (obj[name] = factory());
 };

 var angular = ensure(window, 'angular', Object);

 ensure(angular, 'module', function() {
 return function() {

 };
 });
}

Registering A Module

Having laid the groundwork, let’s now get into what we actually want to do in this chapter, which
is to register modules.

All the remaining tests in loader_spec.js in this chapter will work with a precreated module
loader, so let’s create a nested describe block for them, and put the setup of the module loader
into a before block. This way we won’t have to repeat it for every test:

test/loader_spec.js
describe('modules', function() {

 beforeEach(function() {
 setupModuleLoader(window);
 });

});

The first behavior we’ll test is that we can call the angular.module function and get back a mod-
ule object.

The method signature of angular.module is that it takes a module name (a string) and an array
of the module’s dependencies, which may be empty. The method constructs a module object and
returns it. One of the things the module object contains is its name, in the name attribute:

test/loader_spec.js
it('allows registering a module', function() {
 var myModule = window.angular.module('myModule', []);
 expect(myModule).toBeDefined();
 expect(myModule.name).toEqual('myModule');
});

When you register a module with the same name several times, the new module replaces any old
ones. This also means that when we call module twice with the same name, we’ll get two different
module objects:

Registering A Module 18

404 Errata© Tero Parviainen 2016

test/loader_spec.js
it('replaces a module when registered with same name again', function() {
 var myModule = window.angular.module('myModule', []);
 var myNewModule = window.angular.module('myModule', []);
 expect(myNewModule).not.toBe(myModule);
});

In our module method, let’s delegate the work involved in creating a module to a new function
called createModule. In that function, for now we can just create a module object and return it:

src/loader.js
function setupModuleLoader(window) {
 var ensure = function(obj, name, factory) {
 return obj[name] || (obj[name] = factory());
 };

 var angular = ensure(window, 'angular', Object);

 var createModule = function(name, requires) {
 var moduleInstance = {
 name: name
 };
 return moduleInstance;
 };

 ensure(angular, 'module', function() {
 return function(name, requires) {
 return createModule(name, requires);
 };
 });

}

Apart from the name, the new module should also have a reference to the array of required mod-
ules:

test/loader_spec.js
it('attaches the requires array to the registered module', function() {
 var myModule = window.angular.module('myModule', ['myOtherModule']);
 expect(myModule.requires).toEqual(['myOtherModule']);
});

We can just attach the given requires array to the module object to satisfy this requirement:

src/loader.js
var createModule = function(name, requires) {
 var moduleInstance = {
 name: name,

Getting A Registered Module 18

405 Errata© Tero Parviainen 2016

 requires: requires
 };
 return moduleInstance;
};

Getting A Registered Module

The other behavior provided by angular.module is getting hold of a module object that has been
registered earlier. This you can do by omitting the second argument (the requires array). What
that should give you is the same exact module object that was created when the module was regis-
tered:

test/loader_spec.js
it('allows getting a module', function() {
 var myModule = window.angular.module('myModule', []);
 var gotModule = window.angular.module('myModule');

 expect(gotModule).toBeDefined();
 expect(gotModule).toBe(myModule);
});

We’ll introduce another private function for getting the module, called getModule. We’ll also
need some place to store the registered modules in. This we will do in a private object within the
closure of the ensure call. We’ll pass it in to both createModule and getModule:

src/loader.js
ensure(angular, 'module', function() {
 var modules = {};
 return function(name, requires) {
 if (requires) {
 return createModule(name, requires, modules);
 } else {
 return getModule(name, modules);
 }
 };
});

In createModule we must now store the newly created module object in modules:

src/loader.js
var createModule = function(name, requires, modules) {
 var moduleInstance = {
 name: name,
 requires: requires
 };
 modules[name] = moduleInstance;
 return moduleInstance;

Getting A Registered Module 18

406 Errata© Tero Parviainen 2016

};

In getModule we can then just look it up:

src/loader.js
var getModule = function(name, modules) {
 return modules[name];
};

We’re basically retaining the memory of all modules registered inside the local modules variable.
This is why it is so important to only define angular and angular.module once. Otherwise the
local variable could be wiped out.

Right now, when you try to get a module that does not exist, you’ll just get undefined as the return
value. What should happen instead is an exception. Angular makes a big noise when you refer to a
non-existing module so that it’s clear that this is happening:

test/loader_spec.js
it('throws when trying to get a nonexistent module', function() {
 expect(function() {
 window.angular.module('myModule');
 }).toThrow();
});

In getModule we should check for the module’s existence before trying to return it:

src/loader.js
var getModule = function(name, modules) {
 if (modules.hasOwnProperty(name)) {
 return modules[name];
 } else {
 throw 'Module '+name+' is not available!';
 }
};

Finally, as we are now using the hasOwnProperty method to check for a module’s existence, we
must be careful not to override that method in our module cache. That is, it should not be allowed
to register a module called hasOwnProperty that would override the method:

test/loader_spec.js
it('does not allow a module to be called hasOwnProperty', function() {
 expect(function() {
 window.angular.module('hasOwnProperty', []);
 }).toThrow();
});

The Injector 18

407 Errata© Tero Parviainen 2016

This check is needed in createModule:

src/loader.js
var createModule = function(name, requires, modules) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid module name';
 }
 var moduleInstance = {
 name: name,
 requires: requires
 };
 modules[name] = moduleInstance;
 return moduleInstance;
};

The Injector

Let’s shift gears a bit and lay the foundation for the other major player in Angular’s dependency
injection: The injector.

The injector is not part of the module loader, but an independent service in itself, so we’ll put the
code and tests for it in new files. In the tests, we will always assume a fresh module loader has
been set up:

test/injector_spec.js
'use strict';

var setupModuleLoader = require('../src/loader');

describe('injector', function() {

 beforeEach(function() {
 delete window.angular;
 setupModuleLoader(window);
 });

});

One can create an injector by calling the function createInjector, which takes an array of mod-
ule names and returns the injector object:

test/injector_spec.js
'use strict';

var setupModuleLoader = require('../src/loader');
var createInjector = require('../src/injector');

Registering A Constant 18

408 Errata© Tero Parviainen 2016

describe('injector', function() {

 beforeEach(function() {
 delete window.angular;
 setupModuleLoader(window);
 });

 it('can be created', function() {
 var injector = createInjector([]);
 expect(injector).toBeDefined();
 });

});

For now we can get away with an implementation that simply returns an empty object literal:

src/injector.js
'use strict';

function createInjector(modulesToLoad) {
 return {};
}

module.exports = createInjector;

Registering A Constant

The first type of Angular application component we will implement is constants. With constant
you can register a simple value, such as a number, a string, an object, or a function, to an Angular
module.

After we’ve registered a constant to a module and created an injector, we can use the injector’s has
method to check that it indeed knows about the constant:

test/injector_spec.js
it('has a constant that has been registered to a module', function() {
 var module = window.angular.module('myModule', []);
 module.constant('aConstant', 42);
 var injector = createInjector(['myModule']);
 expect(injector.has('aConstant')).toBe(true);
});

Here we see for the first time the full sequence of defining a module and then an injector for it. An
interesting observation to make about it is that as we create an injector, we don’t give it direct ref-
erences to module objects. Instead we give it the names of the module objects, and expect it to look
them up from angular.module.

Registering A Constant 18

409 Errata© Tero Parviainen 2016

As a sanity check, let’s also make sure that the has method returns false for things that have not
been registered:

test/injector_spec.js
it('does not have a non-registered constant', function() {
 var module = window.angular.module('myModule', []);
 var injector = createInjector(['myModule']);
 expect(injector.has('aConstant')).toBe(false);
});

So, how does a constant registered in a module become available in an injector? First of all, we’ll
need the registration method to exist in module objects:

src/loader.js
var createModule = function(name, requires, modules) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid module name';
 }
 var moduleInstance = {
 name: name,
 requires: requires,
 constant: function(key, value) {
 }
 };
 modules[name] = moduleInstance;
 return moduleInstance;
};

A general rule about modules and injectors is that modules don’t actually contain any application
components. They just contain the recipes for creating application components, and the injector is
where they will actually become concrete.

What the module should hold, then, is a collection of tasks - such as “register a constant” - that
the injector should carry out when it loads the module. This collection of tasks is called the invoke
queue. Every module has an invoke queue, and when the module is loaded by an injector, the injec-
tor runs the tasks from that module’s invoke queue.

For now, we’ll define the invoke queue as an array of arrays. Each array in the queue has two
items: The type of application component that should be registered, and the arguments for regis-
tering that component. An invoke queue that defines a single constant - the one in our unit test -
looks like this:

[
 ['constant', ['aConstant', 42]]
]

The invoke queue is stored in a module attribute called _invokeQueue (the underscore prefix

Registering A Constant 18

410 Errata© Tero Parviainen 2016

denoting it should be considered private to the module). From the constant function we will now
push an item to the queue, which we introduce as a local variable in the function:

src/loader.js
var createModule = function(name, requires, modules) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid module name';
 }
 var invokeQueue = [];
 var moduleInstance = {
 name: name,
 requires: requires,
 constant: function(key, value) {
 invokeQueue.push(['constant', [key, value]]);
 },
 _invokeQueue: invokeQueue
 };
 modules[name] = moduleInstance;
 return moduleInstance;
};

As we then create the injector, we should iterate over all the module names given, look up the cor-
responding module objects, and then drain their invoke queues:

src/injector.js
'use strict';

var _ = require('lodash');

function createInjector(modulesToLoad) {

 _.forEach(modulesToLoad, function(moduleName) {
 var module = window.angular.module(moduleName);
 _.forEach(module._invokeQueue, function(invokeArgs) {

 });
 });

 return {};
}

module.exports = createInjector;

Inside the injector we will have some code that knows how to handle each of the items that an
invoke queue might hold. We will put this code in an object called $provide (for reasons that will
become clear later). As we iterate over the items in the invoke queue, we look up a method from
$provide that corresponds to the first item in each invocation array (e.g. ’constant’). We then
call the method with the arguments stored in the second item of the invocation array:

Registering A Constant 18

411 Errata© Tero Parviainen 2016

src/injector.js
function createInjector(modulesToLoad) {

 var $provide = {
 constant: function(key, value) {

 }
 };

 _.forEach(modulesToLoad, function(moduleName) {
 var module = window.angular.module(moduleName);
 _.forEach(module._invokeQueue, function(invokeArgs) {
 var method = invokeArgs[0];
 var args = invokeArgs[1];
 $provide[method].apply($provide, args);
 });
 });

 return {};
}

So, when you call a method such as constant on a module, that will cause the same method with
the same arguments to be called in the $provide object inside createInjector. It’s just that this
does not happen immediately, but only later as the module is loaded. In the meantime, the infor-
mation about the method invocation is stored in the invoke queue.

What still remains to be implemented is the actual logic of registering a constant. Different kinds
of application components will require different initialization logic, but what they all have in com-
mon is that once they’ve been initialized, they’ll be cached by the injector. A constant is actually
such a simple thing that we can plop right into the cache, so let’s do that. We can then implement
the injector’s has method to check for the corresponding key in the cache:

src/injector.js
function createInjector(modulesToLoad) {
 var cache = {};

 var $provide = {
 constant: function(key, value) {
 cache[key] = value;
 }
 };

 _.forEach(modulesToLoad, function(moduleName) {
 var module = window.angular.module(moduleName);
 _.forEach(module._invokeQueue, function(invokeArgs) {
 var method = invokeArgs[0];
 var args = invokeArgs[1];
 $provide[method].apply($provide, args);
 });
 });

Registering A Constant 18

412 Errata© Tero Parviainen 2016

 return {
 has: function(key) {
 return cache.hasOwnProperty(key);
 }
 };
}

We now once again have a situation where we need to guard the hasOwnProperty property of an
object. One should not be able to register a constant called hasOwnProperty:

test/injector_spec.js
it('does not allow a constant called hasOwnProperty', function() {
 var module = window.angular.module('myModule', []);
 module.constant('hasOwnProperty', false);
 expect(function() {
 createInjector(['myModule']);
 }).toThrow();
});

We disallow this by checking the key in the constant method of $provide:

src/injector.js
constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 cache[key] = value;
}

In addition to just checking whether an application component exists, the injector also gives you
the means to obtain the component itself. For that, we’ll introduce a method called get:

test/injector_spec.js
it('can return a registered constant', function() {
 var module = window.angular.module('myModule', []);
 module.constant('aConstant', 42);
 var injector = createInjector(['myModule']);
 expect(injector.get('aConstant')).toBe(42);
});

The method simply looks up the key from the cache:

src/injector.js
return {
 has: function(key) {
 return cache.hasOwnProperty(key);
 },

Requiring Other Modules 18

413 Errata© Tero Parviainen 2016

 get: function(key) {
 return cache[key];
 }
};

Most of the Angular dependency injection features are implemented as a collaboration between the module
loader in loader.js and the injector in injector.js. We’ll put the tests for this kind of functionality
in injector_spec.js, leaving loader_spec.js for tests that strictly deal with the module loader
alone.

Requiring Other Modules

Thus far we’ve been creating an injector from a single module, but it is also possible to create one
that loads multiple modules. The most straightforward way to do this is to just provide more than
one module name in the array given to createInjector. Application components from all given
modules will be registered:

test/injector_spec.js
it('loads multiple modules', function() {
 var module1 = window.angular.module('myModule', []);
 var module2 = window.angular.module('myOtherModule', []);
 module1.constant('aConstant', 42);
 module2.constant('anotherConstant', 43);
 var injector = createInjector(['myModule', 'myOtherModule']);

 expect(injector.has('aConstant')).toBe(true);
 expect(injector.has('anotherConstant')).toBe(true);
});

This we have already covered, because we iterate over the modulesToLoad array in createIn-
jector.

Another way to cause several modules to be loaded is to require modules from other modules.
When one registers a module using angular.module, there is that second array argument that
we’ve kept empty so far, but that can hold the names of the required modules. When the module is
loaded, its required modules are also loaded:

test/injector_spec.js
it('loads the required modules of a module', function() {
 var module1 = window.angular.module('myModule', []);
 var module2 = window.angular.module('myOtherModule', ['myModule']);
 module1.constant('aConstant', 42);
 module2.constant('anotherConstant', 43);
 var injector = createInjector(['myOtherModule']);

 expect(injector.has('aConstant')).toBe(true);
 expect(injector.has('anotherConstant')).toBe(true);

Requiring Other Modules 18

414 Errata© Tero Parviainen 2016

});

The same also works transitively, i.e. the modules required by the modules you require are also
loaded, ad infinitum:

test/injector_spec.js
it('loads the transitively required modules of a module', function() {
 var module1 = window.angular.module('myModule', []);
 var module2 = window.angular.module('myOtherModule', ['myModule']);
 var module3 = window.angular.module('myThirdModule', ['myOtherModule']);
 module1.constant('aConstant', 42);
 module2.constant('anotherConstant', 43);
 module3.constant('aThirdConstant', 44);
 var injector = createInjector(['myThirdModule']);

 expect(injector.has('aConstant')).toBe(true);
 expect(injector.has('anotherConstant')).toBe(true);
 expect(injector.has('aThirdConstant')).toBe(true);
});

The way this works is actually quite simple. As we load a module, before iterating the module’s
invoke queue, we iterate its required modules, recursively loading each of them. We also need to
give the module loading function a name so that we can call it recursively:

src/injector.js
_.forEach(modulesToLoad, function loadModule(moduleName) {
 var module = window.angular.module(moduleName);
 _.forEach(module.requires, loadModule);
 _.forEach(module._invokeQueue, function(invokeArgs) {
 var method = invokeArgs[0];
 var args = invokeArgs[1];
 $provide[method].apply($provide, args);
 });
});

When you have modules requiring other modules, it’s quite easy to get into a situation where you
have a circular dependency between two or more modules:

test/injector_spec.js
it('loads each module only once', function() {
 window.angular.module('myModule', ['myOtherModule']);
 window.angular.module('myOtherModule', ['myModule']);

 createInjector(['myModule']);
});

Our current implementation blows the stack while trying to load this, as it always recurses into the
next module without checking if it actually should.

Dependency Injection 18

415 Errata© Tero Parviainen 2016

What we need to do to deal with circular dependencies is to make sure each module is loaded
exactly once. This will also have the effect that when there are two (non-circular) paths to the same
module, it will not be loaded twice, so the unnecessary extra work is avoided.

We’ll introduce an object in which we keep track of the modules that have been loaded. Before we
load a module we then check that it isn’t already loaded:

src/injector.js
function createInjector(modulesToLoad) {
 var cache = {};
 var loadedModules = {};

 var $provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 cache[key] = value;
 }
 };

 _.forEach(modulesToLoad, function loadModule(moduleName) {
 if (!loadedModules.hasOwnProperty(moduleName)) {
 loadedModules[moduleName] = true;
 var module = window.angular.module(moduleName);
 _.forEach(module.requires, loadModule);
 _.forEach(module._invokeQueue, function(invokeArgs) {
 var method = invokeArgs[0];
 var args = invokeArgs[1];
 $provide[method].apply($provide, args);
 });
 }
 });

 return {
 has: function(key) {
 return cache.hasOwnProperty(key);
 },
 get: function(key) {
 return cache[key];
 }
 };
}

Dependency Injection

We now have a semi-useful registry for application components, into which we can load things
and from which we can look things up. But the real purpose of the injector is to do actual depen-

Dependency Injection 18

416 Errata© Tero Parviainen 2016

dency injection. That is, to invoke functions and construct objects and automatically look up the de-
pendencies they need. For the remainder of this chapter, we’ll focus on the dependency injection
features of the injector.

The basic idea is this: We’ll give the injector a function and ask it to invoke that function. We’ll
also expect it to figure out what arguments that function needs and provide them to it.

So, how can the injector figure out what arguments a given function needs? The easiest approach
is to supply that information explicitly, using an attribute called $inject attached to the function.
That attribute can hold an array of the names of the function’s dependencies. The injector will
look those dependencies up and invoke the function with them:

test/injector_spec.js
it('invokes an annotated function with dependency injection', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 module.constant('b', 2);
 var injector = createInjector(['myModule']);

 var fn = function(one, two) { return one + two; };
 fn.$inject = ['a', 'b'];

 expect(injector.invoke(fn)).toBe(3);
});

This can be implemented by simply looking up each item of the $inject array from the injector’s
cache, where we hold the mapping from dependency names to their values:

src/injector.js
function createInjector(modulesToLoad) {
 var cache = {};
 var loadedModules = {};

 var $provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 cache[key] = value;
 }
 };

 function invoke(fn) {
 var args = _.map(fn.$inject, function(token) {
 return cache[token];
 });
 return fn.apply(null, args);
 }

Rejecting Non-String DI Tokens 18

417 Errata© Tero Parviainen 2016

 _.forEach(modulesToLoad, function loadModule(moduleName) {
 if (!loadedModules.hasOwnProperty(moduleName)) {
 loadedModules[moduleName] = true;
 var module = window.angular.module(moduleName);
 _.forEach(module.requires, loadModule);
 _.forEach(module._invokeQueue, function(invokeArgs) {
 var method = invokeArgs[0];
 var args = invokeArgs[1];
 $provide[method].apply($provide, args);
 });
 }
 });

 return {
 has: function(key) {
 return cache.hasOwnProperty(key);
 },
 get: function(key) {
 return cache[key];
 },
 invoke: invoke
 };
}

This is the most low-level of the dependency annotation approaches you can use with Angular.

Rejecting Non-String DI Tokens

We’ve seen how the $inject array should contain the dependency names. If someone was to put
something invalid, like, say, a number to the $inject array, our current implementation would
just map that to undefined. We should throw an exception instead, to let the user know they’re
doing something wrong:

test/injector_spec.js
it('does not accept non-strings as injection tokens', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 var injector = createInjector(['myModule']);

 var fn = function(one, two) { return one + two; };
 fn.$inject = ['a', 2];

 expect(function() {
 injector.invoke(fn);
 }).toThrow();
});

This can be done with a simple type check inside the dependency mapping function:

Binding this in Injected Functions 18

418 Errata© Tero Parviainen 2016

src/injector.js
function invoke(fn) {
 var args = _.map(fn.$inject, function(token) {
 if (_.isString(token)) {
 return cache[token];
 } else {
 throw 'Incorrect injection token! Expected a string, got '+token;
 }
 });
 return fn.apply(null, args);
}

Binding this in Injected Functions

Sometimes the functions you want to inject are actually methods attached to objects. In such meth-
ods, the value of this is often significant. When called directly, the JavaScript language takes care
of binding this, but when called indirectly through injector.invoke there’s no such automatic
binding. Instead, we can give injector.invoke the this value as an optional second argument,
which it will bind when it invokes the function:

test/injector_spec.js
it('invokes a function with the given this context', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 var injector = createInjector(['myModule']);

 var obj = {
 two: 2,
 fn: function(one) { return one + this.two; }
 };
 obj.fn.$inject = ['a'];

 expect(injector.invoke(obj.fn, obj)).toBe(3);
});

As we are already using Function.apply for invoking the function, we can just pass the value
along to it (where we previously supplied null):

src/injector.js
function invoke(fn, self) {
 var args = _.map(fn.$inject, function(token) {
 if (_.isString(token)) {
 return cache[token];
 } else {
 throw 'Incorrect injection token! Expected a string, got '+token;
 }
 });
 return fn.apply(self, args);
}

Providing Locals to Injected Functions 18

419 Errata© Tero Parviainen 2016

Providing Locals to Injected Functions

Most often you just want the injector to provide all the arguments to a function, but there may be
cases where you want to explicitly provide some of the arguments during invocation. This may be
because you want to override some of the arguments, or because some of the arguments may not
be registered to the injector at all.

The directive compiler uses this feature to provide $scope, $element, and $attrs to directive control-
lers, as we will see later in the book.

For this purpose, injector.invoke takes an optional third argument, which is an object of local
mappings from dependency names to values. If supplied, dependency lookup is done primarily
from this object, and secondarily from the injector itself. This is a similar approach as the one
we’ve seen earlier in $scope.$eval:

test/injector_spec.js
it('overrides dependencies with locals when invoking', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 module.constant('b', 2);
 var injector = createInjector(['myModule']);

 var fn = function(one, two) { return one + two; };
 fn.$inject = ['a', 'b'];

 expect(injector.invoke(fn, undefined, {b: 3})).toBe(4);
});

In the dependency mapping function, we’ll look at the locals first, if given, and fall back to cache
if there’s nothing to be found in locals:

src/injector.js
function invoke(fn, self, locals) {
 var args = _.map(fn.$inject, function(token) {
 if (_.isString(token)) {
 return locals && locals.hasOwnProperty(token) ?
 locals[token] :
 cache[token];
 } else {
 throw 'Incorrect injection token! Expected a string, got '+token;
 }
 });
 return fn.apply(self, args);
}

Array-Style Dependency Annotation 18

420 Errata© Tero Parviainen 2016

Array-Style Dependency Annotation

While you can always annotate an injected function using the $inject attribute, you might not
always want to do that because of the verbosity of the approach. A slightly less verbose option for
providing the dependency names is to supply injector.invoke an array instead of a function. In
that array, you first give the names of the dependencies, and as the last item the actual function to
invoke:

['a', 'b', function(one, two) {
 return one + two;
}]

Since we are now talking about several different approaches to annotating a function, a method
that is able to extract any type of annotation is called for. Such a method is in fact implemented
and exposed in the injector. It is called annotate.

Let’s specify this method’s behavior in a new nested describe block. Firstly, when given a func-
tion with an $inject attribute, annotate just returns that attribute’s value:

test/injector_spec.js
describe('annotate', function() {

 it('returns the $inject annotation of a function when it has one', function() {
 var injector = createInjector([]);

 var fn = function() { };
 fn.$inject = ['a', 'b'];

 expect(injector.annotate(fn)).toEqual(['a', 'b']);
 });

});

We’ll introduce a local function in the createInjector closure, exposed as a property of the
injector:

src/injector.js
function createInjector(modulesToLoad) {
 var cache = {};
 var loadedModules = {};

 var $provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 cache[key] = value;
 }

Array-Style Dependency Annotation 18

421 Errata© Tero Parviainen 2016

 };

 function annotate(fn) {
 return fn.$inject;
 }

 function invoke(fn, self, locals) {
 var args = _.map(fn.$inject, function(token) {
 if (_.isString(token)) {
 return locals && locals.hasOwnProperty(token) ?
 locals[token] :
 cache[token];
 } else {
 throw 'Incorrect injection token! Expected a string, got '+token;
 }
 });
 return fn.apply(self, args);
 }

 _.forEach(modulesToLoad, function loadModule(moduleName) {
 if (!loadedModules.hasOwnProperty(moduleName)) {
 loadedModules[moduleName] = true;
 var module = window.angular.module(moduleName);
 _.forEach(module.requires, loadModule);
 _.forEach(module._invokeQueue, function(invokeArgs) {
 var method = invokeArgs[0];
 var args = invokeArgs[1];
 $provide[method].apply($provide, args);
 });
 }
 });

 return {
 has: function(key) {
 return cache.hasOwnProperty(key);
 },
 get: function(key) {
 return cache[key];
 },
 annotate: annotate,
 invoke: invoke
 };
}

When given an array, annotate extracts the dependency names from that array, based on our
definition of array-style injection:

test/injector_spec.js
it('returns the array-style annotations of a function', function() {
 var injector = createInjector([]);

Dependency Annotation from Function Arguments 18

422 Errata© Tero Parviainen 2016

 var fn = ['a', 'b', function() { }];

 expect(injector.annotate(fn)).toEqual(['a', 'b']);
});

So, if fn is an array, annotate should return an array of all but the last item of it:

src/injector.js
function annotate(fn) {
 if (_.isArray(fn)) {
 return fn.slice(0, fn.length - 1);
 } else {
 return fn.$inject;
 }
}

Dependency Annotation from Function Arguments

The third and final, and perhaps the most interesting way to define a function’s dependencies is to
not actually define them at all. When the injector is given a function without an $inject attribute
and without an array wrapping, it will attempt to extract the dependency names from the function
itself.

Let’s handle the easy case of a function with zero arguments first:

test/injector_spec.js
it('returns an empty array for a non-annotated 0-arg function', function() {
 var injector = createInjector([]);

 var fn = function() { };

 expect(injector.annotate(fn)).toEqual([]);
});

From annotate we’ll return an empty array if the function is not annoted. This’ll make the test
pass:

function annotate(fn) {
 if (_.isArray(fn)) {
 return fn.slice(0, fn.length - 1);
 } else if (fn.$inject) {
 return fn.$inject;
 } else {
 return [];
 }
}

Dependency Annotation from Function Arguments 18

423 Errata© Tero Parviainen 2016

If the function does have arguments though, we’ll need to figure out a way to extract them so that the
following test will also pass:

test/injector_spec.js
it('returns annotations parsed from function args when not annotated', function() {
 var injector = createInjector([]);

 var fn = function(a, b) { };

 expect(injector.annotate(fn)).toEqual(['a', 'b']);
});

The trick is to read in the source code of the function and extract the argument declarations using a regular
expression. In JavaScript, you can get a function’s source code by calling the toString method of
the function:

(function(a, b) { }).toString() // => "function (a, b) { }"

Since the source code contains the function’s argument list, we can grab it using the following reg-
exp, which we’ll define as a “constant” at the top of injector.js:

src/injector.js
var FN_ARGS = /^function\s*[^\(]*\(\s*([^\)]*)\)/m;

The regexp can be broken down as follows:

/^ We begin by anchoring the match to the beginning of input

function Every function begins with the function keyword...
\s* ...followed by (optionally) some whitespace...

[^\(]* ...followed by the (optional) function name - characters other than (...
\(...followed by the opening parenthesis of the argument list...

\s* ...followed by (optionally) some whitespace..

(...followed by the argument list, which we capture in a capturing group...

[^\)]* ...into which we read a succession of any characters other than)...
) ...and when done reading we close the capturing group...

\) ...and still match the closing parenthesis of the argument list...

/m ...and define the whole regular expression to match over multiple lines.

When we match using this regexp in annotate, we’ll get the argument list from the capturing
group as the second item of the match result. By then splitting that at ’,’ we’ll get the array of

Dependency Annotation from Function Arguments 18

424 Errata© Tero Parviainen 2016

argument names. For the function with no arguments (detected using the Function.length attri-
bute) we’ll add a special case of the empty array:

src/injector.js
function annotate(fn) {
 if (_.isArray(fn)) {
 return fn.slice(0, fn.length - 1);
 } else if (fn.$inject) {
 return fn.$inject;
 } else if (!fn.length) {
 return [];
 } else {
 var argDeclaration = fn.toString().match(FN_ARGS);
 return argDeclaration[1].split(',');
 }
}

As you implement this, you’ll notice that our test is still failing. That’s because there’s some extra
whitespace in the second dependency name: ’ b’. Our regexp gets rid of the whitespace at the
beginning of the argument list, but not of the whitespace between argument names. To get rid of
that whitespace, we’ll need to iterate over the argument names before returning them.

The following regexp will match any heading and trailing whitespace in a string, and capture the
non-whitespace section in between in a capturing group:
src/injector.js
var FN_ARG = /^\s*(\S+)\s*$/;

By mapping the argument names to the second match result of this regexp we can get the cleaned-
up argument names:

src/injector.js
function annotate(fn) {
 if (_.isArray(fn)) {
 return fn.slice(0, fn.length - 1);
 } else if (fn.$inject) {
 return fn.$inject;
 } else if (!fn.length) {
 return [];
 } else {
 var argDeclaration = fn.toString().match(FN_ARGS);
 return _.map(argDeclaration[1].split(','), function(argName) {
 return argName.match(FN_ARG)[1];
 });
 }
}

The simple case of “on-the-fly” dependency annotation now works, but what happens if there are
some commented-out arguments in the function declaration?

Dependency Annotation from Function Arguments 18

425 Errata© Tero Parviainen 2016

test/injector_spec.js
it('strips comments from argument lists when parsing', function() {
 var injector = createInjector([]);

 var fn = function(a, /*b,*/ c) { };

 expect(injector.annotate(fn)).toEqual(['a', 'c']);
});

Here we run into some differences between web browsers. Some browsers return the source code from
Function.toString() with the comments stripped, and some leave them in. The WebKit in the cur-
rent version of PhantomJS strips the comments, so this test may pass immediately in your environment. It
would not pass in Chrome, for example.

Before extracting the function arguments, we’ll need to preprocess the function source code to strip
away any comments it might contain. This regexp is our first attempt at doing so:

src/injector.js
var STRIP_COMMENTS = /\/*.**\//;

The rexep matches the characters /*, then a succession of any characters, and then the characters
*/. By replacing the match result of this regexp with an empty string we can strip the comment:

src/injector.js
function annotate(fn) {
 if (_.isArray(fn)) {
 return fn.slice(0, fn.length - 1);
 } else if (fn.$inject) {
 return fn.$inject;
 } else if (!fn.length) {
 return [];
 } else {
 var source = fn.toString().replace(STRIP_COMMENTS, '');
 var argDeclaration = source.match(FN_ARGS);
 return _.map(argDeclaration[1].split(','), function(argName) {
 return argName.match(FN_ARG)[1];
 });
 }
}

This first attempt doesn’t quite cut it when there are several commented-out sections in the argu-
ment list:

test/injector_spec.js
it('strips several comments from argument lists when parsing', function() {
 var injector = createInjector([]);

Dependency Annotation from Function Arguments 18

426 Errata© Tero Parviainen 2016

 var fn = function(a, /*b,*/ c/*, d*/) { };

 expect(injector.annotate(fn)).toEqual(['a', 'c']);
});

What’s happening is the regexp matches everything between the first opening /* and the last clos-
ing */, so that any non-comment sections in between are lost. We’ll need to convert the quantifier
between the opening and closing comments to a lazy one, so that it’ll consume as little as possible.
We also need to add the g modfier to the regexp to have it match multiple comments in the string:

src/injector.js
var STRIP_COMMENTS = /\/*.*?*\//g;

Then there’s still the other kind of comments an argument list spread over multiple lines might
include: // style comments that comment out the remainder of a line:

test/injector_spec.js
it('strips // comments from argument lists when parsing', function() {
 var injector = createInjector([]);

 var fn = function(a, //b,
 c) { };

 expect(injector.annotate(fn)).toEqual(['a', 'c']);
});

To strip these comments out, we’ll have our STRIP_COMMENTS regexp match two different kinds
of input: The input we defined earlier, and an input that begins with two forward slashes // and is
followed by any characters until the line ends. We’ll also add the m modifier to the regexp to make
it match over multiple lines:

src/injector.js
var STRIP_COMMENTS = /(\/\/.*$)|(\/*.*?*\/)/mg;

And this takes care of all kinds of comments inside argument lists!

The final feature we need to take care of when parsing argument names is stripping surrounding
underscore characters from them. Angular lets you put an underscore character on both sides of
an argument name, which it will then ignore, so that the following pattern of capturing an injected
argument to a local variable with the same name is possible:

var aVariable;
injector.invoke(function(_aVariable_) {
 aVariable = _aVariable_;
});

Strict Mode 18

427 Errata© Tero Parviainen 2016

So, if an argument is surrounded by underscores on both sides, they should be stripped from the
resulting dependency name. If there’s an underscore on just one side of the argument name, or
somewhere in the middle, it should be left in as-is:

test/injector_spec.js
it('strips surrounding underscores from argument names when parsing', function() {
 var injector = createInjector([]);

 var fn = function(a, _b_, c_, _d, an_argument) { };

 expect(injector.annotate(fn)).toEqual(['a', 'b', 'c_', '_d', 'an_argument']);
});

Underscore stripping is done by the FN_ARG regexp we’ve previously used for stripping whitespace.
It should also match an optional underscore before the argument name, and then match the same
thing after the argument name using a backreference:

src/injector.js
var FN_ARG = /^\s*(_?)(\S+?)\1\s*$/;

Now that we’ve added a new capturing group to the regexp, the actual argument name will be in
the third item of the match result, not the second:

src/injector.js
function annotate(fn) {
 if (_.isArray(fn)) {
 return fn.slice(0, fn.length - 1);
 } else if (fn.$inject) {
 return fn.$inject;
 } else if (!fn.length) {
 return [];
 } else {
 var source = fn.toString().replace(STRIP_COMMENTS, '');
 var argDeclaration = source.match(FN_ARGS);
 return _.map(argDeclaration[1].split(','), function(argName) {
 return argName.match(FN_ARG)[2];
 });
 }
}

Strict Mode

The approach of determining a function’s dependencies from its source code is one of Angular’s
most controversial features. This is partly because of the unexpected, magical nature of the fea-
ture, but there are also some very practical issues with this approach: If you choose to minify your
JavaScript code before releasing it - as many people justifiably do - the source code of your appli-
cation changes. Crucially, the argument names of your functions change when you run a minifier

Strict Mode 18

428 Errata© Tero Parviainen 2016

such as UglifyJS or Closure Compiler. This breaks non-annotated dependency injection.

For this reason, many people choose to not use the non-annotated dependency injection feature
(or at least generate the annotations using tools like ng-annotate). Angular can help sticking to this
decision by enforcing a strict dependency injection mode, in which it will throw an error if you ever
try to inject a function that has not been explicitly annotated.

Strict dependency injection is enabled by passing a boolean flag as a second argument to cre-
ateInjector:

test/injector_spec.js
it('throws when using a non-annotated fn in strict mode', function() {
 var injector = createInjector([], true);

 var fn = function(a, b, c) { };

 expect(function() {
 injector.annotate(fn);
 }).toThrow();
});

The createInjector function accepts this second argument, which must be true (not just
truthy) to enable strict mode:

src/injector.js
function createInjector(modulesToLoad, strictDi) {
 var cache = {};
 var loadedModules = {};
 strictDi = (strictDi === true);
 // ...
}

In annotate, when we get to parsing function arguments, we’ll check if we’re in strict mode and
throw an exception if that is the case:

src/injector.js
function annotate(fn) {
 if (_.isArray(fn)) {
 return fn.slice(0, fn.length - 1);
 } else if (fn.$inject) {
 return fn.$inject;
 } else if (!fn.length) {
 return [];
 } else {
 if (strictDi) {
 throw 'fn is not using explicit annotation and '+
 'cannot be invoked in strict mode';
 }

https://github.com/mishoo/UglifyJS
https://developers.google.com/closure/compiler/
https://github.com/olov/ng-annotate

Integrating Annotation with Invocation 18

429 Errata© Tero Parviainen 2016

 var source = fn.toString().replace(STRIP_COMMENTS, '');
 var argDeclaration = source.match(FN_ARGS);
 return _.map(argDeclaration[1].split(','), function(argName) {
 return argName.match(FN_ARG)[2];
 });
 }
}

Strict mode is a nice little feature that you’ll definitely want to enable if you are minifying your
code. If a non-annotated injection point sneaks through, you’ll get a clear error telling you about
it, instead of an obscure error about an undeclared dependency with a name you’ve never heard
of.

Integrating Annotation with Invocation

We are now able to extract dependency names using the three different methods that Angular
supports: $inject, array wrapper, and function source extraction. What we still need to do is to
integrate this dependency name lookup to injector.invoke. You should be able to give it an
array-annotated function and expect it to do the right thing:

test/injector_spec.js
it('invokes an array-annotated function with dependency injection', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 module.constant('b', 2);
 var injector = createInjector(['myModule']);

 var fn = ['a', 'b', function(one, two) { return one + two; }];

 expect(injector.invoke(fn)).toBe(3);
});

In exactly the same way, you should be able to give it a non-annotated function and expect it to
parse the dependency annotations from the source:

test/injector_spec.js
it('invokes a non-annotated function with dependency injection', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 module.constant('b', 2);
 var injector = createInjector(['myModule']);

 var fn = function(a, b) { return a + b; };

 expect(injector.invoke(fn)).toBe(3);
});

Instantiating Objects with Dependency Injection 18

430 Errata© Tero Parviainen 2016

In invoke we’ll need to do two things: Firstly, we need to look up the dependency names using
annotate() instead of accessing $inject directly. Secondly, we need to check if the function
given was wrapped into an array, and unwrap it if necessary before trying to invoke it:

src/injector.js
function invoke(fn, self, locals) {
 var args = _.map(annotate(fn), function(token) {
 if (_.isString(token)) {
 return locals && locals.hasOwnProperty(token) ?
 locals[token] :
 cache[token];
 } else {
 throw 'Incorrect injection token! Expected a string, got '+token;
 }
 });
 if (_.isArray(fn)) {
 fn = _.last(fn);
 }
 return fn.apply(self, args);
}
And now we can feed any of the three kinds of functions to invoke!

Instantiating Objects with Dependency Injection

We’ll conclude this chapter by adding one more capability to the injector: Injecting not only plain
functions but also constructor functions.

When you have a constructor function and want to instantiate an object using that function, while
also injecting its dependencies, you can use injector.instantiate. It can handle a constructor
that has an explicit $inject annotation attached:

test/injector_spec.js
it('instantiates an annotated constructor function', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 module.constant('b', 2);
 var injector = createInjector(['myModule']);

 function Type(one, two) {
 this.result = one + two;
 }
 Type.$inject = ['a', 'b'];

 var instance = injector.instantiate(Type);
 expect(instance.result).toBe(3);
});

You can also use array-wrapper style annotations:

Instantiating Objects with Dependency Injection 18

431 Errata© Tero Parviainen 2016

test/injector_spec.js
it('instantiates an array-annotated constructor function', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 module.constant('b', 2);
 var injector = createInjector(['myModule']);

 function Type(one, two) {
 this.result = one + two;
 }

 var instance = injector.instantiate(['a', 'b', Type]);
 expect(instance.result).toBe(3);
});

And, just like for plain functions, the injector should be able to extract the dependency names from
the constructor function itself:

test/injector_spec.js
it('instantiates a non-annotated constructor function', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 module.constant('b', 2);
 var injector = createInjector(['myModule']);

 function Type(a, b) {
 this.result = a + b;
 }

 var instance = injector.instantiate(Type);
 expect(instance.result).toBe(3);
});

Let’s introduce the new instantiate method in the injector. It points to a local function, which
we’ll introduce momentarily:

src/injector.js
return {
 has: function(key) {
 return cache.hasOwnProperty(key);
 },
 get: function(key) {
 return cache[key];
 },
 annotate: annotate,
 invoke: invoke,
 instantiate: instantiate
};

Instantiating Objects with Dependency Injection 18

432 Errata© Tero Parviainen 2016

A simplistic implementation of instantiate could just make a new object, invoke the constructor
function with the new object bound to this, and then return the new object:

src/injector.js
function instantiate(Type) {
 var instance = {};
 invoke(Type, instance);
 return instance;
}

This does indeed make our existing tests pass. But there’s one important behavior of using a con-
structor function that we’re forgetting: When you construct an object with new, you also set up the
prototype chain of the object based on the prototype chain of the constructor. We should respect this
behavior in injector.instantiate.

For example, if the constructor we’re instantiating has a prototype where some additional behav-
ior is defined, that behavior should be available to the resulting object through inheritance:

test/injector_spec.js
it('uses the prototype of the constructor when instantiating', function() {
 function BaseType() { }
 BaseType.prototype.getValue = _.constant(42);

 function Type() { this.v = this.getValue(); }
 Type.prototype = BaseType.prototype;

 var module = window.angular.module('myModule', []);
 var injector = createInjector(['myModule']);

 var instance = injector.instantiate(Type);
 expect(instance.v).toBe(42);
});

To set up the prototype chain, we can construct the object using the ES5.1 Object.create function
instead of just making a simple literal. We also need to remember to unwrap the constructor be-
cause it might use array dependency annotations:

src/injector.js
function instantiate(Type) {
 var UnwrappedType = _.isArray(Type) ? _.last(Type) : Type;
 var instance = Object.create(UnwrappedType.prototype);
 invoke(Type, instance);
 return instance;
}

Finally, just like injector.invoke supports supplying a locals object, so should injector.
instantiate. It can be given as an optional second argument:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create

Summary 18

433 Errata© Tero Parviainen 2016

test/injector_spec.js
it('supports locals when instantiating', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 module.constant('b', 2);
 var injector = createInjector(['myModule']);

 function Type(a, b) {
 this.result = a + b;
 }

 var instance = injector.instantiate(Type, {b: 3});
 expect(instance.result).toBe(4);
});

We just need to take the locals argument and pass it along to invoke as its third argument:

src/injector.js
function instantiate(Type, locals) {
 var UnwrappedType = _.isArray(Type) ? _.last(Type) : Type;
 var instance = Object.create(UnwrappedType.prototype);
 invoke(Type, instance, locals);
 return instance;
}

Summary

We’ve now begun our journey towards the fully featured Angular.js dependency injection frame-
work. At this point we already have a perfectly serviceable module system and an injector into
which you can register constants, and using which you can inject functions and constructors.

In this chapter you have learned:

• How the angular global variable and its module method come to be.
• How modules can be registered.
• That the angular global will only ever be registered once per window, but any given module

can be overridden by a later registration with the same name.
• How previously registered modules can be looked up.
• How an injector comes to be.
• How the injector is given names of modules to instantiate, which it will look up from the an-

gular global.
• How application component registrations in modules are queued up and only instantiated

when the injector loads the module.
• How modules can require other modules and that the required modules are loaded first by the

injector.

Summary 18

434 Errata© Tero Parviainen 2016

• That the injector loads each module only once to prevent unnecessary work and problems with
circular requires.

• How the injector can be used to invoke a function and how it can look up its arguments from
its $inject annotation.

• How the injected function’s this keyword can be bound by supplying it to injector.in-
voke.

• How a function’s dependencies can be overridden or augmented by supplying a locals object to
injector.invoke.

• How array-wrapper style function annotation works.
• How function dependencies can be looked up from the function’s source code.
• How strict DI mode helps make sure you’re not accidentally using non-annotated dependency

injection when you don’t mean to.
• How the dependencies of any given function can be extracted using injector.annotate.
• How objects can be instantiated with dependency injection using injector.instantiate.

In the next chapter we’ll focus on Providers - one of the central building blocks of the Angular DI
system, on which many of the high-level features are built.

 19

435 Errata© Tero Parviainen 2016

Chapter 12

Providers

The Simplest Possible Provider: An Object with A $get Method 19

436 Errata© Tero Parviainen 2016

When it comes to the actual logic of dependency injection, our injector is already pretty much
done. It can do all the types on injection the Angular.js injector can. For the remainder of this part
of the book, we can focus on building the APIs with which you can create those application com-
ponents that you actually inject.

So far the only way to add something to our injector has been the constant, which, for all intents
and purposes, is little more than a direct “put” of a value to the injector’s cache.

In this chapter we’ll focus on the concept of providers. Providers are objects that know how to
make dependencies. They’re useful when you actually need to run some code when constructing a
dependency. They’re also useful when your dependency has other dependencies, which you’d also
like to have injected.

Providers are the underlying mechanism for all of the other types of application components in
Angular, apart from constants. Services, factories, and values will all be built on providers.

Download the code for the starting point of this chapter.

The Simplest Possible Provider: An Object with A $get
Method

Generally speaking, what Angular calls a provider is any JavaScript object that has a method at-
tached to it called $get. When you give such an object to the injector, it will call that $get meth-
od and treat its return value as the actual dependency:

test/injector_spec.js
it('allows registering a provider and uses its $get', function() {
 var module = window.angular.module('myModule', []);
 module.provider('a', {
 $get: function() {
 return 42;
 }
 });

 var injector = createInjector(['myModule']);

 expect(injector.has('a')).toBe(true);
 expect(injector.get('a')).toBe(42);
});

So here, a is 42, and the provider for a is the object {$get: function() { return 42; }}.
This indirection isn’t very useful the way we’re using it now, but as we will see, it gives us a chance
to conveniently configure a in ways that aren’t possible for constants.

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter11-modules-and-the-injector

The Simplest Possible Provider: An Object with A $get Method 19

437 Errata© Tero Parviainen 2016

To implement the kind of provider needed by this test, let’s begin with the module loader. It needs
to have a method for registering a provider. That method should put the registration invocation in
the invoke queue:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: function(key, value) {
 invokeQueue.push(['constant', [key, value]]);
 },
 provider: function(key, provider) {
 invokeQueue.push(['provider', [key, provider]]);
 },
 _invokeQueue: invokeQueue
};

There’s some repetition forming in the component registration here, so let’s introduce a generic
“queueing function” with which we can implement module.constant and module.provider
with minimal duplication of effort:

src/loader.js
var createModule = function(name, requires, modules) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid module name';
 }
 var invokeQueue = [];

 var invokeLater = function(method) {
 return function() {
 invokeQueue.push([method, arguments]);
 return moduleInstance;
 };
 };

 var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('constant'),
 provider: invokeLater('provider'),
 _invokeQueue: invokeQueue
 };

 modules[name] = moduleInstance;
 return moduleInstance;
};

invokeLater returns a function that has been preconfigured for a particular type of application
component, or rather, a particular method of $provide. The function pushes to the invoke queue

Injecting Dependencies To The $get Method 19

438 Errata© Tero Parviainen 2016

an array with that method name and any arguments given.

This kind of technique for “preconfiguring” a function is called currying.

Notice that we also return the module instance from registration, so that the chaining of registra-
tions is possible: module.constant(‘a’, 42’).constant(‘b’, 43).

We still need the code in the injector’s $provide object that can handle the new queue item. For
now, let’s simply call the $get method of the provider and put the return value in the cache. That
satisfies our first test case:

src/injector.js
var $provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 cache[key] = value;
 },
 provider: function(key, provider) {
 cache[key] = provider.$get();
 }
};

Injecting Dependencies To The $get Method

At this point we’ve gained very little by introducing providers. We’ve just “hidden” the actual de-
pendency behind a $get method that the injector needs to call.

The benefits this buys us begin to become visible when we think of cases where constructing an
application component has its own dependencies. That is, when our dependencies have dependen-
cies. So far we’ve had no way to really model this, but as we now have the $get method, we can
call that method with dependency injection:

test/injector_spec.js
it('injects the $get method of a provider', function() {
 var module = window.angular.module('myModule', []);
 module.constant('a', 1);
 module.provider('b', {
 $get: function(a) {
 return a + 2;
 }
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('b')).toBe(3);

https://en.wikipedia.org/wiki/Currying

Lazy Instantiation of Dependencies 19

439 Errata© Tero Parviainen 2016

});

This one is easy: We need to call provider.$get with dependency injection. In the last chapter
we implemented the function that does exactly that: invoke.

src/injector.js
var $provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 cache[key] = value;
 },
 provider: function(key, provider) {
 cache[key] = invoke(provider.$get, provider);
 }
};

Note that we bind the receiver this to the provider object in the invocation. Because $get is a
method of the provider object, its this should be bound to that object.

So, invoke is not only a method of the injector you can call for your own functions, but it is also
used internally by the injector to inject dependencies to provider.$get methods.

Lazy Instantiation of Dependencies

Now that we can have dependencies between dependencies, we’ll need to start thinking about the
order in which things are done. At the time when we create a dependency, do we have all of its de-
pendencies available? Consider the following case, where b depends on a, but b is registered before
a:

test/injector_spec.js
it('injects the $get method of a provider lazily', function() {
 var module = window.angular.module('myModule', []);
 module.provider('b', {
 $get: function(a) {
 return a + 2;
 }
 });
 module.provider('a', {$get: _.constant(1)});

 var injector = createInjector(['myModule']);

 expect(injector.get('b')).toBe(3);
});

Lazy Instantiation of Dependencies 19

440 Errata© Tero Parviainen 2016

The test fails because as we try to invoke the $get method for b, its dependency a is not yet avail-
able.

If this was really how the Angular injector worked, you would have to be very careful to load your
code in the order of its dependencies. Fortunately, this is not how the injector works. Instead, the
injector invokes those $get methods lazily, only when their return values are needed. So, even
though b is registered as the first thing, its $get method should not be called at that point. It
should be called only when we ask the injector for b for the first time. By that time a will also have
been registered.

Since we can’t call a provider’s $get at the time when we drain the invoke queue, we’ll need to
keep the provider object around so we can call it later. We have the cache object for storage, but it
doesn’t really make sense to put the provider there, because the cache is for dependency instances,
not the providers that produce them. What we need to do is split the cache in two: One cache for
all the providers, and the other for all the instances:

src/injector.js
function createInjector(modulesToLoad, strictDi) {
 var providerCache = {};
 var instanceCache = {};
 var loadedModules = {};

 // ...

}

Then, in $provide, we’ll put constants in instanceCache and providers in providerCache.
When caching a provider, we attach a ’Provider’ suffix to the cache key. So registering the pro-
vider for ’a’ will cause the key ’aProvider’ to be put in the provider cache. We need to have a
clear separation between instances and their providers and this naming enforces that separation:

src/injector.js
var $provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 instanceCache[key] = value;
 },
 provider: function(key, provider) {
 providerCache[key + 'Provider'] = provider;
 }
};

As we then need to get a hold of a dependency, either for injection or because someone asked for
it directly, we need to look at both of these caches. Let’s create a new local method inside cre-
ateInjector that does this. The function getService will, given the name of a dependency,

Lazy Instantiation of Dependencies 19

441 Errata© Tero Parviainen 2016

first look for it in the instance cache, and then in the provider cache. If it finds a provider for the
dependency, it invokes it, like we did earlier in $provide.provider:

src/injector.js
function getService(name) {
 if (instanceCache.hasOwnProperty(name)) {
 return instanceCache[name];
 } else if (providerCache.hasOwnProperty(name + 'Provider')) {
 var provider = providerCache[name + 'Provider'];
 return invoke(provider.$get, provider);
 }
}

From invoke we can now call our new function during the dependency lookup loop. If the look-
up from locals fails, we look for the token in the injector’s caches:

src/injector.js
function invoke(fn, self, locals) {
 var args = _.map(annotate(fn), function(token) {
 if (_.isString(token)) {
 return locals && locals.hasOwnProperty(token) ?
 locals[token] :
 getService(token);
 } else {
 throw 'Incorrect injection token! Expected a string, got '+token;
 }
 });
 if (_.isArray(fn)) {
 fn = _.last(fn);
 }
 return fn.apply(self, args);
}

Finally, we also need to update the way the injector.get and injector.has methods work.
The get method can just be an alias to the new getService function. In has we need to do a
property check in both caches, and use the ’Provider’ suffix when checking the provider cache:

src/injector.js
return {
 has: function(key) {
 return instanceCache.hasOwnProperty(key) ||
 providerCache.hasOwnProperty(key + 'Provider');
 },
 get: getService,
 annotate: annotate,
 invoke: invoke
};

So, a dependency from a provider only gets instantiated when its either injected somewhere, or

Making Sure Everything Is A Singleton 19

442 Errata© Tero Parviainen 2016

explicitly asked for through injector.get. If no one ever asks for a dependency, it will never
actually come to be - its provider’s $get never gets called.

You can check for the existence of a dependency through injector.has, which does not cause
the dependency to be instantiated. It just checks if there’s either a dependency instance or a pro-
vider for it available.

Making Sure Everything Is A Singleton

You may have heard it said that “everything in Angular is a singleton”. That is generally true:
When you use the same dependency in two different places, you will have a reference to the same
exact object.

This is not how our current injector implementation works though. When you ask for a provid-
er-created component twice, you will get two results that don’t necessarily point to the same thing:

test/injector_spec.js
it('instantiates a dependency only once', function() {
 var module = window.angular.module('myModule', []);
 module.provider('a', {$get: function() { return {}; }});

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(injector.get('a'));
});

This is because we call $get twice (through getService()) and each time it gives us a new ob-
ject. This is not how it should be.

The solution to this is to simply put the return value of a provider invocation to the instance cache
right after we get it. So the next time someone needs the same dependency, it will just be available
in the instance cache. We will never call a provider’s $get method twice:

src/injector.js
function getService(name) {
 if (instanceCache.hasOwnProperty(name)) {
 return instanceCache[name];
 } else if (providerCache.hasOwnProperty(name + 'Provider')) {
 var provider = providerCache[name + 'Provider'];
 var instance = instanceCache[name] = invoke(provider.$get);
 return instance;
 }
}

Circular Dependencies

Circular Dependencies 19

443 Errata© Tero Parviainen 2016

As we now have dependencies depending on other dependencies, we’ve introduced the possibility
of a circular dependency chain occurring: If A depends on B, B depends on C, and C depends on A,
that’s a problem because there’s no way for us to construct A, B, or C without getting into an in-
finite loop - and a corresponding stack overflow error. We would perhaps like a more informative
error message to be shown:

test/injector_spec.js
it('notifies the user about a circular dependency', function() {
 var module = window.angular.module('myModule', []);
 module.provider('a', {$get: function(b) { }});
 module.provider('b', {$get: function(c) { }});
 module.provider('c', {$get: function(a) { }});

 var injector = createInjector(['myModule']);

 expect(function() {
 injector.get('a');
 }).toThrowError(/Circular dependency found/);
});

The trick here has two parts to it: As we construct a dependency, before invoking its $get method
we’ll put a special marker value into the instance cache. The marker value says “we’re currently
constructing this dependency”. If, then, at some point we see this marker value when looking up
a dependency, that means we’re trying to look up something that we’re also currently constructing
and we have a circle.

We can just use an empty object as the marker value. The important thing is that it’s not equal to
anything else. Let’s introduce the marker at the beginning of injector.js:

src/injector.js
var FN_ARGS = /^function\s*[^\(]*\(\s*([^\)]*)\)/m;
var FN_ARG = /^\s*(_?)(\S+?)\1\s*$/;
var STRIP_COMMENTS = /(\/\/.*$)|(\/*.*?*\/)/mg;
var INSTANTIATING = { };

In getService we’ll put the marker in before calling a provider, and check for it when looking up
an instance:

src/injector.js
function getService(name) {
 if (instanceCache.hasOwnProperty(name)) {
 if (instanceCache[name] === INSTANTIATING) {
 throw new Error('Circular dependency found');
 }
 return instanceCache[name];
 } else if (providerCache.hasOwnProperty(name + 'Provider')) {

Circular Dependencies 19

444 Errata© Tero Parviainen 2016

 instanceCache[name] = INSTANTIATING;
 var provider = providerCache[name + 'Provider'];
 var instance = instanceCache[name] = invoke(provider.$get);
 return instance;
 }
}

As the dependency is finally constructed, it’ll replace the INSTANTIATING marker in the instance
cache. But something could also go wrong during instantiation, in which case we don’t want that
marker to be left in the cache:

test/injector_spec.js
it('cleans up the circular marker when instantiation fails', function() {
 var module = window.angular.module('myModule', []);
 module.provider('a', {$get: function() {
 throw 'Failing instantiation!';
 }});

 var injector = createInjector(['myModule']);

 expect(function() {
 injector.get('a');
 }).toThrow('Failing instantiation!');
 expect(function() {
 injector.get('a');
 }).toThrow('Failing instantiation!');
});

What we’re doing here is checking that if you try and fail to instantiate a twice, it’ll try to invoke
the provider on both times. Our current implementation does not do that, because on the first time
it leaves the INSTANTIATING marker in the instance cache, and on the second time it sees that and
draws the conclusion that this is a circular dependency. We should make sure we don’t leave the
marker in even if the invocation fails:

src/injector.js
function getService(name) {
 if (instanceCache.hasOwnProperty(name)) {
 if (instanceCache[name] === INSTANTIATING) {
 throw new Error('Circular dependency found');
 }
 return instanceCache[name];
 } else if (providerCache.hasOwnProperty(name + 'Provider')) {
 instanceCache[name] = INSTANTIATING;
 try {
 var provider = providerCache[name + 'Provider'];
 var instance = instanceCache[name] = invoke(provider.$get);
 return instance;
 } finally {
 if (instanceCache[name] === INSTANTIATING) {

Circular Dependencies 19

445 Errata© Tero Parviainen 2016

 delete instanceCache[name];
 }
 }
 }
}

Just notifying the user that there’s a circular dependency somewhere is not very helpful though. It
would be much better to let them know where that problem actually is.

We usually don’t spend much time thinking of error messages in this book, but this is one of those cases
where knowing how the error message is constructed really helps you decipher it.

What we’d like is to show the user the path to the dependency where the problem occurred. In our
case, reading from right to left:

 a <- c <- b <- a

Updating our existing test case to expect this in the error message:

test/injector_spec.js
it('notifies the user about a circular dependency', function() {
 var module = window.angular.module('myModule', []);
 module.provider('a', {$get: function(b) { }});
 module.provider('b', {$get: function(c) { }});
 module.provider('c', {$get: function(a) { }});

 var injector = createInjector(['myModule']);

 expect(function() {
 injector.get('a');
 }).toThrowError('Circular dependency found: a <- c <- b <- a');
});

What we need to do is store the current dependency path in a data structure as we do dependency
resolution. Let’s introduce an array for it inside createInjector():

src/injector.js
function createInjector(modulesToLoad, strictDi) {
 var providerCache = {};
 var instanceCache = {};
 var loadedModules = {};
 var path = [];
 // ...

In getService() we can treat path essentially as a stack. When we start resolving a dependency,
we add its name to the front of the path. When we’re done, we pop it off:

Provider Constructors 19

446 Errata© Tero Parviainen 2016

src/injector.js
function getService(name) {
 if (instanceCache.hasOwnProperty(name)) {
 if (instanceCache[name] === INSTANTIATING) {
 throw new Error('Circular dependency found');
 }
 return instanceCache[name];
 } else if (providerCache.hasOwnProperty(name + 'Provider')) {
 path.unshift(name);
 instanceCache[name] = INSTANTIATING;
 try {
 var provider = providerCache[name + 'Provider'];
 var instance = instanceCache[name] = invoke(provider.$get);
 return instance;
 } finally {
 path.shift();
 if (instanceCache[name] === INSTANTIATING) {
 delete instanceCache[name];
 }
 }
 }
}

If we run into a circular dependency, we can then just use the current value of path to display the
problematic dependency path to the user:

src/injector.js
function getService(name) {
 if (instanceCache.hasOwnProperty(name)) {
 if (instanceCache[name] === INSTANTIATING) {
 throw new Error('Circular dependency found: ' +
 name + ' <- ' + path.join(' <- '));
 }
 return instanceCache[name];
 } else if (providerCache.hasOwnProperty(name + 'Provider')) {
 path.unshift(name);
 instanceCache[name] = INSTANTIATING;
 try {
 var provider = providerCache[name + 'Provider'];
 var instance = instanceCache[name] = invoke(provider.$get, provider);
 return instance;
 } finally {
 path.shift();
 }
 }
}

Now the user can actually see where they have problem!

Provider Constructors

Provider Constructors 19

447 Errata© Tero Parviainen 2016

Earlier we defined a provider to be an object thas has a $get method. This is true, but when you
register a provider to an injector, you can also choose to do it with a constructor function that instan-
tiates a provider instead of just using a ready-made object:

function AProvider() {
 this.$get = function() { return 42; }
}

This is a constructor that, when instantiated, results in an object with a $get method - a provider.
Another such constructor might be:

function AProvider() {
 this.value = 42;
}
AProvider.prototype.$get = function() {
 return this.value;
}

So using this constructor style, Angular doesn’t really care where the $get method comes from as
long as the resulting object has it. You can fully leverage JavaScript’s pseudo-class-style program-
ming facilities (or the actual classes that come with ES2015!) and inheritance when working with
providers.

As a unit test, here’s how this feature should work:

test/injector_spec.js
it('instantiates a provider if given as a constructor function', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider() {
 this.$get = function() { return 42; };
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(42);
});

What’s more is that those constructor functions can also be injected with other dependencies:

test/injector_spec.js
it('injects the given provider constructor function', function() {
 var module = window.angular.module('myModule', []);

 module.constant('b', 2);
 module.provider('a', function AProvider(b) {
 this.$get = function() { return 1 + b; };

Two Injectors: The Provider Injector and The Instance Injector 19

448 Errata© Tero Parviainen 2016

 });

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(3);
});

To enable constructor-style providers, we’ll need to check at registration time if the provider given
is actually a function. If it is, we need to instantiate it, and in the previous chapter we created a
function for doing just that: instantiate.

src/injector.js
provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
}

What we have now are two seemingly interchangeable ways to inject things to a provider: To its
constructor, or to its $get method. Moreover, the work we did for lazy initialization does not ap-
ply to the constructor injection. The provider constructor is instantiated right when its registered.
If some of its dependencies have not been registered yet, it won’t work.

The key idea with these two different injection points is that they are actually not interchangeable,
but used for two different purposes.

Two Injectors: The Provider Injector and The Instance In-
jector

The first difference between the two injection points is that you can inject other providers to a pro-
vider constructor:

test/injector_spec.js
it('injects another provider to a provider constructor function', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider() {
 var value = 1;
 this.setValue = function(v) { value = v; };
 this.$get = function() { return value; };
 });
 module.provider('b', function BProvider(aProvider) {
 aProvider.setValue(2);
 this.$get = function() { };
 });

Two Injectors: The Provider Injector and The Instance Injector 19

449 Errata© Tero Parviainen 2016

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(2);
});

So far we’ve only been injecting instances, such as constants and the return values of provider
$get methods. Here, we actually inject a provider: The provider for b has a dependency to the
provider for a, so it expects aProvider to be injected. It then configures aProvider by calling its
setValue() method. When we get the a instance from the injector, we see that the method call
has in fact happened.

An initial implementation of provider injection that makes our test pass could be to just add a
providerCache lookup to getService:

src/injector.js
function getService(name) {
 if (instanceCache.hasOwnProperty(name)) {
 if (instanceCache[name] === INSTANTIATING) {
 throw new Error('Circular dependency found: ' +
 name + ' <- ' + path.join(' <- '));
 }
 return instanceCache[name];
 } else if (providerCache.hasOwnProperty(name)) {
 return providerCache[name];
 } else if (providerCache.hasOwnProperty(name + 'Provider')) {
 path.unshift(name);
 instanceCache[name] = INSTANTIATING;
 try {
 var provider = providerCache[name + 'Provider'];
 var instance = instanceCache[name] = invoke(provider.$get);
 return instance;
 } finally {
 path.shift();
 if (instanceCache[name] === INSTANTIATING) {
 delete instanceCache[name];
 }
 }
 }
}

We now look at providerCache for two different purposes: When looking for a provider to in-
stantiate an instance, and when just looking for a provider as-is.

It is not quite this simple, however. Turns out you can’t just inject either providers or instances any-
where you please. For example, while you can inject a provider to another provider’s constructor,
you should not be able to inject an instance there:

Two Injectors: The Provider Injector and The Instance Injector 19

450 Errata© Tero Parviainen 2016

test/injector_specjs
it('does not inject an instance to a provider constructor function', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider() {
 this.$get = function() { return 1; };
 });

 module.provider('b', function BProvider(a) {
 this.$get = function() { return a; };
 });

 expect(function() {
 createInjector(['myModule']);
 }).toThrow();

});

So, while BProvider may depend on aProvider, it may not depend on a.

Similarly, while you can inject instances to the $get method, you should not be able to inject pro-
viders there:

test/injector_spec.js
it('does not inject a provider to a $get function', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider() {
 this.$get = function() { return 1; };
 });
 module.provider('b', function BProvider() {
 this.$get = function(aProvider) { return aProvider.$get(); };
 });

 var injector = createInjector(['myModule']);

 expect(function() {
 injector.get('b');
 }).toThrow();
});

You should also not be able to inject providers to a function you call using injector.invoke:
test/injector_spec.js
it('does not inject a provider to invoke', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider() {
 this.$get = function() { return 1; }
 });

Two Injectors: The Provider Injector and The Instance Injector 19

451 Errata© Tero Parviainen 2016

 var injector = createInjector(['myModule']);

 expect(function() {
 injector.invoke(function(aProvider) { });
 }).toThrow();
});

Nor should you even be able to call injector.get to obtain access to a provider. An exception
should be thrown instead:

test/injector_spec.js
it('does not give access to providers through get', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider() {
 this.$get = function() { return 1; };
 });

 var injector = createInjector(['myModule']);
 expect(function() {
 injector.get('aProvider');
 }).toThrow();
});

What we have outlined with these tests is a clear separation between two types of injection: The
injection that happens between provider constructors only deals with other providers. The injec-
tion that happens between $get methods and the external injector API only deals with instances.
The instances may be created using providers but the providers are not exposed.

This separation can be implemented by actually having two separate injectors: One that deals
exclusively with providers, and another that deals exclusively with instances. The latter will be
the one exposed through the public API, and the former will only be used internally inside cre-
ateInjector.

Let’s reorganize the code to support the two injectors. We’ll introduce the changes step by step
first, and finally list the full, reorganized source code of createInjector.

To begin with, we’ll have an internal function inside createInjector that we’ll use to create our
two internal injectors. This function will take two arguments: A cache to do dependency lookups
from, and a factory function to fall back to when there’s nothing in the cache:

src/injector.js
function createInternalInjector(cache, factoryFn) {

}

We need to move all the dependency lookup functions inside createInternalInjector because

Two Injectors: The Provider Injector and The Instance Injector 19

452 Errata© Tero Parviainen 2016

they need to be scoped to the cache and factoryFn. Firstly, getService will now live inside
createInternalInjector. It’ll do its lookups from the given cache object:

src/injector.js
function createInternalInjector(cache, factoryFn) {

 function getService(name) {
 if (cache.hasOwnProperty(name)) {
 if (cache[name] === INSTANTIATING) {
 throw new Error('Circular dependency found: ' +
 name + ' <- ' + path.join(' <- '));
 }
 return cache[name];
 } else {
 path.unshift(name);
 cache[name] = INSTANTIATING;
 try {
 return (cache[name] = factoryFn(name));
 } finally {
 path.shift();
 if (cache[name] === INSTANTIATING) {
 delete cache[name];
 }
 }
 }
 }

}

Note that we no longer do explicit provider invocation in the else branch. The work that happens
when there’s a cache miss is delegated to the factoryFn given to createInternalInjector.
We will soon see what that work entails.

The invoke and instantiate functions also need to move inside createInternalInjector,
because they depend on getService. The function implementations themselves do not require
changes:

src/injector.js
function createInternalInjector(cache, factoryFn) {

 function getService(name) {
 if (cache.hasOwnProperty(name)) {
 if (cache[name] === INSTANTIATING) {
 throw new Error('Circular dependency found: ' +
 name + ' <- ' + path.join(' <- '));
 }
 return cache[name];
 } else {
 path.unshift(name);

Two Injectors: The Provider Injector and The Instance Injector 19

453 Errata© Tero Parviainen 2016

 cache[name] = INSTANTIATING;
 try {
 return (cache[name] = factoryFn(name));
 } finally {
 path.shift();
 if (cache[name] === INSTANTIATING) {
 delete cache[name];
 }
 }
 }
 }

 function invoke(fn, self, locals) {
 var args = annotate(fn).map(function(token) {
 if (_.isString(token)) {
 return locals && locals.hasOwnProperty(token) ?
 locals[token] :
 getService(token);
 } else {
 throw 'Incorrect injection token! Expected a string, got '+token;
 }
 });
 if (_.isArray(fn)) {
 fn = _.last(fn);
 }
 return fn.apply(self, args);
 }

 function instantiate(Type, locals) {
 var instance = Object.create((_.isArray(Type) ? _.last(Type) : Type).
prototype);
 invoke(Type, instance, locals);
 return instance;
 }

}

The last part of createInternalInjector is the creation of the injector object to return. This is
the same object as the one we had as the return value of createInjector earlier:

src/injector.js
function createInternalInjector(cache, factoryFn) {

 // ...

 return {
 has: function(name) {
 return cache.hasOwnProperty(name) ||
 providerCache.hasOwnProperty(name + 'Provider');
 },
 get: getService,

Two Injectors: The Provider Injector and The Instance Injector 19

454 Errata© Tero Parviainen 2016

 annotate: annotate,
 invoke: invoke,
 instantiate: instantiate
 };
}

The get, invoke, and instantiate methods refer to the functions we now have inside the
createInternalInjector closure. The annotate method refers to the annotate function that
hasn’t changed. The has method checks for the existence of a dependency in the local cache as
well as the provider cache.

Now that we have createInternalInjector, we can create our two injectors with it. The pro-
vider injector works with the provider cache. Its fallback function will throw an exception letting the
user know the dependency they’re looking for doesn’t exist:

src/injector.js
function createInjector(modulesToLoad) {
 var providerCache = {};
 var providerInjector = createInternalInjector(providerCache, function() {
 throw 'Unknown provider: '+path.join(' <- ');
 });

 // ...
}

The instance injector correspondingly works with the instance cache. It falls back to a function that
looks for a provider and uses it to construct the dependency. This is the logic we had in the else
branch of getService earlier:

src/injector.js
function createInjector(modulesToLoad) {
 var providerCache = {};
 var providerInjector = createInternalInjector(providerCache, function() {
 throw 'Unknown provider: '+path.join(' <- ');
 });
 var instanceCache = {};
 var instanceInjector = createInternalInjector(instanceCache, function(name) {
 var provider = providerInjector.get(name + 'Provider');
 return instanceInjector.invoke(provider.$get, provider);
 });

 // ...

}

Note that we get the provider from the provider injector, but we invoke its $get method using the
instance injector. That’s how we make sure only instances get injected to $get.

Two Injectors: The Provider Injector and The Instance Injector 19

455 Errata© Tero Parviainen 2016

As we now instantiate providers, we’ll use the provider injector’s instantiate method. That way
it’ll only have access to other providers, which was another one of our requirements:

src/injector.js
provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
}

Constants are a special case in that we put a reference to them to both the provider and instance
caches. Constants are available everywhere:

src/injector.js
constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;
},

Finally, the instance injector is what we actually return to the caller of createInjector:

src/injector.js
function createInjector(modulesToLoad, strictDi) {

 // ...

 return instanceInjector;
}

Here’s the full, updated implementation of createInjector:

src/injector.js
function createInjector(modulesToLoad, strictDi) {
 var providerCache = {};
 var providerInjector = createInternalInjector(providerCache, function() {
 throw 'Unknown provider: '+path.join(' <- ');
 });
 var instanceCache = {};
 var instanceInjector = createInternalInjector(instanceCache, function(name) {
 var provider = providerInjector.get(name + 'Provider');
 return instanceInjector.invoke(provider.$get, provider);
 });
 var loadedModules = {};
 var path = [];

Two Injectors: The Provider Injector and The Instance Injector 19

456 Errata© Tero Parviainen 2016

 strictDi = (strictDi === true);

 var $provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;
 },
 provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
 }
 };

 function annotate(fn) {
 if (_.isArray(fn)) {
 return fn.slice(0, fn.length - 1);
 } else if (fn.$inject) {
 return fn.$inject;
 } else if (!fn.length) {
 return [];
 } else {
 var source = fn.toString().replace(STRIP_COMMENTS, '');
 var argDeclaration = source.match(FN_ARGS);
 return _.map(argDeclaration[1].split(','), function(argName) {
 return argName.match(FN_ARG)[2];
 });
 }
 }

 function createInternalInjector(cache, factoryFn) {

 function getService(name) {
 if (cache.hasOwnProperty(name)) {
 if (cache[name] === INSTANTIATING) {
 throw new Error('Circular dependency found: ' +
 name + ' <- ' + path.join(' <- '));
 }
 return cache[name];
 } else {
 path.unshift(name);
 cache[name] = INSTANTIATING;
 try {
 return (cache[name] = factoryFn(name));
 } finally {
 path.shift();
 if (cache[name] === INSTANTIATING) {
 delete cache[name];

Two Injectors: The Provider Injector and The Instance Injector 19

457 Errata© Tero Parviainen 2016

 }
 }
 }
 }

 function invoke(fn, self, locals) {
 var args = _.map(annotate(fn), function(token) {
 if (_.isString(token)) {
 return locals && locals.hasOwnProperty(token) ?
 locals[token] :
 getService(token);
 } else {
 throw 'Incorrect injection token! Expected a string, got '+token;
 }
 });
 if (_.isArray(fn)) {
 fn = _.last(fn);
 }
 return fn.apply(self, args);
 }

 function instantiate(Type, locals) {
 var UnwrappedType = _.isArray(Type) ? _.last(Type) : Type;
 var instance = Object.create(UnwrappedType.prototype);
 invoke(Type, instance, locals);
 return instance;
 }

 return {
 has: function(name) {
 return cache.hasOwnProperty(name) ||
 providerCache.hasOwnProperty(name + 'Provider');
 },
 get: getService,
 annotate: annotate,
 invoke: invoke,
 instantiate: instantiate
 };
 }

 _.forEach(modulesToLoad, function loadModule(moduleName) {
 if (!loadedModules.hasOwnProperty(moduleName)) {
 loadedModules[moduleName] = true;
 var module = window.angular.module(moduleName);
 _.forEach(module.requires, loadModule);
 _.forEach(module._invokeQueue, function(invokeArgs) {
 var method = invokeArgs[0];
 var args = invokeArgs[1];
 $provide[method].apply($provide, args);
 });
 }
 });

Unshifting Constants in The Invoke Queue 19

458 Errata© Tero Parviainen 2016

 return instanceInjector;
}

The two injectors we now have implement two different phases of dependency injection.

1. Provider injection happens when providers are registered from a module’s invoke queue. After
that, there will be no more changes to providerCache.

2. At runtime there’s instance injection, which happens whenever someone calls the injector’s ex-
ternal API. The instance cache is populated as dependencies are instantiated, which happens
in the fallback function of instanceInjector.

Unshifting Constants in The Invoke Queue

As we saw earlier, constructing instances lazily has the nice property that it frees the application
developer from having to register things in the order of their dependencies. You can register A
after B, even if A has a dependency on B.

With provider constructors there’s no such freedom. Since provider constructors are invoked when
the provider is registered (when the invoke queue is processed), you actually do need to register A
before B if BProvider has a dependency to AProvider. Angular will make no effort to reorder
the invoke queue to help you with this.

In the case of constants Angular does help you a bit though. Constants will always be registered first,
so you can have a provider depending on a constant that’s registered later:

test/injector_spec.js
it('registers constants first to make them available to providers', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider(b) {
 this.$get = function() { return b; };
 });
 module.constant('b', 42);

 var injector = createInjector(['myModule']);
 expect(injector.get('a')).toBe(42);
});

When constants are registered to a module, the module loader always adds them to the front of the
invoke queue. That’s how they get registered first. This is a safe reordering of the queue for Angular
to make, since constants cannot depend on anything else.

How this works is the module loader’s invokeLater function takes an optional argument that
specifies which method of Array to use when adding the queue item. It defaults to push, which
adds the item at the end of the queue:

Summary 19

459 Errata© Tero Parviainen 2016

src/loader.js
var invokeLater = function(method, arrayMethod) {
 return function() {
 invokeQueue[arrayMethod || 'push']([method, arguments]);
 return moduleInstance;
 };
};

Constant registration will override the method to unshift, whereas provider registration uses the
default:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('constant', 'unshift'),
 provider: invokeLater('provider'),
 _invokeQueue: invokeQueue
};

Summary

This chapter has shown how providers are a crucial building block of dependency injection. They
make it possible for dependencies to have other dependencies, and they allow dependencies to be
instantiated by running some code lazily when the dependency is first needed.

Provider injection happens on a different plane from instance injection, and in this chapter we’ve
seen how this is implemented using two separate injector objects inside what externally looks like
a single one.

In this chapter you’ve learned:

• How provider objects and their $get methods work, and how their dependencies are injected
using injector.invoke.

• How the module loader API allows chaining of registration method calls by returning the
module instance.

• That $get methods are called lazily, only when someone needs the dependency
• How all dependencies are singletons because $get methods are called at most once and their

results are then cached.
• How circular dependencies are handled and circular dependency error messages constructed.
• How providers can be registered as plain objects or constructor functions.
• How provider constructor functions are instantiated using dependency injection.
• How the two phases of dependency injection are separated inside the injector by having two

dependency caches and two internal injector objects.

Summary 19

460 Errata© Tero Parviainen 2016

• How the instance injector falls back to the provider injector on cache misses.
• How constants are always registered first to loosen up the requirements in registration order.

The next chapter will finalize our implementation of dependency injection, by adding the high-lev-
el facilities most application developers use most often, such as factories and services. We will see
how their implementations build on the foundation we’ve laid out.

 20

461 Errata© Tero Parviainen 2016

Chapter 13

High-Level
Dependency

Injection Features

Injecting The $injectors 20

462 Errata© Tero Parviainen 2016

Our implementation of the Angular dependency injector is already very capable. In fact, pretty
much everything Angular can do, we can now also do. The problem is that the API is still a bit
austere. Providers, while powerful, are not exactly streamlined for the most common use cases
application developers have. There’s also not much in the way of runtime configurability in our
injector.

In this chapter we can reap the benefits of the work we’ve done with injectors and providers, by
adding the layer of features most useful for application developers. It will involve some higher-lev-
el abstractions for dependency creation, as well as a few additional ways to configure and use the
injector. By the end of the chapter we’ll have the full capabilities of the Angular.js DI framework.

We’ll also run into a scenario where we need a data structure that’s lacking in JavaScript: The hash
map. Angular ships with a hash map implementation, and we’ll build it in this chapter.

To wrap up, we’ll refactor the code we’ve written earlier in the book so that it is fully integrated
with dependency injection.

Download the code for the starting point of this chapter.

Injecting The $injectors

After you create an injector object, you can use its public API to introspect its contents and inject
dependencies to functions and constructors. For an application developer, perhaps the most in-
teresting method of the injector is get, since with it you can obtain a dependency dynamically,
without having to even know its name until at runtime. This can be very useful when you need it.

It would make sense, then, to make it easy for an application developer to get access to the injector
itself. This is in fact what Angular does. The injector is available as a dependency called $injec-
tor:

test/injector_spec.js
it('allows injecting the instance injector to $get', function() {
 var module = window.angular.module('myModule', []);

 module.constant('a', 42);
 module.provider('b', function BProvider() {
 this.$get = function($injector) {
 return $injector.get('a');
 };
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('b')).toBe(42);
});

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter12-providers

Injecting The $injectors 20

463 Errata© Tero Parviainen 2016

The object you get when you inject $injector is simply the instance injector object we already
have inside createInjector. We can make it available by adding it to the instance cache:

src/injector.js
var instanceInjector = instanceCache.$injector =
 createInternalInjector(instanceCache, function(name) {
 var provider = providerInjector.get(name + 'Provider');
 return instanceInjector.invoke(provider.$get, provider);
});

Similarly, you can inject $injector to a provider constructor. As you may recall from the last
chapter, provider constructors only have other providers and constants available for injection. This
rule is also enforced by $injector injection: What you get in this case is the provider injector:

test/injector_spec.js
it('allows injecting the provider injector to provider', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider() {
 this.value = 42;
 this.$get = function() { return this.value; };
 });
 module.provider('b', function BProvider($injector) {
 var aProvider = $injector.get('aProvider');
 this.$get = function() {
 return aProvider.value;
 };
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('b')).toBe(42);
});

The provider injector is made available in exactly the same way as the instance injector - by putting
it in the cache:

src/injector.js
var providerInjector = providerCache.$injector =
 createInternalInjector(providerCache, function() {
 throw 'Unknown provider: '+path.join(' <- ');
});

So, when you ask for $injector, you may get the instance injector or the provider injector, de-
pending on where you are injecting it.

Injecting $provide 20

464 Errata© Tero Parviainen 2016

Injecting $provide

The injector object lets you introspect and access dependencies that have been configured, but it
does not let you change anything. It’s a read-only API. If you want to add some dependencies and,
for one reason or another, can’t just add them to a module, you can use an object called $pro-
vide.

By injecting $provide you gain direct access to the methods we’ve been calling through the mod-
ule invoke queue. For example, a provider constructor can use $provide to smuggle a constant
into the injector:

test/injector_spec.js
it('allows injecting the $provide service to providers', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider($provide) {
 $provide.constant('b', 2);
 this.$get = function(b) { return 1 + b; };
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(3);
});

Crucially though, $provide is only available through the provider injector. At runtime, when
what you have is the instance injector, you can no longer inject $provide and thus you can no
longer add dependencies:

test/injector_spec.js
it('does not allow injecting the $provide service to $get', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', function AProvider() {
 this.$get = function($provide) { };
 });

 var injector = createInjector(['myModule']);

 expect(function() {
 injector.get('a');
 }).toThrow();
});

The $provide object you inject is in fact the $provide object we already have - the one with the
constant and provider methods. That’s why we gave it the peculiar name $provide. Now we
just need to put it in the provider cache, like we did with the provider injector itself earlier:

Config Blocks 20

465 Errata© Tero Parviainen 2016

src/injector.js
providerCache.$provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;
 },
 provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
 }
};

Since we just removed the local variable $provide, we need to update the way we access $pro-
vide during the processing of the invoke queues:

src/injector.js
_.forEach(modulesToLoad, function loadModule(moduleName) {
 if (!loadedModules.hasOwnProperty(moduleName)) {
 loadedModules[moduleName] = true;
 var module = window.angular.module(moduleName);
 _.forEach(module.requires, loadModule);
 _.forEach(module._invokeQueue, function(invokeArgs) {
 var method = invokeArgs[0];
 var args = invokeArgs[1];
 providerCache.$provide[method].apply(providerCache.$provide, args);
 });
 }
});

Through $injector and $provide, the injector gives you direct access to most of its internal
machinery. Many applications will never end up needing them since all they need is modules and
dependency injection. But they can come in very handy when you do need that bit of extra config-
urability or introspection.

Config Blocks

One of the big reasons for using a provider instead of higher-level factories or services, which we’ll
introduce later in this chapter, is configurability. Since you can access a provider before its $get
method is called, you can affect how dependency instantiation happens. An example of this is the
$route facility of Angular’s ngRoute module. The $route service is responsible for routing URLs
to controllers in your application. The way you configure it is by using the provider of $route.

https://docs.angularjs.org/api/ngRoute/

Config Blocks 20

466 Errata© Tero Parviainen 2016

That is, $routeProvider:

$routeProvider.when('/someUrl', {
 templateUrl: '/my/view.html',
 controller: 'MyController'
});

The only problem is that to get $routeProvider you need provider injection, and the only place
we currently have it is in the constructors of other providers. Defining a provider constructor just
to be able to configure some other provider is awkward. What we really need is a way to execute
arbitrary “configuration functions” at module loading time, and a way to inject providers to those
functions. For this purpose, Angular has config blocks.

You can define a config block by calling the config function of a module. You give it a function,
and that function will be executed when the injector is created:

test/injector_spec.js
it('runs config blocks when the injector is created', function() {
 var module = window.angular.module('myModule', []);

 var hasRun = false;
 module.config(function() {
 hasRun = true;
 });

 createInjector(['myModule']);

 expect(hasRun).toBe(true);
});

The function you provide may be injected (using any of the three dependency injection mecha-
nisms from Chapter 9). You can, for instance, inject $provide:

test/injector_spec.js
it('injects config blocks with provider injector', function() {
 var module = window.angular.module('myModule', []);

 module.config(function($provide) {
 $provide.constant('a', 42);
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(42);
});

So a config block is an arbitrary function that has its dependencies injected from the provider
cache. We can meet these requirements by calling the config block using injector.invoke()

Config Blocks 20

467 Errata© Tero Parviainen 2016

from the provider injector.

First we need the API for registering a config block on a module. We need to queue up a task that
will cause the provider injector’s invoke method to be called. The first problem is that our invoke
queue code currently only supports calling methods on $provide, not $injector. We need to
extend the queue items so that both are supported. Queue items should actually be three-item
arrays: 1) The object whose method to call, 2) The name of the method to call, and 3) The method
arguments:

src/loader.js
var invokeLater = function(service, method, arrayMethod) {
 return function() {
 var item = [service, method, arguments];
 invokeQueue[arrayMethod || 'push'](item);
 return moduleInstance;
 };
};

Then we need to update our existing queueing methods to specify the $provide object as the first
item of the array:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 _invokeQueue: invokeQueue
};

The second change we need to make to invokeLater is related to the actual queue used: Our
current implementation puts everything in one queue, and the invocations will get executed in the
same order as they were registered. If we now take config blocks into account, this is not opti-
mal. We would prefer for all registration invocations to run before any config blocks. That way all the
providers of a module are available to a config block regardless of the order in which they were
added:

test/injector_spec.js
it('allows registering config blocks before providers', function() {
 var module = window.angular.module('myModule', []);

 module.config(function(aProvider) { });
 module.provider('a', function() {
 this.$get = _.constant(42);
 });

 var injector = createInjector(['myModule']);

Config Blocks 20

468 Errata© Tero Parviainen 2016

 expect(injector.get('a')).toBe(42);
});

To introduce this order-independence, we need to introduce a second queue just for the config
blocks. We’ll then modify the invokeLater function to take an optional fourth argument for spec-
ifying which queue to use. It will default to the invoke queue:

src/loader.js
var createModule = function(name, requires, modules, configFn) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid module name';
 }

 var invokeQueue = [];
 var configBlocks = [];

 var invokeLater = function(service, method, arrayMethod, queue) {
 return function() {
 queue = queue || invokeQueue;
 queue[arrayMethod || 'push']([service, method, arguments]);
 return moduleInstance;
 };
 };

 // ...
}

Now we can add the new queueing method, which will queue up a call to $injector.invoke.
We will also attach the config block queue to the module instance so that the injector can drain it:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks
};

We now need to iterate two queues in the injector. Let’s first extract the iteration code to a function
and call it for both queues:

src/injector.js
function runInvokeQueue(queue) {
 _.forEach(queue, function(invokeArgs) {
 var method = invokeArgs[0];

Config Blocks 20

469 Errata© Tero Parviainen 2016

 var args = invokeArgs[1];
 providerCache.$provide[method].apply(providerCache.$provide, args);
 });
}

_.forEach(modulesToLoad, function loadModule(moduleName) {
 if (!loadedModules.hasOwnProperty(moduleName)) {
 loadedModules[moduleName] = true;
 var module = window.angular.module(moduleName);
 _.forEach(module.requires, loadModule);
 runInvokeQueue(module._invokeQueue);
 runInvokeQueue(module._configBlocks);
 }
});

As we iterate the queues, we also need to dynamically look up the object to call rather than just
assume it’s going to be $provide. The invokeArgs array now has three elements:

src/injector.js
function runInvokeQueue(queue) {
 _.forEach(queue, function(invokeArgs) {
 var service = providerInjector.get(invokeArgs[0]);
 var method = invokeArgs[1];
 var args = invokeArgs[2];
 service[method].apply(service, args);
 });
}

So, you can register a config block by calling config() on a module instance. Another way to
register a config block is to supply one as the third argument when first creating a module instance
using angular.module:

test/injector_spec.js
it('runs a config block added during module registration', function() {
 var module = window.angular.module('myModule', [], function($provide) {
 $provide.constant('a', 42);
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(42);
});

If a function like this is given, we need to first pass it from angular.module to the internal
createModule function in the loader:

src/loader.js
ensure(angular, 'module', function() {
 var modules = {};

Run Blocks 20

470 Errata© Tero Parviainen 2016

 return function(name, requires, configFn) {
 if (requires) {
 return createModule(name, requires, modules, configFn);
 } else {
 return getModule(name, modules);
 }
 };
});

In createModule we can then just call config on the new module instance:

src/loader.js
var createModule = function(name, requires, modules, configFn) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid module name';
 }
 var invokeQueue = [];
 var configBlocks = [];

 var invokeLater = function(service, method, arrayMethod, queue) {
 return function() {
 queue = queue || invokeQueue;
 queue[arrayMethod || 'push']([service, method, arguments]);
 return moduleInstance;
 };
 };

 var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks
 };

 if (configFn) {
 moduleInstance.config(configFn);
 }

 modules[name] = moduleInstance;
 return moduleInstance;
};

Run Blocks

Run blocks are a close cousin of config blocks. Just like config blocks, they are arbitrary functions
that are invoked at injector construction time:

Run Blocks 20

471 Errata© Tero Parviainen 2016

test/injector_spec.js
it('runs run blocks when the injector is created', function() {
 var module = window.angular.module('myModule', []);

 var hasRun = false;
 module.run(function() {
 hasRun = true;
 });

 createInjector(['myModule']);

 expect(hasRun).toBe(true);
});

The main difference between config blocks and run blocks is that run blocks are injected from the
instance cache:

test/injector_spec.js
it('injects run blocks with the instance injector', function() {
 var module = window.angular.module('myModule', []);

 module.provider('a', {$get: _.constant(42)});

 var gotA;
 module.run(function(a) {
 gotA = a;
 });

 createInjector(['myModule']);

 expect(gotA).toBe(42);
});

The purpose of run blocks is not to configure providers - you can’t even inject them here - but to
just run some arbitrary code you want to hook on to the Angular startup process. To implement
run blocks, all we really need to do is collect them in the module loader, and then invoke them
after the injector has been created.

Unlike config blocks, run blocks aren’t put into a module’s invoke queue. They’re stored in their
own collection on the module instance:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 run: function(fn) {

Run Blocks 20

472 Errata© Tero Parviainen 2016

 moduleInstance._runBlocks.push(fn);
 return moduleInstance;
 },
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks,
 _runBlocks: []
};

Let’s try the simplest possible implementation for running the run blocks. We can just iterate over
them after iterating the invoke queue, and call each one using the instance injector:

src/injector.js
_.forEach(modulesToLoad, function loadModule(moduleName) {
 if (!loadedModules.hasOwnProperty(moduleName)) {
 loadedModules[moduleName] = true;
 var module = window.angular.module(moduleName);
 _.forEach(module.requires, loadModule);
 runInvokeQueue(module._invokeQueue);
 runInvokeQueue(module._configBlocks);
 _.forEach(module._runBlocks, function(runBlock) {
 instanceInjector.invoke(runBlock);
 });
 }
});

This satisfies the existing test suite, but there’s a problem. Run blocks should be run once module
loading is complete. When your injector loads several modules, any run blocks from any of them
should be deferred to until all modules are loaded. This is not true in our first implementation, as
we can see when trying to inject dependencies from other modules:

test/injector_spec.js
it('configures all modules before running any run blocks', function() {
 var module1 = window.angular.module('myModule', []);
 module1.provider('a', {$get: _.constant(1)});
 var result;
 module1.run(function(a, b) {
 result = a + b;
 });

 var module2 = window.angular.module('myOtherModule', []);
 module2.provider('b', {$get: _.constant(2)});

 createInjector(['myModule', 'myOtherModule']);

 expect(result).toBe(3);
});

The trick is to collect all run blocks to an array, and only invoke them after the outer module load-
er loop has finished and everything has been loaded:

Function Modules 20

473 Errata© Tero Parviainen 2016

src/injector.js
var runBlocks = [];
_.forEach(modulesToLoad, function loadModule(moduleName) {
 if (!loadedModules.hasOwnProperty(moduleName)) {
 loadedModules[moduleName] = true;
 var module = window.angular.module(moduleName);
 _.forEach(module.requires, loadModule);
 runInvokeQueue(module._invokeQueue);
 runInvokeQueue(module._configBlocks);
 runBlocks = runBlocks.concat(module._runBlocks);
 }
});
_.forEach(runBlocks, function(runBlock) {
 instanceInjector.invoke(runBlock);
});

To sum up, config blocks are executed during module loading and run blocks are executed immedi-
ately after it.

Function Modules

As we have seen, a module is an object into which you can register application components. Inter-
nally it holds a queue of these component registrations that will be executed when the module is
loaded.

There is also an alternative way you can define a module: A module can be just a function, which
will be injected from the provider injector when loaded.

Here we define myModule as a normal module object. It has one dependency, which is to a func-
tion module:

test/injector_spec.js
it('runs a function module dependency as a config block', function() {
 var functionModule = function($provide) {
 $provide.constant('a', 42);
 };
 window.angular.module('myModule', [functionModule]);

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(42);
});

You can also use array-style dependency annotation with function modules:

test/injector_spec.js

Function Modules 20

474 Errata© Tero Parviainen 2016

it('runs a function module with array injection as a config block', function() {
 var functionModule = ['$provide', function($provide) {
 $provide.constant('a', 42);
 }];
 window.angular.module('myModule', [functionModule]);

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(42);
});

Function modules are essentially exactly the same thing as config blocks: Functions that are inject-
ed with providers. The only difference is where you define them: Config blocks are attached to a
module, whereas function modules are dependencies of other modules.

As we do module loading, we can now no longer assume that a module is a string to be looked up
from angular.module. It can also be a function or an array, in which case we should “load” it by
invoking it with provider injection:

src/injector.js
_.forEach(modulesToLoad, function loadModule(module) {
 if (_.isString(module)) {
 if (!loadedModules.hasOwnProperty(module)) {
 loadedModules[module] = true;
 module = window.angular.module(module);
 _.forEach(module.requires, loadModule);
 runInvokeQueue(module._invokeQueue);
 runInvokeQueue(module._configBlocks);
 runBlocks = runBlocks.concat(module._runBlocks);
 }
 } else if (_.isFunction(module) || _.isArray(module)) {
 providerInjector.invoke(module);
 }
});

When you have a function module, you can also return a value from it. That value will be exe-
cuted as a run block. This little detail allows for a very concise way to define ad-hoc modules and
corresponding run blocks, which may be particularly useful in unit tests.

test/injector_spec.js
it('supports returning a run block from a function module', function() {
 var result;
 var functionModule = function($provide) {
 $provide.constant('a', 42);
 return function(a) {
 result = a;
 };
 };
 window.angular.module('myModule', [functionModule]);

Function Modules 20

475 Errata© Tero Parviainen 2016

 createInjector(['myModule']);

 expect(result).toBe(42);
});

When a function module is executed, we need to add its return value to the collection of run
blocks. Because returning a run block from a function module is still optional though, we need
to be prepared for it to be undefined as well. We can defensively remove falsy run blocks before
iterating them, using the LoDash _.compact function:

src/injector.js
var runBlocks = [];
_.forEach(modulesToLoad, function loadModule(module) {
 if (_.isString(module)) {
 if (!loadedModules.hasOwnProperty(module)) {
 loadedModules[module] = true;
 module = window.angular.module(module);
 _.forEach(module.requires, loadModule);
 runInvokeQueue(module._invokeQueue);
 runInvokeQueue(module._configBlocks);
 runBlocks = runBlocks.concat(module._runBlocks);
 }
 } else if (_.isFunction(module) || _.isArray(module)) {
 runBlocks.push(providerInjector.invoke(module));
 }
});
.forEach(.compact(runBlocks), function(runBlock) {
 instanceInjector.invoke(runBlock);
});

We still have a slight problem with loading function modules, though. As discussed in Chapter 9,
each module should be loaded only once even if required multiple times. To that effect we added
the loadedModules object and stored the names of loaded modules in it.

We can’t use this object with function modules, and indeed are not currently checking repeated
loads of them in any way. A function module required twice is executed twice:

test/injector_spec.js
it('only loads function modules once', function() {
 var loadedTimes = 0;
 var functionModule = function() {
 loadedTimes++;
 };

 window.angular.module('myModule', [functionModule, functionModule]);
 createInjector(['myModule']);

Hash Keys And Hash Maps 20

476 Errata© Tero Parviainen 2016

 expect(loadedTimes).toBe(1);
});

We can’t put function modules to the loadedModules object, since JavaScript object keys can
only be strings, not functions. What we need is a general purpose key-value data structure: A hash
map.

JavaScript does not have such a data structure (until ES2015), so Angular ships with one, which it
uses for the loadedModules variable. While there are existing key-value data structure libraries
for JavaScript that we could leverage, the one Angular bundles is peculiar enough that it makes
sense for us to study how it works. So, we will now take a slight detour from dependency injection
and build it.

Hash Keys And Hash Maps

The first function we’ll implement here is called hashKey. This function takes any JavaScript val-
ue and returns a string “hash key” for it. The purpose is similar to Java’s Object.hashCode() and
Ruby’s Object#hash, for example: A value’s hash key uniquely identifies it, and no other value of
any type should have the same hash key. We’ll use the hashKey function in our hash map imple-
mentation in a moment.

The hash key and hash map implementations will go in a new file called src/hash_map.js. The
corresponding test file will be test/hash_map_spec.js. Let’s start specifying hashKey there.

Generally, a value’s hash key has two parts to it: The first part designates the type of the value and
the second part designates the value’s string representation. The two parts are separated with a
colon. For the undefined value, both of these parts will be ’undefined’:

test/hash_map_spec.js
var hashKey = require('../src/hash_map').hashKey;

describe('hash', function() {
 'use strict';

 describe('hashKey', function() {

 it('is undefined:undefined for undefined', function() {
 expect(hashKey(undefined)).toEqual('undefined:undefined');
 });

 });

});

For null, the type is ’object’ and the string representation is ’null’:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()
http://ruby-doc.org/core-2.1.2/Object.html#method-i-hash

Hash Keys And Hash Maps 20

477 Errata© Tero Parviainen 2016

test/hash_map_spec.js
it('is object:null for null', function() {
 expect(hashKey(null)).toEqual('object:null');
});

For boolean values, the type is ’boolean’ and the string representation is ’true’ or ’false’:

test/hash_map_spec.js
it('is boolean:true for true', function() {
 expect(hashKey(true)).toEqual('boolean:true');
});

it('is boolean:false for false', function() {
 expect(hashKey(false)).toEqual('boolean:false');
});

For numbers, the type is ’number’ and the string representation is just the number as a string:

test/hash_map_spec.js
it('is number:42 for 42', function() {
 expect(hashKey(42)).toEqual('number:42');
});

For strings, the type is ’string’ and the string representation is - unsurprisingly - the string. Here we
see why we need to encode the type to the hash key. Otherwise the hash keys for the number 42 and the
string ’42’ would be the same:

test/hash_map_spec.js
it('is string:42 for "42"', function() {
 expect(hashKey('42')).toEqual('string:42');
});

All of the tests so far can be satisfied with a simple implementation of hashKey that takes the type
of the value with the typeof operator for the first part, and a coerced string representation of the
value for the second part:

src/hash_map.js
'use strict';

function hashKey(value) {
 var type = typeof value;
 return type + ':' + value;
}

module.exports = {hashKey: hashKey};

When we start dealing with functions and objects (and arrays), things get a bit more interesting.

Hash Keys And Hash Maps 20

478 Errata© Tero Parviainen 2016

Generally, the hash key of an object consists of the string ’object’ as the first part, and a unique
identifier as the second part:

test/hash_map_spec.js
it('is object:[unique id] for objects', function() {
 expect(hashKey({})).toMatch(/^object:\S+$/);
});

We should expect the hash key to be stable, so that it is the same value when generated for the
same object twice:

test/hash_map_spec.js
it('is the same key when asked for the same object many times', function() {
 var obj = {};
 expect(hashKey(obj)).toEqual(hashKey(obj));
});

Interestingly though, the hash key of an object is stable even if the same object mutates between the
two hashKey calls:

test/hash_map_spec.js
it('does not change when object value changes', function() {
 var obj = {a: 42};
 var hash1 = hashKey(obj);
 obj.a = 43;
 var hash2 = hashKey(obj);
 expect(hash1).toEqual(hash2);
});

This means that the hashKey function does not use value semantics for generating the hash key of an
object, but it is the identity of the object that matters. This also means that two different objects whose
values happen to be the same do not have the same hash code:

test/hash_map_spec.js
it('is not the same for different objects even with the same value', function() {
 var obj1 = {a: 42};
 var obj2 = {a: 42};
 expect(hashKey(obj1)).not.toEqual(hashKey(obj2));
});

For functions, which is what we’ll be putting in hash maps in this chapter, the same rules apply.
The hash key of a function is the string ’function’ followed by a numeric id:

test/hash_map_spec.js
it('is function:[unique id] for functions', function() {
 var fn = function(a) { return a; };

Hash Keys And Hash Maps 20

479 Errata© Tero Parviainen 2016

 expect(hashKey(fn)).toMatch(/^function:\S+$/);
});

The hash key stays the same when asked for the same function multiple times:

test/hash_map_spec.js
it('is the same key when asked for the same function many times', function() {
 var fn = function() { };
 expect(hashKey(fn)).toEqual(hashKey(fn));
});

The hashkey is not the same for two functions even if they are identical:

test/hash_map_spec.js
it('is not the same for different identical functions', function() {
 var fn1 = function() { return 42; };
 var fn2 = function() { return 42; };
 expect(hashKey(fn1)).not.toEqual(hashKey(fn2));
});

So the hashKey function is not strictly a hash key function at all, in the same sense as the Java and
Ruby methods are. In the case of functions and compound data structures it is just a unique identi-
fier that is based on object identity rather than value.

The way this works is that, given an object or a function, hashKey actually populates a special
attribute $$hashKey on it, which holds the unique id of the object (the part after the colon in the
return value of hashKey). You have probably seen these keys appear in your objects if you’ve used
them with certain Angular directives, like ngRepeat.

test/hash_map_spec.js
it('stores the hash key in the $$hashKey attribute', function() {
 var obj = {a: 42};
 var hash = hashKey(obj);
 expect(obj.$$hashKey).toEqual(hash.match(/^object:(\S+)$/)[1]);
});

If there already is a $$hashKey in the given object, its value is used instead of generating one.
That’s how the value is kept stable:

test/hash_map_spec.js
it('uses preassigned $$hashKey', function() {
 expect(hashKey({$$hashKey: 42})).toEqual('object:42');
});

We need to branch the hashKey function to handle the object and non-object cases differently. In
the object (or function) case we’ll look at the $$hashKey attribute, and if needed, populate it with

Hash Keys And Hash Maps 20

480 Errata© Tero Parviainen 2016

a unique identifier. We can use the unique id generator function that comes with LoDash:

src/hash_map.js
'use strict';

var _ = require('lodash');

function hashKey(value) {
 var type = typeof value;
 var uid;
 if (type === 'function' ||
 (type === 'object' && value !== null)) {
 uid = value.$$hashKey;
 if (uid === undefined) {
 uid = value.$$hashKey = _.uniqueId();
 }
 } else {
 uid = value;
 }
 return type + ':' + uid;
}

Finally, if you want to plug in your own behavior for generating hash keys for objects, you can pre-
assign a function as the value of the $$hashKey attribute. If Angular sees a function there, it will
call it as a method to obtain the concrete hash key:

test/hash_map_spec.js
it('supports a function $$hashKey', function() {
 expect(hashKey({$$hashKey: _.constant(42)})).toEqual('object:42');
});

it('calls the function $$hashKey as a method with the correct this', function() {
 expect(hashKey({
 myKey: 42,
 $$hashKey: function() {
 return this.myKey;
 }
 })).toEqual('object:42');
});

For this we need LoDash in the spec file:

src/hash_map.js
'use strict';

var _ = require('lodash');
var hashKey = require('../src/hash_map').hashKey;

The implementation needs to do a typeof check for the $$hashKey and call it as a method if it is

Hash Keys And Hash Maps 20

481 Errata© Tero Parviainen 2016

a function:

src/hash_map.js
function hashKey(value) {
 var type = typeof value;
 var uid;
 if (type === 'function' ||
 (type === 'object' && value !== null)) {
 uid = value.$$hashKey;
 if (typeof uid === 'function') {
 uid = value.$$hashKey();
 } else if (uid === undefined) {
 uid = value.$$hashKey = _.uniqueId();
 }
 } else {
 uid = value;
 }
 return type + ':' + uid;
}

With hashKey now taken care of, we can implement the hash map. An Angular hash map is an
object created using the HashMap constructor. It implements an associative data structure whose
keys can be of any type. Like its distant cousin, the Java HashMap, it supports the put and get
methods:

test/hash_map_spec.js
'use strict';

var _ = require('lodash');
var hashKey = require('../src/hash_map').hashKey;
var HashMap = require('../src/hash_map').HashMap;

describe('hash', function() {

 describe('hashKey', function() {

 ///

 });

 describe('HashMap', function() {

 it('supports put and get of primitives', function() {
 var map = new HashMap();
 map.put(42, 'fourty two');
 expect(map.get(42)).toEqual('fourty two');
 });

 });

http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

Hash Keys And Hash Maps 20

482 Errata© Tero Parviainen 2016

});

We can expect the key semantics of HashMap to be what we just defined for hashKey. That is,
for objects it is the identity that matters, not the value (making the implementation similar to ES6
Maps, and also making the name HashMap a bit of a misnomer):

test/hash_map_spec.js
it('supports put and get of objects with hashKey semantics', function() {
 var map = new HashMap();
 var obj = {};
 map.put(obj, 'my value');
 expect(map.get(obj)).toEqual('my value');
 expect(map.get({})).toBeUndefined();
});

The implementation of put and get is quite simple now that we have hashKey. Since the values
returned by hashKey are strings, the actual storage used by HashMap can be a regular JavaScript
object. Instead of making a separate storage object though, we’ll use the HashMap instance itself:

src/hash_map.js
function HashMap() {
}

HashMap.prototype = {
 put: function(key, value) {
 this[hashKey(key)] = value;
 },
 get: function(key) {
 return this[hashKey(key)];
 }
};

module.exports = {
 hashKey: hashKey,
 HashMap: HashMap
};

As a side product of this implementation, notice that you can also access a hash map’s contents
directly with attribute accessors (map[‘number:42’]), though it is probably not a good idea to
rely on it in application code.

The third and final method supported by HashMap is remove. It is used to remove a key-value pair
from the map:

test/hash_map_spec.js
it('supports remove', function() {
 var map = new HashMap();
 map.put(42, 'fourty two');

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

Function Modules Redux 20

483 Errata© Tero Parviainen 2016

 map.remove(42);
 expect(map.get(42)).toBeUndefined();
});

The remove method also returns the value of the key that was just removed, as a convenience:

test/hash_map_spec.js
it('returns value from remove', function() {
 var map = new HashMap();
 map.put(42, 'fourty two');
 expect(map.remove(42)).toEqual('fourty two');
});

In the implementation of remove we obtain the hash key from the given key and then just use the
delete operator to remove it from the underlying storage:

src/hash_map.js
HashMap.prototype = {
 put: function(key, value) {
 this[hashKey(key)] = value;
 },
 get: function(key) {
 return this[hashKey(key)];
 },
 remove: function(key) {
 key = hashKey(key);
 var value = this[key];
 delete this[key];
 return value;
 }
};

Function Modules Redux

Having emerged from that rabbit hole and armed with our new implementation of HashMap we
can now fix the failing test in injector_spec.js, and make sure function modules are also load-
ed at most once.

First we need to require HashMap on the top of the file:

src/injector.js
'use strict';

var _ = require('lodash');
var HashMap = require('./hash_map').HashMap;

Factories 20

484 Errata© Tero Parviainen 2016

Next, we’ll convert the loadedModules variable from an object literal to a HashMap instance:

src/injector.js
var loadedModules = new HashMap();

And finally, in the module loading loop we can generalize the loadedModules check to account
not only for string modules but all kinds of modules:

src/injector.js
_.forEach(modulesToLoad, function loadModule(module) {
 if (!loadedModules.get(module)) {
 loadedModules.put(module, true);
 if (_.isString(module)) {
 module = window.angular.module(module);
 _.forEach(module.requires, loadModule);
 runInvokeQueue(module._invokeQueue);
 runInvokeQueue(module._configBlocks);
 runBlocks = runBlocks.concat(module._runBlocks);
 } else if (_.isFunction(module) || _.isArray(module)) {
 runBlocks.push(providerInjector.invoke(module));
 }
 }
});

Factories

We are now ready to add the high-level component registration functions that application develop-
ers actually use the most: Those for factories, values, and services. As we’ll see, there’s actually not
that much work involved because of the foundation we have built in the past few chapters.

First, let’s look at factories. A factory is a function that produces a dependency. Here we register a
factory function that returns 42. When we ask for the corresponding dependency, we’ll get 42:

test/injector_spec.js
it('allows registering a factory', function() {
 var module = window.angular.module('myModule', []);

 module.factory('a', function() { return 42; });

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(42);
});

A factory function can be injected with dependencies, which is the main added value it brings over
constants. Specifically, it is injected with instance dependencies, as opposed to provider dependencies.
Here, the factory for b is dependent on a:

Factories 20

485 Errata© Tero Parviainen 2016

test/injector_spec.js
it('injects a factory function with instances', function() {
 var module = window.angular.module('myModule', []);

 module.factory('a', function() { return 1; });
 module.factory('b', function(a) { return a + 2; });

 var injector = createInjector(['myModule']);

 expect(injector.get('b')).toBe(3);
});

Just like dependencies made by providers, dependencies made by factories are singletons. We ex-
pect a factory function to be invoked at most once, so that each time we need the dependency we
get the same exact value:

test/injector_spec.js
it('only calls a factory function once', function() {
 var module = window.angular.module('myModule', []);

 module.factory('a', function() { return {}; });

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(injector.get('a'));
});

To implement factories, we first need to queue the registration up in the module loader, by adding
a new queueing function:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 factory: invokeLater('$provide', 'factory'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 run: function(fn) {
 moduleInstance._runBlocks.push(fn);
 return moduleInstance;
 },
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks
 _runBlocks: []
};

Then we need the corresponding method in the $provide object of the injector. And what should

Factories 20

486 Errata© Tero Parviainen 2016

it actually do? Consider that a factory’s functionality is pretty much the same as the $get method
of a provider: It returns the dependency, is injected with instances, and is called at most once.

In fact, the $get method of a provider is exactly what a factory is implemented as:

src/injector.js
providerCache.$provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;
 },
 provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
 },
 factory: function(key, factoryFn) {
 this.provider(key, {$get: factoryFn});
 }
};

A factory is really a provider. When you register a factory, what happens is a provider object is
created on the fly, and the $get method of that provider will be the original factory function you
registered. All the work we did to implement providers comes into play here, and there’s not much
more that we need to do to implement factories.

What factories don’t give you is the full configurability of providers. If you register the factory a,
you can then get access to aProvider through provider injection. But that provider will be the one
created on the fly, and will not have any configuration methods attached to it. So while aProvid-
er will exist, there won’t be much point accessing it directly.

There’s one additional error check we should do for factories, which is to make sure they actually
return something. This is to prevent bugs in application code that would otherwise be difficult to
pin down.

test/injector_spec.js
it('forces a factory to return a value', function() {
 var module = window.angular.module('myModule', []);

 module.factory('a', function() { });
 module.factory('b', function() { return null; });

 var injector = createInjector(['myModule']);

Values 20

487 Errata© Tero Parviainen 2016

 expect(function() {
 injector.get('a');
 }).toThrow();
 expect(injector.get('b')).toBeNull();
});

Here we see that an undefined return value is not accepted, but null still is.

What we can do is wrap the given factory function in another function and do the check there:

src/injector.js
function enforceReturnValue(factoryFn) {
 return function() {
 var value = instanceInjector.invoke(factoryFn);
 if (_.isUndefined(value)) {
 throw 'factory must return a value';
 }
 return value;
 };
}

providerCache.$provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;
 },
 provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
 },
 factory: function(key, factoryFn) {
 this.provider(key, {$get: enforceReturnValue(factoryFn)});
 }
};

What we now have as the body of the $get method is a function with zero arguments. That func-
tion invokes the original factory using instance dependency injection and returns its return value.
If the return value is undefined, we let the user know by throwing an exception.

Values

Values are a bit like constants. You register one to a module by just providing the value without
any generator functions involved:

Values 20

488 Errata© Tero Parviainen 2016

test/injector_spec.js
it('allows registering a value', function() {
 var module = window.angular.module('myModule', []);

 module.value('a', 42);

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBe(42);
});

The difference between a value and a constant is that values are not available to providers or config
blocks. They are strictly for instances only:

test/injector_spec.js
it('does not make values available to config blocks', function() {
 var module = window.angular.module('myModule', []);

 module.value('a', 42);
 module.config(function(a) {
 });

 expect(function() {
 createInjector(['myModule']);
 }).toThrow();

});

Again, we first need the queueing function for values in the module loader:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 factory: invokeLater('$provide', 'factory'),
 value: invokeLater('$provide', 'value'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 run: function(fn) {
 moduleInstance._runBlocks.push(fn);
 return moduleInstance;
 },
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks,
 _runBlocks: []
};

The actual implementation is simple: We create a factory function that has no dependencies and

Values 20

489 Errata© Tero Parviainen 2016

always returns the given value.

src/injector.js
providerCache.$provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;
 },
 provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
 },
 factory: function(key, factoryFn) {
 this.provider(key, {$get: enforceReturnValue(factoryFn)});
 },
 value: function(key, value) {
 this.factory(key, _.constant(value));
 }
};

Values may also be undefined, but this is something our current implementation does not let us
do:

test/injector_spec.js
it('allows an undefined value', function() {
 var module = window.angular.module('myModule', []);

 module.value('a', undefined);

 var injector = createInjector(['myModule']);

 expect(injector.get('a')).toBeUndefined();
});

So the return value enforcement of factories should not always be applied. Let’s add a third op-
tional argument to factory for controlling whether to do it or not:

src/injector.js
providerCache.$provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;

Services 20

490 Errata© Tero Parviainen 2016

 },
 provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
 },
 factory: function(key, factoryFn, enforce) {
 this.provider(key, {
 $get: enforce === false ? factoryFn : enforceReturnValue(factoryFn)
 });
 },
 value: function(key, value) {
 this.factory(key, _.constant(value), false);
 }
};

If the third argument to factory is explicitly set to false, it will not enforce a return value for
the factory. We use this option in value.

So basically, a value is implemented with a factory, which in turn is implemented with a provider.
By the looks of it, we could just as well have simply stored the value in the instance cache, as we
do for constants. But doing it this way allows for decoration - a feature we’ll look at in a few mo-
ments.

Services

Whereas a factory is a plain old function, a service is a constructor function. When you register a ser-
vice, the function you give is treated as a constructor and an instance of it will be created:

test/injector_spec.js
it('allows registering a service', function() {
 var module = window.angular.module('myModule', []);

 module.service('aService', function MyService() {
 this.getValue = function() { return 42; };
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('aService').getValue()).toBe(42);
});

The constructor function can also be dependency-injected:

test/injector_spec.js
it('injects service constructors with instances', function() {
 var module = window.angular.module('myModule', []);

Services 20

491 Errata© Tero Parviainen 2016

 module.value('theValue', 42);
 module.service('aService', function MyService(theValue) {
 this.getValue = function() { return theValue; };
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('aService').getValue()).toBe(42);
});

And, just like everything else, a service is a singleton, meaning that the constructor will be used at
most once and the resulting object is cached for subsequent uses:

test/injector_spec.js
it('only instantiates services once', function() {
 var module = window.angular.module('myModule', []);

 module.service('aService', function MyService() {
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('aService')).toBe(injector.get('aService'));
});

For implementing services, the same pattern repeats yet again: We first add the queueing method
to the module loader.

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 factory: invokeLater('$provide', 'factory'),
 value: invokeLater('$provide', 'value'),
 service: invokeLater('$provide', 'service'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 run: function(fn) {
 moduleInstance._runBlocks.push(fn);
 return moduleInstance;
 },
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks,
 _runBlocks: []
};

Then we implement the method in $provide. It takes the dependency key and the constructor
function. What we’ll do is create a factory function on the fly, in which we’ll do our work:

Services 20

492 Errata© Tero Parviainen 2016

src/injector.js
providerCache.$provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;
 },
 provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
 },
 factory: function(key, factoryFn, enforce) {
 this.provider(key, {
 $get: enforce === false ? factoryFn : enforceReturnValue(factoryFn)
 });
 },
 value: function(key, value) {
 this.factory(key, _.constant(value), false);
 },
 service: function(key, Constructor) {
 this.factory(key, function() {

 });
 }
};

The work we should do involves creating an instance of the Constructor argument. It also
involves injecting any dependencies it may have. As it happens, in Chapter 9 we implemented the
injector method that does exactly that: instantiate.

src/injector.js
providerCache.$provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;
 },
 provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
 },
 factory: function(key, factoryFn, enforce) {

Decorators 20

493 Errata© Tero Parviainen 2016

 this.provider(key, {
 $get: enforce === false ? factoryFn : enforceReturnValue(factoryFn)
 });
 },
 value: function(key, value) {
 this.factory(key, _.constant(value), false);
 },
 service: function(key, Constructor) {
 this.factory(key, function() {
 return instanceInjector.instantiate(Constructor);
 });
 }
};

Now we see how it all builds on the same foundation. All of factories, values, and services are
really just providers under the hood. They give application developers a high-level API for making
providers that are specialized for certain kinds of patterns. Because of this, application developers
actually rarely need to use raw providers. But they are always there, and the low-level access is
available when needed.

Decorators

The final dependency injection feature still missing is decorators. Decorators are a bit different from
all the other features we have seen, in that you do not use a decorator to define a dependency as
such. You use a decorator to modify some existing dependency.

Decorators are an implementation of the object-oriented Decorator design pattern, which is where
the name comes from.

What’s neat about decorators is how you can use them to modify dependencies you yourself did
not create. You can register a decorator for a dependency provided by some library, or by core
Angular itself, as Brian Ford has described.

Let’s see how a decorator could work. In this example we create a factory, and then decorate that
factory with a decorator with the same name. The decorator is a function, that can be dependen-
cy-injected like a factory, but that also has a special $delegate argument available to it. The
$delegate is the original dependency that is being decorated. In this case, it is the object returned
by the aValue factory:

test/injector_spec.js
it('allows changing an instance using a decorator', function() {
 var module = window.angular.module('myModule', []);
 module.factory('aValue', function() {
 return {aKey: 42};
 });
 module.decorator('aValue', function($delegate) {

http://en.wikipedia.org/wiki/Decorator_pattern
http://briantford.com/blog/angular-hacking-core

Decorators 20

494 Errata© Tero Parviainen 2016

 $delegate.decoratedKey = 43;
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('aValue').aKey).toBe(42);
 expect(injector.get('aValue').decoratedKey).toBe(43);
});

You can also have several decorators on a single dependency. When you do, all of them will be
applied to the dependency in turn:

test/injector_spec.js
it('allows multiple decorators per service', function() {
 var module = window.angular.module('myModule', []);
 module.factory('aValue', function() {
 return {};
 });
 module.decorator('aValue', function($delegate) {
 $delegate.decoratedKey = 42;
 });
 module.decorator('aValue', function($delegate) {
 $delegate.otherDecoratedKey = 43;
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('aValue').decoratedKey).toBe(42);
 expect(injector.get('aValue').otherDecoratedKey).toBe(43);
});

As we discussed, decorator functions can be dependency-injected also with other things than
$delegate:

test/injector_spec.js
it('uses dependency injection with decorators', function() {
 var module = window.angular.module('myModule', []);
 module.factory('aValue', function() {
 return {};
 });
 module.constant('a', 42);
 module.decorator('aValue', function(a, $delegate) {
 $delegate.decoratedKey = a;
 });

 var injector = createInjector(['myModule']);

 expect(injector.get('aValue').decoratedKey).toBe(42);
});

Decorators 20

495 Errata© Tero Parviainen 2016

So, what we need is a decorator method on the module API. It will, just like the other module
API methods, queue up a call to a corresponding method on $provide. That method takes two
arguments: The name of the dependency to decorate and the decorator function.

What we need to do is hook into the creation of the dependency that’s being decorated. For that
purpose, we need to first obtain its provider:

src/injector.js
providerCache.$provide = {
 constant: function(key, value) {
 if (key === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid constant name!';
 }
 providerCache[key] = value;
 instanceCache[key] = value;
 },
 provider: function(key, provider) {
 if (_.isFunction(provider)) {
 provider = providerInjector.instantiate(provider);
 }
 providerCache[key + 'Provider'] = provider;
 },
 factory: function(key, factoryFn, enforce) {
 this.provider(key, {
 $get: enforce === false ? factoryFn : enforceReturnValue(factoryFn)
 });
 },
 value: function(key, value) {
 this.factory(key, _.constant(value), false);
 },
 service: function(key, Constructor) {
 this.factory(key, function() {
 return instanceInjector.instantiate(Constructor);
 });
 },
 decorator: function(serviceName, decoratorFn) {
 var provider = providerInjector.get(serviceName + 'Provider');
 }
};

When the dependency is created, we need to grab that provider’s return value and modify it some-
how. What we’ll do to make that possible is override the provider’s $get method, with our own,
decorated version:

src/injector.js
decorator: function(serviceName, decoratorFn) {
 var provider = providerInjector.get(serviceName + 'Provider');
 var original$get = provider.$get;
 provider.$get = function() {

Decorators 20

496 Errata© Tero Parviainen 2016

 var instance = instanceInjector.invoke(original$get, provider);
 // Modifications will be done here
 return instance;
 };
}

In this first version we just call through to the original $get method and return its return value.
We’ve overridden $get but are not yet doing anything special in our overridden version.

The final step is to actually apply the decorator function. Remember that it’s a function that’s
called with dependency injection, and it has the additional $delegate argument available to it.
That means we can call it with the instance injector’s invoke, passing the delegate in with the lo-
cals argument that we implemented in Chapter 9:

src/injector.js
decorator: function(serviceName, decoratorFn) {
 var provider = providerInjector.get(serviceName + 'Provider');
 var original$get = provider.$get;
 provider.$get = function() {
 var instance = instanceInjector.invoke(original$get, provider);
 instanceInjector.invoke(decoratorFn, null, {$delegate: instance});
 return instance;
 };
}

Now we just need to expose the decorator method through the module API, which will make
our tests pass:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 factory: invokeLater('$provide', 'factory'),
 value: invokeLater('$provide', 'value'),
 service: invokeLater('$provide', 'service'),
 decorator: invokeLater('$provide', 'decorator'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 run: function(fn) {
 moduleInstance._runBlocks.push(fn);
 return moduleInstance;
 },
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks,
 _runBlocks: []
};

And that’s all there is to decorators, and all there is to dependency injection in Angular!

Integrating Scopes, Expressions, and Filters with The Injector 20

497 Errata© Tero Parviainen 2016

Integrating Scopes, Expressions, and Filters with The In-
jector

To conclude our coverage of dependency injection, we are going to revisit the code written earlier
in the book and retrofit it to integrate with modules and dependency injection. This is important
because otherwise these features won’t be exposed to application developers.

At the beginning of Chapter 9 we saw how the angular global and the module loader come to
be when you invoke setupModuleLoader() from loader.js. Now we’re going to add anoth-
er layer on top of that. In this layer we set up the module loader and register some core Angular
components to it. This is where we’ll plug in the expression parser, the root scope, the filter service,
and the filter filter.

In the final part of the book we’ll complete this picture by implementing the full Angular bootstrapping
process.

The core component registration will go into a new file, called src/angular_public.js. Let’s write
the first test for it in test/angular_public_spec.js:

test/angular_public_spec.js
'use strict';

var publishExternalAPI = require('../src/angular_public');

describe('angularPublic', function() {

 it('sets up the angular object and the module loader', function() {
 publishExternalAPI();

 expect(window.angular).toBeDefined();
 expect(window.angular.module).toBeDefined();
 });

});

This actually checks nothing else than that the publishExternalAPI function should call
through to setupModuleLoader. This is easy enough to implement:

src/angular_public.js
'use strict';

var setupModuleLoader = require('./loader');

function publishExternalAPI() {

Integrating Scopes, Expressions, and Filters with The Injector 20

498 Errata© Tero Parviainen 2016

 setupModuleLoader(window);
}

module.exports = publishExternalAPI;

What the function should also do is set up a module called ng:

test/angular_public_spec.js
var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('angularPublic', function() {

 it('sets up the angular object and the module loader', function() {
 publishExternalAPI();

 expect(window.angular).toBeDefined();
 expect(window.angular.module).toBeDefined();
 });

 it('sets up the ng module', function() {
 publishExternalAPI();

 expect(createInjector(['ng'])).toBeDefined();
 });

});

It does this by calling angular.module:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = window.angular.module('ng', []);
}

The ng module is where all the services, directives, filters, and other components provided by An-
gular itself will be. As we’ll see when we build the bootstrapping process, this module is automat-
ically included to every Angular application, so as an application developer you don’t really even
need to be aware of its existence. But it is how Angular exposes its own services to each other and
to applications.

In the process of reorganizing code to use dependency injection, we’ll be temporarily breaking most of our
unit tests, so you will be seeing a lot of failures in the Karma runner. By the end of the process everything
should be working again.

The first thing we’ll put into the ng module is $filter, our filter service:

Integrating Scopes, Expressions, and Filters with The Injector 20

499 Errata© Tero Parviainen 2016

test/angular_public_spec.js
it('sets up the $filter service', function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 expect(injector.has('$filter')).toBe(true);
});

It is registered as a provider:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
}

So we expect there to be a provider constructor as the default export of filter.js, which we use
as the provider for $filter.

In Part 2 of the book, what we did in filter.js was to just set up and export functions called
register and filter. Now we need to wrap those into a provider. The register function be-
comes a method on the provider, and the filter function becomes the return value of the $get
method of the provider. In other words, it becomes the $filter service:

src/filter.js
function $FilterProvider() {

 var filters = {};

 this.register = function(name, factory) {
 if (_.isObject(name)) {
 return _.map(name, _.bind(function(factory, name) {
 return this.register(name, factory);
 }, this));
 } else {
 var filter = factory();
 filters[name] = filter;
 return filter;
 }
 };

 this.$get = function() {
 return function filter(name) {
 return filters[name];
 };
 };

Integrating Scopes, Expressions, and Filters with The Injector 20

500 Errata© Tero Parviainen 2016

 this.register('filter', require('./filter_filter'));

}

module.exports = $FilterProvider;

We now need to revisit filter_spec.js so that it uses the filter provider from the ng module
instead of assuming the register and filter functions are exported directly:

test/filter_spec.js
'use strict';

var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('filter', function() {

 beforeEach(function() {
 publishExternalAPI();
 });

 it('can be registered and obtained', function() {
 var myFilter = function() { };
 var myFilterFactory = function() {
 return myFilter;
 };
 var injector = createInjector(['ng', function($filterProvider) {
 $filterProvider.register('my', myFilterFactory);
 }]);
 var $filter = injector.get('$filter');
 expect($filter('my')).toBe(myFilter);
 });

 it('allows registering multiple filters with an object', function() {
 var myFilter = function() { };
 var myOtherFilter = function() { };
 var injector = createInjector(['ng', function($filterProvider) {
 $filterProvider.register({
 my: function() {
 return myFilter;
 },
 myOther: function() {
 return myOtherFilter;
 }
 });
 }]);

 var $filter = injector.get('$filter');
 expect($filter('my')).toBe(myFilter);
 expect($filter('myOther')).toBe(myOtherFilter);
 });

Integrating Scopes, Expressions, and Filters with The Injector 20

501 Errata© Tero Parviainen 2016

});

An additional thing that the $filter service does is to instantiate filters with dependency injection and
make them available as regular factories. If you register a filter called my, it will be available not only
through the $filter service but also as a regular dependency by the name of myFilter:

test/filter_spec.js
it('is available through injector', function() {
 var myFilter = function() { };
 var injector = createInjector(['ng', function($filterProvider) {
 $filterProvider.register('my', function() {
 return myFilter;
 });
 }]);
 expect(injector.has('myFilter')).toBe(true);
 expect(injector.get('myFilter')).toBe(myFilter);
});

The filter factory may also have dependencies, which are injected to it:

test/filter_spec.js
it('may have dependencies in factory', function() {
 var injector = createInjector(['ng', function($provide, $filterProvider) {
 $provide.constant('suffix', '!');
 $filterProvider.register('my', function(suffix) {
 return function(v) {
 return suffix + v;
 };
 });
 }]);
 expect(injector.has('myFilter')).toBe(true);
});

The $FilterProvider makes this possible by registering each filter into the $provide service as
a regular factory:

src/filter.js
function $FilterProvider($provide) {

 var filters = {};

 this.register = function(name, factory) {
 if (_.isObject(name)) {
 return _.map(name, function(factory, name) {
 return register(name, factory);
 });
 } else {
 return $provide.factory(name + 'Filter', factory);

Integrating Scopes, Expressions, and Filters with The Injector 20

502 Errata© Tero Parviainen 2016

 }
 };

 this.$get = function() {
 return function filter(name) {
 return filters[name];
 };
 };

 this.register('filter', require('./filter_filter'));

}
$FilterProvider.$inject = ['$provide'];

module.exports = $FilterProvider;

At runtime the $filter service uses the $injector to obtain the filter function. We no longer
need the internal filters object at this point, as everything is stored in the DI system:

src/filter.js
function $FilterProvider($provide) {

 this.register = function(name, factory) {
 if (_.isObject(name)) {
 return _.map(name, function(factory, name) {
 return register(name, factory);
 });
 } else {
 return $provide.factory(name + 'Filter', factory);
 }
 };

 this.$get = ['$injector', function($injector) {
 return function filter(name) {
 return $injector.get(name + 'Filter');
 };
 }];

 this.register('filter', require('./filter_filter'));

}
$FilterProvider.$inject = ['$provide'];

module.exports = $FilterProvider;

Angular also provides a shortcut for registering filters through the public module API. It has a
filter method, using which filters can be registered. This is usually much more convenient than
using the $filterProvider through a config block:

test/filter_spec.js.js

Integrating Scopes, Expressions, and Filters with The Injector 20

503 Errata© Tero Parviainen 2016

it('can be registered through module API', function() {
 var myFilter = function() { };
 var module = window.angular.module('myModule', [])
 .filter('my', function() {
 return myFilter;
 });

 var injector = createInjector(['ng', 'myModule']);

 expect(injector.has('myFilter')).toBe(true);
 expect(injector.get('myFilter')).toBe(myFilter);
});

In the module loader we introduce the filter method:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 factory: invokeLater('$provide', 'factory'),
 value: invokeLater('$provide', 'value'),
 service: invokeLater('$provide', 'service'),
 decorator: invokeLater('$provide', 'decorator'),
 filter: invokeLater('$filterProvider', 'register'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 run: function(fn) {
 moduleInstance._runBlocks.push(fn);
 return moduleInstance;
 },
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks,
 _runBlocks: []
};

Unlike all the other registration methods, the filter method does not queue up a $provide meth-
od call. Instead, it queues up a method call to $filterProvider, which is the provider defined in
filter.js.

We also need to revisit the filter filter, which has a test that is still relying on a public filter meth-
od. Let’s fix that:

test/filter_filter_spec.js
'use strict';

var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('filter filter', function() {

Integrating Scopes, Expressions, and Filters with The Injector 20

504 Errata© Tero Parviainen 2016

 beforeEach(function() {
 publishExternalAPI();
 });

 it('is available', function() {
 var injector = createInjector(['ng']);
 expect(injector.has('filterFilter')).toBe(true);
 });

 // ...

});

The rest of the tests in this file are still broken, as we’ve yet to fix the parse service. We’ll return to this
shortly.

Moving on to the expression parser, it is also going to be in the ng module:

test/angular_public_spec.js
it('sets up the $parse service', function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 expect(injector.has('$parse')).toBe(true);
});

It is registered as a provider:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
}

Like with the filter provider, we expect there to be a provider constructor in parse.js that makes
a provider for $parse. It wraps the previous global parse function:

src/parse.js
function $ParseProvider() {

 this.$get = function() {
 return function(expr) {
 switch (typeof expr) {
 case 'string':
 var lexer = new Lexer();

Integrating Scopes, Expressions, and Filters with The Injector 20

505 Errata© Tero Parviainen 2016

 var parser = new Parser(lexer);
 var oneTime = false;
 if (expr.charAt(0) === ':' && expr.charAt(1) === ':') {
 oneTime = true;
 expr = expr.substring(2);
 }
 var parseFn = parser.parse(expr);

 if (parseFn.constant) {
 parseFn.$$watchDelegate = constantWatchDelegate;
 } else if (oneTime) {
 parseFn.$$watchDelegate = parseFn.literal ?
 oneTimeLiteralWatchDelegate :
 oneTimeWatchDelegate;
 } else if (parseFn.inputs) {
 parseFn.$$watchDelegate = inputsWatchDelegate;
 }

 return parseFn;
 case 'function':
 return expr;
 default:
 return _.noop;
 }
 };

 };

}

module.exports = $ParseProvider;

So what was previously function parse() became the return value of the provider’s $get
method. That return value is what you will get when you inject $parse.

Another thing that we need to do here is to obtain the $filter service, which is used internally
in the parser. First, remove the require line from the top of the file that is currently loading in
filter. Instead, inject it using Angular DI to the Parser constructor:

src/parse.js
this.$get = ['$filter', function($filter) {
 return function(expr) {
 switch (typeof expr) {
 case 'string':
 var lexer = new Lexer();
 var parser = new Parser(lexer, $filter);
 var oneTime = false;
 if (expr.charAt(0) === ':' && expr.charAt(1) === ':') {
 oneTime = true;
 expr = expr.substring(2);
 }

Integrating Scopes, Expressions, and Filters with The Injector 20

506 Errata© Tero Parviainen 2016

 var parseFn = parser.parse(expr);

 if (parseFn.constant) {
 parseFn.$$watchDelegate = constantWatchDelegate;
 } else if (oneTime) {
 parseFn.$$watchDelegate = parseFn.literal ? oneTimeLiteralWatchDelegate :
 oneTimeWatchDelegate;
 } else if (parseFn.inputs) {
 parseFn.$$watchDelegate = inputsWatchDelegate;
 }

 return parseFn;
 case 'function':
 return expr;
 default:
 return _.noop;
 }
 };
}];

The Parser constructor passes $filter forward to the ASTCompiler constructor:

src/parse.js
function Parser(lexer, $filter) {
 this.lexer = lexer;
 this.ast = new AST(this.lexer);
 this.astCompiler = new ASTCompiler(this.ast, $filter);
}

The ASTCompiler constructor stores it in an attribute:

src/parse.js
function ASTCompiler(astBuilder, $filter) {
 this.astBuilder = astBuilder;
 this.$filter = $filter;
}

The first location where we now need this attribute is for the filter function that gets passed into
the generated code. What we pass is in fact the $filter service. That is where filters will be ob-
tained from at runtime:

src/parse.js
/* jshint -W054 */
var fn = new Function(
 'ensureSafeMemberName',
 'ensureSafeObject',
 'ensureSafeFunction',
 'ifDefined',
 'filter',

Integrating Scopes, Expressions, and Filters with The Injector 20

507 Errata© Tero Parviainen 2016

 fnString)(
 ensureSafeMemberName,
 ensureSafeObject,
 ensureSafeFunction,
 ifDefined,
 this.$filter);
/* jshint +W054 */

We also need to pass $filter to markConstantAndWatchExpressions, which has until now been
using the global filter function:

src/parse.js
ASTCompiler.prototype.compile = function(text) {
 var ast = this.astBuilder.ast(text);
 var extra = '';
 markConstantAndWatchExpressions(ast, this.$filter);
 // ...
};

In the implementation of markConstantAndWatchExpressions we need to accept this argu-
ment and pass it along in all the recursive invocations, so that we can finally use it in CallEx-
pressions if we end up needing it:

src/parse.js
function markConstantAndWatchExpressions(ast, $filter) {
 var allConstants;
 var argsToWatch;
 switch (ast.type) {
 case AST.Program:
 allConstants = true;
 _.forEach(ast.body, function(expr) {
 markConstantAndWatchExpressions(expr, $filter);
 allConstants = allConstants && expr.constant;
 });
 ast.constant = allConstants;
 break;
 case AST.Literal:
 ast.constant = true;
 ast.toWatch = [];
 break;
 case AST.Identifier:
 ast.constant = false;
 ast.toWatch = [ast];
 break;
 case AST.ArrayExpression:
 allConstants = true;
 argsToWatch = [];
 _.forEach(ast.elements, function(element) {
 markConstantAndWatchExpressions(element, $filter);
 allConstants = allConstants && element.constant;

Integrating Scopes, Expressions, and Filters with The Injector 20

508 Errata© Tero Parviainen 2016

 if (!element.constant) {
 argsToWatch.push.apply(argsToWatch, element.toWatch);
 }
 });
 ast.constant = allConstants;
 ast.toWatch = argsToWatch;
 break;
 case AST.ObjectExpression:
 allConstants = true;
 argsToWatch = [];
 _.forEach(ast.properties, function(property) {
 markConstantAndWatchExpressions(property.value, $filter);
 allConstants = allConstants && property.value.constant;
 if (!property.value.constant) {
 argsToWatch.push.apply(argsToWatch, property.value.toWatch);
 }
 });
 ast.constant = allConstants;
 ast.toWatch = argsToWatch;
 break;
 case AST.ThisExpression:
 ast.constant = false;
 ast.toWatch = [];
 break;
 case AST.MemberExpression:
 markConstantAndWatchExpressions(ast.object, $filter);
 if (ast.computed) {
 markConstantAndWatchExpressions(ast.property, $filter);
 }
 ast.constant = ast.object.constant &&
 (!ast.computed || ast.property.constant);
 ast.toWatch = [ast];
 break;
 case AST.CallExpression:
 var stateless = ast.filter && !$filter(ast.callee.name).$stateful;
 allConstants = stateless ? true : false;
 argsToWatch = [];
 _.forEach(ast.arguments, function(arg) {
 markConstantAndWatchExpressions(arg, $filter);
 allConstants = allConstants && arg.constant;
 if (!arg.constant) {
 argsToWatch.push.apply(argsToWatch, arg.toWatch);
 }
 });
 ast.constant = allConstants;
 ast.toWatch = stateless ? argsToWatch : [ast];
 break;
 case AST.AssignmentExpression:
 markConstantAndWatchExpressions(ast.left, $filter);
 markConstantAndWatchExpressions(ast.right, $filter);
 ast.constant = ast.left.constant && ast.right.constant;
 ast.toWatch = [ast];
 break;

Integrating Scopes, Expressions, and Filters with The Injector 20

509 Errata© Tero Parviainen 2016

 case AST.UnaryExpression:
 markConstantAndWatchExpressions(ast.argument, $filter);
 ast.constant = ast.argument.constant;
 ast.toWatch = ast.argument.toWatch;
 break;
 case AST.BinaryExpression:
 markConstantAndWatchExpressions(ast.left, $filter);
 markConstantAndWatchExpressions(ast.right, $filter);
 ast.constant = ast.left.constant && ast.right.constant;
 ast.toWatch = ast.left.toWatch.concat(ast.right.toWatch);
 break;
 case AST.LogicalExpression:
 markConstantAndWatchExpressions(ast.left, $filter);
 markConstantAndWatchExpressions(ast.right, $filter);
 ast.constant = ast.left.constant && ast.right.constant;
 ast.toWatch = [ast];
 break;
 case AST.ConditionalExpression:
 markConstantAndWatchExpressions(ast.test, $filter);
 markConstantAndWatchExpressions(ast.consequent, $filter);
 markConstantAndWatchExpressions(ast.alternate, $filter);
 ast.constant =
 ast.test.constant && ast.consequent.constant && ast.alternate.constant;
 ast.toWatch = [ast];
 break;
 }
}

While this fixes the new unit test we added to parse_spec.js, the other parsing unit tests are still
broken because they rely on the global function parse being present. We need to change parse_
spec.js so that instead of requiring the parse function, it’ll actually make an injector and get the
$parse service from it in a beforeEach block. Here’s the new preamble for the test file

test/parse_spec.js
'use strict';

var _ = require('lodash');
var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('parse', function() {

 var parse;

 beforeEach(function() {
 publishExternalAPI();
 parse = createInjector(['ng']).get('$parse');
 });

 // ...

Integrating Scopes, Expressions, and Filters with The Injector 20

510 Errata© Tero Parviainen 2016

});

The tests that register and use filters also need to be updated so that they create their own injectors
and do the registration through the filter provider:

test/parse_spec.js
it('can parse filter expressions', function() {
 parse = createInjector(['ng', function($filterProvider) {
 $filterProvider.register('upcase', function() {
 return function(str) {
 return str.toUpperCase();
 };
 });
 }]).get('$parse');
 var fn = parse('aString | upcase');
 expect(fn({aString: 'Hello'})).toEqual('HELLO');
});

it('can parse filter chain expressions', function() {
 parse = createInjector(['ng', function($filterProvider) {
 $filterProvider.register('upcase', function() {
 return function(s) {
 return s.toUpperCase();
 };
 });
 $filterProvider.register('exclamate', function() {
 return function(s) {
 return s + '!';
 };
 });
 }]).get('$parse');
 var fn = parse('"hello" | upcase | exclamate');
 expect(fn()).toEqual('HELLO!');
});

it('can pass an additional argument to filters', function() {
 parse = createInjector(['ng', function($filterProvider) {
 $filterProvider.register('repeat', function() {
 return function(s, times) {
 return _.repeat(s, times);
 };
 });
 }]).get('$parse');
 var fn = parse('"hello" | repeat:3');
 expect(fn()).toEqual('hellohellohello');
});

it('can pass several additional arguments to filters', function() {
 parse = createInjector(['ng', function($filterProvider) {
 $filterProvider.register('surround', function() {
 return function(s, left, right) {

Integrating Scopes, Expressions, and Filters with The Injector 20

511 Errata© Tero Parviainen 2016

 return left + s + right;
 };
 });
 }]).get('$parse');
 var fn = parse('"hello" | surround:"*":"!"');
 expect(fn()).toEqual('*hello!');
});

// ...

it('marks filters constant if arguments are', function() {
 parse = createInjector(['ng', function($filterProvider) {
 $filterProvider.register('aFilter', function() {
 return _.identity;
 });
 }]).get('$parse');
 expect(parse('[1, 2, 3] | aFilter').constant).toBe(true);
 expect(parse('[1, 2, a] | aFilter').constant).toBe(false);
 expect(parse('[1, 2, 3] | aFilter:42').constant).toBe(true);
 expect(parse('[1, 2, 3] | aFilter:a').constant).toBe(false);
});

We can now also go back to the filter filter test suite and fix the rest of the tests there by obtaining
the $parse service:

test/filter_filter_spec.js
'use strict';

var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('filter filter', function() {

 var parse;

 beforeEach(function() {
 publishExternalAPI();
 parse = createInjector(['ng']).get('$parse');
 });

 // ...

});

With $parse now taken care of, let’s turn our attention to scope.js. There are already some unit
tests for it failing, because they also rely on being able to require the parse and register func-
tions that no longer exist. We’ll fix this momentarily.

Just like $filter and $parse, the ng module should have a scope instance included in it - the
$rootScope:

Integrating Scopes, Expressions, and Filters with The Injector 20

512 Errata© Tero Parviainen 2016

test/angular_public_spec.js
it('sets up the $rootScope', function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 expect(injector.has('$rootScope')).toBe(true);
});

And just like with $filter and $parse, the $rootScope is registered using a provider:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
}

The way we should implement this in scope.js is to introduce the $RootScopeProvider and its
$get method and then move all existing code from scope.js so it’s inside the $get method:

src/scope.js
'use strict';

var _ = require('lodash');

function $RootScopeProvider() {

 this.$get = function() {

 // Move all previous code from scope.js here.

 };

}

module.exports = $RootScopeProvider;

We also need to return a value from $get, so as the last thing we do we’ll make an instance of
Scope and return it:

src/scope.js
'use strict';

var _ = require('lodash');

Integrating Scopes, Expressions, and Filters with The Injector 20

513 Errata© Tero Parviainen 2016

function $RootScopeProvider() {

 this.$get = function() {

 // All previous code from scope.js goes here.

 var $rootScope = new Scope();
 return $rootScope;
 };

}

module.exports = $RootScopeProvider;

That returned scope object will be the $rootScope. Notice how everything in scope.js is now
private: The Scope constructor or any of its supporting functions are not accessible outside of the
provider. The $rootScope is the only thing we expose.

To fix the issue with the parse function that’s now missing, we need to modify our code to use the
$parse service instead. Since we now have a provider and a $get method, we can inject $parse:

src/scope.js
'use strict';

var _ = require('lodash');

function $RootScopeProvider() {

 this.$get = ['$parse', function($parse) {

 // All previous code from scope.js goes here.

 var $rootScope = new Scope();
 return $rootScope;
 }];

}

module.exports = $RootScopeProvider;

Now we can change the $watch function to use $parse instead of parse:

src/scope.js
Scope.prototype.$watch = function(watchFn, listenerFn, valueEq) {
 // ...
 watchFn = $parse(watchFn);
 // ...
};

Integrating Scopes, Expressions, and Filters with The Injector 20

514 Errata© Tero Parviainen 2016

We’ll also do the same for $watchCollection:

src/scope.js
Scope.prototype.$watchCollection = function(watchFn, listenerFn) {
 // ...
 watchFn = $parse(watchFn);
 // ...
};

And we’ll do the same for $eval:

src/scope.js
Scope.prototype.$eval = function(expr, locals) {
 return $parse(expr)(this, locals);
};

And there we have the implementation of $rootScope! The tests for it are still broken though.
Let’s fix them.

First, update the requires on the top of scope_spec.js. We should no longer need access to any-
thing but the module and injector setup functions:

src/scope_spec.js
'use strict';

var _ = require('lodash');
var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

Next, sadly, the very first unit test we wrote in Chapter 1 will now need to go:

src/scope_spec.js
it('can be constructed and used as an object', function() {
 var scope = new Scope();
 scope.aProperty = 1;

 expect(scope.aProperty).toBe(1);
});

A Scope can in fact not be constructed with the constructor, since that constructor isn’t available,
so this test should be removed. How you can get access to a scope is via $rootScope, and we
already have that tested in angular_public_spec.js.

Now we need to go through each of the nested describe blocks in scope_spec.js and set up a
scope object using an injector, so that the existing tests have access to one.

Integrating Scopes, Expressions, and Filters with The Injector 20

515 Errata© Tero Parviainen 2016

In the begininning of each of the test blocks describe(‘digest’), describe(‘$eval’),
describe(‘$apply’), describe(‘$evalAsync’), describe(‘$applyAsync’), de-
scribe(‘$$postDigest’), and describe(‘$watchGroup’), we’ll change the beforeEach to
get the root scope from an injector:

test/scope_spec.js
var scope;

beforeEach(function() {
 publishExternalAPI();
 scope = createInjector(['ng']).get('$rootScope');
});

In the describe(‘inheritance’) block, we’ll add a new beforeEach block to obtain the root
scope, which we’ll use as the parent scope in the tests:

test/scope.js
describe('inheritance', function() {

 var parent;

 beforeEach(function() {
 publishExternalAPI();
 parent = createInjector(['ng']).get('$rootScope');
 });

 // ...

});

In every test inside the describe(‘inheritance’) block, we now need to remove the first line
that sets up the parent scope (var parent = new Scope()). These are now replaced by the
parent scope created in the beforeEach block. So, for example, the first unit test just uses parent,
but does not construct it:

test/scope_spec.js
it('inherits the parents properties', function() {
 parent.aValue = [1, 2, 3];

 var child = parent.$new();

 expect(child.aValue).toEqual([1, 2, 3]);
});

Repeat the same trick for all the tests in the block.

Integrating Scopes, Expressions, and Filters with The Injector 20

516 Errata© Tero Parviainen 2016

The are two exceptions to this, the first being the “can be nested at any depth” spec, in which we’ll
just use parent as the value of a:

test/scope_spec.js
it('can be nested at any depth', function() {
 var a = parent;
 // ...
});

The second exception is the “can take some other scope as the parent” test, in which we make the
two parents from the root scope:

test/scope_spec.js
it('can take some other scope as the parent', function() {
 var prototypeParent = parent.$new();
 var hierarchyParent = parent.$new();
 var child = prototypeParent.$new(false, hierarchyParent);
 // ...
});

In the describe(‘$watchCollection’) block, we’ll again get the root scope using an injector,
instead of using the Scope constructor:

test/scope_spec.js
describe('$watchCollection', function() {

 var scope;

 beforeEach(function() {
 publishExternalAPI();
 scope = createInjector(['ng']).get('$rootScope');
 });

 // ...

});

In the describe(‘Events’) block, we’ll set the parent scope to be the root scope and keep the
rest of the set up as it was:

test/scope_spec.js
describe('Events', function() {
 var parent;
 var scope;
 var child;
 var isolatedChild;

 beforeEach(function() {

Making a Configurable Provider: Digest TTL 20

517 Errata© Tero Parviainen 2016

 publishExternalAPI();
 parent = createInjector(['ng']).get('$rootScope');
 scope = parent.$new();
 child = scope.$new();
 isolatedChild = scope.$new(true);
 });

 // ..

});

Finally, there’s one test that registers a filter in scope_spec.js, which we should modify to set up
its own injector and use the $filterProvider:

test/scope_spec.js
it('allows $stateful filter value to change over time', function(done) {
 var injector = createInjector(['ng', function($filterProvider) {
 $filterProvider.register('withTime', function() {
 return _.extend(function(v) {
 return new Date().toISOString() + ': ' + v;
 }, {
 $stateful: true
 });
 });
 }]);
 scope = injector.get('$rootScope');

 var listenerSpy = jasmine.createSpy();
 scope.$watch('42 | withTime', listenerSpy);
 scope.$digest();
 var firstValue = listenerSpy.calls.mostRecent().args[0];

 setTimeout(function() {
 scope.$digest();
 var secondValue = listenerSpy.calls.mostRecent().args[0];
 expect(secondValue).not.toEqual(firstValue);
 done();
 }, 100);
});

At this point, all our tests should be passing again.

Making a Configurable Provider: Digest TTL

As we’ve now wrapped $rootScope in a provider, we’re able to implement some configurability
for it. Back in Chapter 1 we introduced the concept of the digest TTL, which is the number of
digest iterations we attempt to do before throwing an exception if things still aren’t stable. We set
the TTL to the constant value 10, but it should actually be configurable by application developers.
This is a use case for providers.

Making a Configurable Provider: Digest TTL 20

518 Errata© Tero Parviainen 2016

A user can set the TTL using a configuration method from $rootScopeProvider. Let’s add a
test for it in a new describe block in scope_spec.js:

test/scope_spec.js
describe('TTL configurability', function() {

 beforeEach(function() {
 publishExternalAPI();
 });

 it('allows configuring a shorter TTL', function() {
 var injector = createInjector(['ng', function($rootScopeProvider) {
 $rootScopeProvider.digestTtl(5);
 }]);
 var scope = injector.get('$rootScope');

 scope.counterA = 0;
 scope.counterB = 0;

 scope.$watch(
 function(scope) { return scope.counterA; },
 function(newValue, oldValue, scope) {
 if (scope.counterB < 5) {
 scope.counterB++;
 }
 }
);
 scope.$watch(
 function(scope) { return scope.counterB; },
 function(newValue, oldValue, scope) {
 scope.counterA++;
 }
);

 expect(function() { scope.$digest(); }).toThrow();
 });

});

This is an adaptation of the TTL test we wrote in Chapter 1. We again have two interdependent
watchers, but this time we stop incrementing one of the counters when it reaches the value 5. With
the default TTL value of 10 these watches will not be a problem.

But we do not use the default TTL value. Instead, we configure $rootScopeProvider (in a func-
tion module) to use a TTL of 5. This should cause the digest to throw an exception.

In $RootScopeProvider we now need to introduce this method. It will set the value of a local
variable called TTL, whose default value is 10:

Making a Configurable Provider: Digest TTL 20

519 Errata© Tero Parviainen 2016

src/scope.js
function $RootScopeProvider() {

 var TTL = 10;

 this.digestTtl = function(value) {
 if (_.isNumber(value)) {
 TTL = value;
 }
 return TTL;
 };

 // ...

}

Notice that the method can also be used to get the current value of the TTL.

In $digest we should now use the TTL value instead of a hard-coded value of 10:

src/scope.js
Scope.prototype.$digest = function() {
 var ttl = TTL;
 var dirty;
 this.$root.$$lastDirtyWatch = null;
 this.$beginPhase('$digest');

 if (this.$root.$$applyAsyncId) {
 clearTimeout(this.$$applyAsyncId);
 this.$$flushApplyAsync();
 }

 do {
 while (this.$$asyncQueue.length) {
 try {
 var asyncTask = this.$$asyncQueue.shift();
 asyncTask.scope.$eval(asyncTask.expression);
 } catch (e) {
 console.error(e);
 }
 }
 dirty = this.$$digestOnce();
 if ((dirty || this.$$asyncQueue.length) && !(ttl--)) {
 throw TTL + ' digest iterations reached';
 }
 } while (dirty || this.$$asyncQueue.length);
 this.$clearPhase();

 while (this.$$postDigestQueue.length) {
 try {
 this.$$postDigestQueue.shift()();

Summary 20

520 Errata© Tero Parviainen 2016

 } catch (e) {
 console.error(e);
 }
 }
};

Now we see a bit more clearly what the provider abstraction is useful for. As application develop-
ers, we can configure $rootScope without having access to its code, and without having to over-
ride anything with decorators. The $rootScopeProvider provides an API for configuring the
$rootScope TTL. We can set it to a number higher than 10 if we have long chains of dependent
watches. We can also set it to a number lower than 10 if we want to enforce fewer digest iterations
for performance reasons.

Summary

You now know pretty much everything there is to know about the AngularJS dependency injection
framework, because you’ve completed a full implementation of it. In this chapter we topped it off
by adding the high-level features that most application developers use every day, and saw how they
are actually quite simple given the foundational pieces we’ve laid out in earlier chapters.

In this chapter you have learned:

• How you can inject an $injector and how that $injector may be either the provider injec-
tor or the instance injector depending on where you’re injecting it.

• How you can inject $provide and register additional components in config blocks, function
modules.

• How config blocks work, and how they are implemented by simply invoking them with the
provider injector.

• How a config block can be specified as the third argument to angular.module.
• How run blocks work, and how they are implemented by simply invoking them with the in-

stance injector.
• That run blocks are deferred to a moment when all modules are loaded.
• How you can define a function module, which is essentially the same as a config block.
• How Angular’s internal hash key and hash map implementations work, and how they deal

with compound data structures by adding a $$hashKey attribute.
• How factories are implemented on top of providers.
• How values are implemented on top of factories.
• How services are implemented on top of factories.
• How decorators work, by overriding the $get method of the provider they decorate.
• How decorators use the locals argument of injector.invoke to make the decorated

$delegate available for injection.
• That there’s an ng module that holds Angular’s core components in every Angular application.
• How filters, scopes, and the expression parser integrate with the dependency injection features.
• How you can adjust the digest TTL by calling a method on $rootScopeProvider.

 21

521 Errata© Tero Parviainen 2016

Part 4

Utilities

Dependency Injection

Scopes Expressions

Directives
(+ controllers)

$q

$http

 21

522 Errata© Tero Parviainen 2016

In this part of the book, we are going to build a few essential utilities that Angular ships with.
They are familiar to Angular application developers, but also used by Angular internally. We will
need them as we implement the directive system in the next part.

 22

523 Errata© Tero Parviainen 2016

Chapter 14

Promises

Promises 22

524 Errata© Tero Parviainen 2016

The web browser’s JavaScript environment is a place where almost everything happens asynchro-
nously: We set up code that sits there dormant, waiting for things to happen. The code only acti-
vates when the user does something, when data is received from the server, or when a timer fires.
This fundamentally affects how JavaScript applications are constructed.

For the longest time, the preferred tool for dealing with asynchronous computation in JavaScript
has been callback functions. You pass an API a function that it will call later when something hap-
pens. Almost all of the built-in asynchronous APIs of the JavaScript language and the browser
environment use callbacks:

element.addEventListener('click', function(evt) {
 console.log('clicked!', evt);
});

However, programming with callbacks has some issues that may result in a lot of unnecessary
complexity:

• Callback-style APIs conflate business logic with implementation details. For example, your actual
function arguments are mixed with callback function arguments as in computeBalance(from,
to, onDone). What you want is computeBalance(from, to) but you have to add the third
argument when the computation is asynchronous.

• When there are many asynchronous callbacks involved, control flow becomes difficult to follow, as
well as cumbersome to write and maintain. This may cause problems like the infamous pyramid of
doom.

• There is no established approach to dealing with errors. Catching errors from asynchronous code
relies on a convention of having special error arguments in callbacks, and the pattern must be
repeated for every callback.

Download the code for the starting point of this chapter.

Promises

Promises are an attempt to address these problems in certain situations. They are essentially a
mechanism that bundles the future results of an asynchronous call into an object. An asynchro-
nous function does not return a value, but the promise that there will be a value at some point. The
Promise object gets you access to that value once it becomes available.

The value that a Promise resolves to may also be undefined, which is analogous to a function that doesn’t
return anything. Such a Promise can still be useful for signalling that the computation is finished.

Promises address the conflation of business logic with callbacks by separating callback arguments
from regular function arguments. Your function does not take a callback. It returns a Promise that
takes the callback:

https://github.com/survivejs/js_tricks_and_tips/blob/master/common_problems/pyramid.md
https://github.com/survivejs/js_tricks_and_tips/blob/master/common_problems/pyramid.md
https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter13-high-level-dependency-injection-features

Promise Implementations 22

525 Errata© Tero Parviainen 2016

computeBalance(from, to).then(function(balance) {
 // ...
});

Promises address the “pyramid of doom” problem by supporting chaining. Registering a Promise
callback returns a new Promise, allowing for a chained, flat control flow:

computeBalance(a, b)
 .then(storeBalance)
 .then(displayResults);

Promises address the problem of ad hoc error handling by having an explicit API for errors:

computeBalance(a, b)
 .then(storeBalance)
 .catch(handleError);

Errors also propagate through Promise chains, so that errors in any step can be caught by one
error handler - much like one try..catch in synchronous code handles any errors that happen
within, no matter how many function calls deep they may be:

computeBalance(a, b)
 .then(storeBalance)
 .then(displayResults)
 .catch(handleError);

Promise Implementations

Promises as a concept have been around since the 1970s, and they have also been present in many
libraries in JavaScript for several years. Among the most well known implementations are jQuery’s
Deferreds and the Q library by Kris Kowal. Today there are tens of alternative promise-like librar-
ies available in JavaScript.

Since there are so many alternative implementations available, there are also ongoing efforts to
support interoperability between them. The goal of those efforts is to make it easy for people to mix
libraries that happen to use different Promise implementations. Most significantly, a community
standard called Promises/A+ defines a specification and a test suite for how the then method
of a Promise should behave. Many Promise libraries implement this standard. For instance, Q is
compliant, as are jQuery Deferreds starting from jQuery 3.0.

There is also a Promise implementation built right into the JavaScript language. It is defined in the
ECMAScript 2015 proposal and is already implemented by several browsers. Some of the newer
DOM APIs such as Service Workers support native Promises right out of the gate. At the time of
writing, it still remains to be seen how the roll-out of native ES6 Promises will play out and how it
will affect the many existing Promise libraries out there.

http://en.wikipedia.org/wiki/Futures_and_promises
http://api.jquery.com/category/deferred-object/
http://api.jquery.com/category/deferred-object/
https://github.com/kriskowal/q
https://promisesaplus.com/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://www.w3.org/TR/service-workers/http://www.w3.org/TR/service-workers/

Promises in AngularJS 22

526 Errata© Tero Parviainen 2016

Promises in AngularJS

Angular also ships with an implementation of Promises, in the built-in $q service. Angular’s
promises are modeled after the Q library (hence the name $q), and can be considered a stripped-
down version of Q.

The $q service is Promises/A+ compliant. It can also be used in a way that’s very similar to native
ES6 Promises, as we will see in this chapter.

Perhaps the most important distinguishing feature of $q when compared to other Promise imple-
mentations is its integration with the digest loop. With $q everything happens within an Angular
digest, so you don’t have to worry about calling scope.$apply. Furthermore, whereas many
Promise libraries use things like setTimeout to make things asynchronous, $q can simply use
$evalAsync.

Further Reading

Matt Greer’s JavaSript Promises... In Wicked Detail builds up a (non-Angular) Promise imple-
mentation with an approach very similar to this book.

Kyle Simpson’s Promises chapter in “You Don’t Know JS: Async & Performance is a well-written,
thorough guide to using Promises in JavaScript. Though Angular’s Promises have a slightly differ-
ent API to the ES6 Promises used here, pretty much all of the content translates directly to $q.

Kris Kowal’s A General Theory of Reactivity does a great job putting Promises in the bigger
context of “reactivity”, and compares and contrasts them with other asynchronous computation
primitives, such as Observable Streams.

The $q Provider

In this chapter we’ll build up $q in its entirety, to form a complete picture of what Promises in
Angular do. But first, we need to lay the groundwork. We should make sure that $q actually exists
as part of the built-in ng module:

test/angular_public_spec.js
it('sets up $q', function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 expect(injector.has('$q')).toBe(true);
});

To make $q available, we’re going to use a provider, just like we’ve done with $parse and $rootScope.

http://www.mattgreer.org/articles/promises-in-wicked-detail/
https://github.com/getify/You-Dont-Know-JS/blob/master/async%20&%20performance/ch3.md
https://github.com/kriskowal/gtor

Creating Deferreds 22

527 Errata© Tero Parviainen 2016

The provider will live in a file called q.js:

src/q.js
'use strict';

function $QProvider() {

 this.$get = function() {

 };

}

module.exports = $QProvider;

To bring $q alive and to make the test pass we still need to register this provider to the ng module:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q'));
}

Creating Deferreds

The first construct we are going to build into $q is not actually Promises, but a closely related con-
cept called Deferreds.

If Promise is a promise that some value will become available in the future, a Deferred is the compu-
tation that makes that value available. The two always come in pairs, but are usually accessed by
different parts of your code.

If you think of it in terms of data flow, the producer of the data has a Deferred, and the consumer of
the data has a Promise. At some point, when the producer resolves the Deferred, the consumer will
receive the Promise’s value.

Creating Deferreds 22

528 Errata© Tero Parviainen 2016

Deferred Promise

Producer Consumer

42 42

ECMAScript 6 standard Promises do not have a concept of Deferreds and instead use plain functions to
handle the producer side of the equation. AngularJS also supports this style, and we’ll see how that works
at the end of the chapter. Using Deferreds is still the more fundamental - and at the time of writing the
more widely used - mechanism.

You construct a Deferred by calling the defer method of $q. Let’s kick off our $q test suite with a
test for that:

test/q_spec.js
'use strict';

var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('$q', function() {

 var $q;

 beforeEach(function() {
 publishExternalAPI();
 $q = createInjector(['ng']).get('$q');
 });

 it('can create a deferred', function() {
 var d = $q.defer();
 expect(d).toBeDefined();
 });

});

Inside $q, Deferreds are created by a constructor function called Deferred. However, this is just
an implementation detail of $q, because the constructor itself is not exposed to the outside world,
whereas the defer method is:

src/q.js

Accessing The Promise of A Deferred 22

529 Errata© Tero Parviainen 2016

this.$get = function() {

 function Deferred() {
 }

 function defer() {
 return new Deferred();
 }

 return {
 defer: defer
 };

};

Accessing The Promise of A Deferred

Deferreds and Promises always come in pairs. Whenever you create a Deferred, you also create a
Promise. The Promise is accessible through the promise attribute of the Deferred:

test/q_spec.js
it('has a promise for each Deferred', function() {
 var d = $q.defer();
 expect(d.promise).toBeDefined();
});

Within $q, there’s also an internal constructor function for Promises. The Deferred constructor
invokes the Promise constructor to create a new Promise:

src/q.js
this.$get = function() {

 function Promise() {
 }

 function Deferred() {
 this.promise = new Promise();
 }

 function defer() {
 return new Deferred();
 }

 return {
 defer: defer
 };

Resolving A Deferred 22

530 Errata© Tero Parviainen 2016

};

Resolving A Deferred

Now that we know how to make Deferreds and Promises, we can talk about the actual point of
their existence, which is to make asynchronous programming easier.

When we have a Deferred and a Promise, we can attach a callback on the Promise. Then, after the
Deferred is resolved to a value, the callback on the Promise will at some point in the future get in-
voked with that value. We can use a Jasmine spy function as a callback when testing:

test/q_spec.js
it('can resolve a promise', function(done) {
 var deferred = $q.defer();
 var promise = deferred.promise;

 var promiseSpy = jasmine.createSpy();
 promise.then(promiseSpy);

 deferred.resolve('a-ok');

 setTimeout(function() {
 expect(promiseSpy).toHaveBeenCalledWith('a-ok');
 done();
 }, 1);
});

We’ll come back to what “some point in the future” means exactly in this context, but for the time
being let’s make this first test pass.

Promises store their internal state in an attribute called $$state:

src/q.js
function Promise() {
 this.$$state = {};
}

When a Promise’s then method is called, the given callback is stored inside that state:

src/q.js
function Promise() {
 this.$$state = {};
}
Promise.prototype.then = function(onFulfilled) {
 this.$$state.pending = onFulfilled;
};

Resolving A Deferred 22

531 Errata© Tero Parviainen 2016

Then, as the paired Deferred is resolved, we can invoke the callback held by the Promise:

src/q.js
function Deferred() {
 this.promise = new Promise();
}
Deferred.prototype.resolve = function(value) {
 this.promise.$$state.pending(value);
};

This implementation satisfies the contract enforced by our test case, but is still way too simplistic
for what we need. For one thing, this version is a bit too strict about the order in which things are
done. It should be perfectly OK to register a Promise callback when the Deferred is already resolved,
and still have that callback be invoked:

test/q_spec.js
it('works when resolved before promise listener', function(done) {
 var d = $q.defer();
 d.resolve(42);

 var promiseSpy = jasmine.createSpy();
 d.promise.then(promiseSpy);

 setTimeout(function() {
 expect(promiseSpy).toHaveBeenCalledWith(42);
 done();
 }, 0);
});

More generally, the order independence is achieved by the fact that when you call resolve, Promise
callbacks are not invoked immediately, as we alluded to earlier. This is why we’ve been using setTim-
eout in our first tests.

test/q_spec.js
it('does not resolve promise immediately', function() {
 var d = $q.defer();

 var promiseSpy = jasmine.createSpy();
 d.promise.then(promiseSpy);

 d.resolve(42);

 expect(promiseSpy).not.toHaveBeenCalled();
});

So, if Promise callbacks are not called immediately, when are they called? This is where the digest
cycle comes in handy. Promise callbacks get called during the next digest after resolving the Deferred. To

Resolving A Deferred 22

532 Errata© Tero Parviainen 2016

test this, we need a Scope in the test file, so let’s get one from the injector:

test/q_spec.js
var $q, $rootScope;

beforeEach(function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 $q = injector.get('$q');
 $rootScope = injector.get('$rootScope');
});

Now we can test that a Promise callback gets invoked during the digest:

test/q_spec.js
it('resolves promise at next digest', function() {
 var d = $q.defer();

 var promiseSpy = jasmine.createSpy();
 d.promise.then(promiseSpy);

 d.resolve(42);
 $rootScope.$apply();

 expect(promiseSpy).toHaveBeenCalledWith(42);
});

Instead of calling the Promise callback immediately in Deferred.resolve, let’s store the re-
solved value and invoke a helper function whose job is to call the Promise callback later:

src/q.js
Deferred.prototype.resolve = function(value) {
 this.promise.$$state.value = value;
 scheduleProcessQueue(this.promise.$$state);
};

This helper function taps into the digest with the $evalAsync function of the root scope. Recall
that this function can be used to attach callbacks that run during the next digest, and that it also
schedules a digest to happen with setTimeout if one hasn’t been scheduled already. Our callback
will invoke another helper function:

src/q.js
function scheduleProcessQueue(state) {
 $rootScope.$evalAsync(function() {
 processQueue(state);
 });
}

Preventing Multiple Resolutions 22

533 Errata© Tero Parviainen 2016

In order to invoke $evalAsync, we need to get a hold of $rootScope in $QProvider, so let’s
inject it to the $get method:

src/q.js
this.$get = ['$rootScope', function($rootScope) {

 // ...

}];

And finally, we can define the processQueue function that gets called during the digest. Here we
invoke the actual promise callback:

src/q.js
function processQueue(state) {
 state.pending(state.value);
}

Most promise libraries, including Q, behave so that when a Deferred is resolved, Promise callbacks are not
immediately invoked. Of course, generic Promise libraries usually don’t have anything equivalent to the
digest cycle, so they just use something like setTimeout.

Since Angular resolves Promises at digest time, it can potentially lead to better-performing code: While
your Promise handler gets called asynchronously, if the value is immediately available, it still gets called
during the same turn of the JavaScript event loop. We don’t relinquish control back to the browser, which
would give it a chance to do other work in between, which is what happens with Promise libraries that use
setTimeout.

Preventing Multiple Resolutions

One important feature of Deferreds is that they only ever get resolved once. When a Deferred has
been resolved to a value, it will never be resolved to any other value. Promise callbacks also get
invoked at most once. If you try to resolve a Deferred a second time, the call is ignored and no
callbacks are invoked:

test/q_spec.js
it('may only be resolved once', function() {
 var d = $q.defer();

 var promiseSpy = jasmine.createSpy();
 d.promise.then(promiseSpy);

 d.resolve(42);
 d.resolve(43);

 $rootScope.$apply();

Ensuring that Callbacks Get Invoked 22

534 Errata© Tero Parviainen 2016

 expect(promiseSpy.calls.count()).toEqual(1);
 expect(promiseSpy).toHaveBeenCalledWith(42);
});

This is true even if there’s a digest in between two resolve calls. The resolution of a Deferred is
permanent:

test/q_spec.js
it('may only ever be resolved once', function() {
 var d = $q.defer();

 var promiseSpy = jasmine.createSpy();
 d.promise.then(promiseSpy);

 d.resolve(42);
 $rootScope.$apply();
 expect(promiseSpy).toHaveBeenCalledWith(42);

 d.resolve(43);
 $rootScope.$apply();
 expect(promiseSpy.calls.count()).toEqual(1);
});

We control this by adding a status flag to the internal $$state object of the Promise. Once the
Deferred is resolved, the Promises’s status is set to 1 (for “resolved”). On then next call we’ll notice
that it’s been set and return immediately:

src/q.js
Deferred.prototype.resolve = function(value) {
 if (this.promise.$$state.status) {
 return;
 }
 this.promise.$$state.value = value;
 this.promise.$$state.status = 1;
 scheduleProcessQueue(this.promise.$$state);
};

Ensuring that Callbacks Get Invoked

As things stand, we are scheduling the execution of Promise callbacks when a Deferred gets re-
solved. That works great, but we have a blind spot in one situation: If a Promise callback is regis-
tered after a Deferred was already resolved and a digest was run, that callback is never invoked:

test/q_spec.js
it('resolves a listener added after resolution', function() {
 var d = $q.defer();
 d.resolve(42);

Registering Multiple Promise Callbacks 22

535 Errata© Tero Parviainen 2016

 $rootScope.$apply();

 var promiseSpy = jasmine.createSpy();
 d.promise.then(promiseSpy);
 $rootScope.$apply();

 expect(promiseSpy).toHaveBeenCalledWith(42);
});

What we should do is check the status flag at callback registration time. If we’re already resolved,
we should just schedule the callback invocation:

src/q.js
Promise.prototype.then = function(onFulfilled) {
 this.$$state.pending = onFulfilled;
 if (this.$$state.status > 0) {
 scheduleProcessQueue(this.$$state);
 }
};

Registering Multiple Promise Callbacks

While a Deferred always has exactly one Promise, a Promise should be able to have any number
of callbacks. Our current implementation does not support this:

test/q_spec.js
it('may have multiple callbacks', function() {
 var d = $q.defer();

 var firstSpy = jasmine.createSpy();
 var secondSpy = jasmine.createSpy();
 d.promise.then(firstSpy);
 d.promise.then(secondSpy);

 d.resolve(42);
 $rootScope.$apply();

 expect(firstSpy).toHaveBeenCalledWith(42);
 expect(secondSpy).toHaveBeenCalledWith(42);
});

The way this works is that whenever a digest runs and the Promise has been resolved, any call-
backs that haven’t been invoked yet are invoked. Each callback gets called just once, as we already
asserted earlier:

test/q_spec.js
it('invokes each callback once', function() {

Registering Multiple Promise Callbacks 22

536 Errata© Tero Parviainen 2016

 var d = $q.defer();

 var firstSpy = jasmine.createSpy();
 var secondSpy = jasmine.createSpy();

 d.promise.then(firstSpy);
 d.resolve(42);
 $rootScope.$apply();
 expect(firstSpy.calls.count()).toBe(1);
 expect(secondSpy.calls.count()).toBe(0);

 d.promise.then(secondSpy);
 expect(firstSpy.calls.count()).toBe(1);
 expect(secondSpy.calls.count()).toBe(0);

 $rootScope.$apply();
 expect(firstSpy.calls.count()).toBe(1);
 expect(secondSpy.calls.count()).toBe(1);
});

Instead of storing just one pending callback as we’re currently doing, we’re going to have to sup-
port storing multiple pending callbacks, so we need an array:

src/q.js
Promise.prototype.then = function(onFulfilled) {
 this.$$state.pending = this.$$state.pending || [];
 this.$$state.pending.push(onFulfilled);
 if (this.$$state.status > 0) {
 scheduleProcessQueue(this.$$state);
 }
};

Then, when we get to invoking the callbacks, we need to loop over them:

src/q.js
function processQueue(state) {
 _.forEach(state.pending, function(onFulfilled) {
 onFulfilled(state.value);
 });
}

Time to require LoDash into the file so that we can use that _.forEach:
src/q.js
'use strict';

var _ = require('lodash');

Also, to make sure each callback does in fact only get called once, we need to clear the pending

Rejecting Deferreds And Catching Rejections 22

537 Errata© Tero Parviainen 2016

callbacks as we invoke them. At each digest, pending callbacks are cleared out. If more callbacks
get registered later, the array will get reinitialized.

src/q.js
function processQueue(state) {
 var pending = state.pending;
 state.pending = undefined;
 _.forEach(pending, function(onFulfilled) {
 onFulfilled(state.value);
 });
}

The order in which we do things is significant here. If some of the callbacks happen to register more call-
backs, we don’t want them to be cleared just yet.

Rejecting Deferreds And Catching Rejections

As discussed in the beginning of the chapter, one of the big difficulties with callback-style pro-
gramming is the lack of any general error handling mechanism. Errors are passed through ar-
bitrarily chosen callback parameters, and the way that’s done varies from library to library and
application to application.

Promises solve this issue by having error handling built-in. There are two pieces to that solution,
the first of which being the way you can signal to a Deferred that something has gone wrong. This
is called rejecting the Deferred (and the Promise). The second piece is getting notified that a rejec-
tion has occurred. You can do this by providing a second argument to the then method of your
Promise. That second argument is a callback that gets invoked if the promise gets rejected:

test/q_spec.js
it('can reject a deferred', function() {
 var d = $q.defer();

 var fulfillSpy = jasmine.createSpy();
 var rejectSpy = jasmine.createSpy();
 d.promise.then(fulfillSpy, rejectSpy);

 d.reject('fail');
 $rootScope.$apply();

 expect(fulfillSpy).not.toHaveBeenCalled();
 expect(rejectSpy).toHaveBeenCalledWith('fail');
});

A Promise can get rejected at most once:

test/q_spec.js

Rejecting Deferreds And Catching Rejections 22

538 Errata© Tero Parviainen 2016

it('can reject just once', function() {
 var d = $q.defer();

 var rejectSpy = jasmine.createSpy();
 d.promise.then(null, rejectSpy);

 d.reject('fail');
 $rootScope.$apply();
 expect(rejectSpy.calls.count()).toBe(1);

 d.reject('fail again');
 $rootScope.$apply();
 expect(rejectSpy.calls.count()).toBe(1);
});

You also cannot resolve something you have already rejected (and vice versa). Effectively, a Prom-
ise can only ever have one outcome, which is a resolution or a rejection:

test/q_spec.js
it('cannot fulfill a promise once rejected', function() {
 var d = $q.defer();

 var fulfillSpy = jasmine.createSpy();
 var rejectSpy = jasmine.createSpy();
 d.promise.then(fulfillSpy, rejectSpy);

 d.reject('fail');
 $rootScope.$apply();

 d.resolve('success');
 $rootScope.$apply();

 expect(fulfillSpy).not.toHaveBeenCalled();
});

The reject method of Deferred looks very similar to resolve. The primary difference is that
the status of the promise is set to 2 for (“rejected”) and not 1:

src/q.js
Deferred.prototype.reject = function(reason) {
 if (this.promise.$$state.status) {
 return;
 }
 this.promise.$$state.value = reason;
 this.promise.$$state.status = 2;
 scheduleProcessQueue(this.promise.$$state);
};

The then method of Promise now needs to be able to receive two callbacks - the success callback
and the rejection errback. The items in pending now become arrays of callbacks. We put the suc-

Rejecting Deferreds And Catching Rejections 22

539 Errata© Tero Parviainen 2016

cess callback in index 1 of the array and the rejection errback in index 2 of the array. This way the
indexes match the Promise status codes we’re using:

src/q.js
Promise.prototype.then = function(onFulfilled, onRejected) {
 this.$$state.pending = this.$$state.pending || [];
 this.$$state.pending.push([null, onFulfilled, onRejected]);
 if (this.$$state.status > 0) {
 scheduleProcessQueue(this.$$state);
 }
};

In processQueue we can now access the correct handler using the status field, and we don’t
actually need to do much to cover both the success and failure cases:

src/q.js
function processQueue(state) {
 var pending = state.pending;
 state.pending = undefined;
 _.forEach(pending, function(handlers) {
 var fn = handlers[state.status];
 fn(state.value);
 });
}

There is one problem with this implementation, which is that it assumes that each call to then will
supply both success and failure callbacks. It should actually be possible to omit one or the other (or
technically even both):

test/q_spec.js
it('does not require a failure handler each time', function() {
 var d = $q.defer();

 var fulfillSpy = jasmine.createSpy();
 var rejectSpy = jasmine.createSpy();
 d.promise.then(fulfillSpy);
 d.promise.then(null, rejectSpy);

 d.reject('fail');
 $rootScope.$apply();

 expect(rejectSpy).toHaveBeenCalledWith('fail');
});

it('does not require a success handler each time', function() {
 var d = $q.defer();

 var fulfillSpy = jasmine.createSpy();
 var rejectSpy = jasmine.createSpy();

Rejecting Deferreds And Catching Rejections 22

540 Errata© Tero Parviainen 2016

 d.promise.then(fulfillSpy);
 d.promise.then(null, rejectSpy);

 d.resolve('ok');
 $rootScope.$apply();

 expect(fulfillSpy).toHaveBeenCalledWith('ok');
});

The fix for this is to simply guard the callback invocation with a check to see that it is in fact a
function:

src/q.js
function processQueue(state) {
 var pending = state.pending;
 state.pending = undefined;
 _.forEach(pending, function(handlers) {
 var fn = handlers[state.status];
 if (_.isFunction(fn)) {
 fn(state.value);
 }
 });
}

There is also a shortcut method for the case where you just want to supply a rejection errback.
You could do it with promise.then(null, callback), but you can also use a method called
catch:

test/q_spec.js
it('can register rejection handler with catch', function() {
 var d = $q.defer();

 var rejectSpy = jasmine.createSpy();
 d.promise.catch(rejectSpy);
 d.reject('fail');
 $rootScope.$apply();

 expect(rejectSpy).toHaveBeenCalled();
});

This method is implemented in terms of then. There’s nothing special in it - it is just there for
convenience:

src/q.js
Promise.prototype.catch = function(onRejected) {
 return this.then(null, onRejected);
};

Cleaning Up At The End: finally 22

541 Errata© Tero Parviainen 2016

Cleaning Up At The End: finally

In a traditional, synchronous try..catch pattern you can add a finally block at the end for
executing code that needs to always run whether the task succeeds or fails. Promises have a similar
construct, and it’s available via the finally method of Promise.

The method takes a callback, in which you can do whatever cleanup work you need to do at the
end of your asynchronous task. The callback is invoked when the Promise is resolved, and it will
not receive any arguments:

test/q_spec.js
it('invokes a finally handler when fulfilled', function() {
 var d = $q.defer();

 var finallySpy = jasmine.createSpy();
 d.promise.finally(finallySpy);
 d.resolve(42);
 $rootScope.$apply();

 expect(finallySpy).toHaveBeenCalledWith();
});

We use toHaveBeenCalledWith with zero arguments to check that the finally callback did not receive
any arguments.

The finally callback also gets invoked if the Promise is rejected:

test/q_spec.js
it('invokes a finally handler when rejected', function() {
 var d = $q.defer();

 var finallySpy = jasmine.createSpy();
 d.promise.finally(finallySpy);
 d.reject('fail');
 $rootScope.$apply();

 expect(finallySpy).toHaveBeenCalledWith();
});

We can implement finally in terms of then, just like we did with catch. We’ll register both a
success and a failure callback, both of which will delegate to the original callback. It will get called
no matter what happens:

src/q.js
Promise.prototype.finally = function(callback) {
 return this.then(function() {

Promise Chaining 22

542 Errata© Tero Parviainen 2016

 callback();
 }, function() {
 callback();
 });
};

We’ll return to finally later in this chapter to make sure it plays well with chained Promises. But
before we go there, let’s take a look at what chained Promises actually look like.

Promise Chaining

We now have a pretty good understanding of how a Deferrend-Promise pair behaves. This in itself
can be a useful thing, but where Promises truly come to their own is when you have several asyn-
chronous tasks to do, and you need to compose a workflow for them. This is where Promise chain-
ing comes in.

The simplest form of Promise chaining is just attaching several then callbacks back to back. Each
callback receives the return value of the previous one as its argument:

test/q_spec.js
it('allows chaining handlers', function() {
 var d = $q.defer();

 var fulfilledSpy = jasmine.createSpy();
 d.promise.then(function(result) {
 return result + 1;
 }).then(function(result) {
 return result * 2;
 }).then(fulfilledSpy);

 d.resolve(20);
 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith(42);
});

What’s happening here is that each call to then returns another Promise that can be used for fur-
ther callbacks. It is important to understand, however, that each time this happens a new Promise
is created. Other callbacks on the original Promise are not affected:

test/q_spec.js
it('does not modify original resolution in chains', function() {
 var d = $q.defer();

 var fulfilledSpy = jasmine.createSpy();

Promise Chaining 22

543 Errata© Tero Parviainen 2016

 d.promise.then(function(result) {
 return result + 1;
 }).then(function(result) {
 return result * 2;
 });
 d.promise.then(fulfilledSpy);

 d.resolve(20);
 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith(20);
});

What we need to do in then is to create a new Deferred - one that represents the computation in
the onFulfilled callback. We then return its Promise to the caller:

src/q.js
Promise.prototype.then = function(onFulfilled, onRejected) {
 var result = new Deferred();
 this.$$state.pending = this.$$state.pending || [];
 this.$$state.pending.push([null, onFulfilled, onRejected]);
 if (this.$$state.status > 0) {
 scheduleProcessQueue(this.$$state);
 }
 return result.promise;
};

Then we need to pass this Deferred to where the onFulfilled callback actually gets invoked, so
that the results can be delivered. We’ll set it as the first item of the array in $$state.pending:

src/q.js
Promise.prototype.then = function(onFulfilled, onRejected) {
 var result = new Deferred();
 this.$$state.pending = this.$$state.pending || [];
 this.$$state.pending.push([result, onFulfilled, onRejected]);
 if (this.$$state.status > 0) {
 scheduleProcessQueue(this.$$state);
 }
 return result.promise;
};

As we then invoke the callback in processQueue, we also pass its return value to the Deferred:

src/q.js
function processQueue(state) {
 var pending = state.pending;
 state.pending = undefined;
 _.forEach(pending, function(handlers) {
 var deferred = handlers[0];

Promise Chaining 22

544 Errata© Tero Parviainen 2016

 var fn = handlers[state.status];
 if (_.isFunction(fn)) {
 deferred.resolve(fn(state.value));
 }
 });
}

This is how chained then calls work. Each one creates a new Deferred and, by association, a new
Promise. The new Deferred is independent from the original, but is resolved when the original
one is resolved.

Note that a then call will always create a new Deferred and return a Promise. At some point
you’ll be at the end of your chain and you don’t actually use the last Promise for anything. It will
still exist, but it just gets ignored.

Another important aspect of chains is how they transitively pass forward a value until a callback
handler is found. For instance, in the following we have a Deferred that we reject. We attach only
a success callback to it, but to the next, chained Promise we do add a rejection callback. The rejec-
tion is passed through to that second Promise. So you can have a construct like one.then(two).
catch(three), and rely on three to catch errors from both one and two:

test/q_spec.js
it('catches rejection on chained handler', function() {
 var d = $q.defer();

 var rejectedSpy = jasmine.createSpy();
 d.promise.then(_.noop).catch(rejectedSpy);

 d.reject('fail');
 $rootScope.$apply();

 expect(rejectedSpy).toHaveBeenCalledWith('fail');
});

This happens not only with rejections, but also with resolutions. When a Promise only has an
error handler, its resolution is passed to the next Promise in the chain, whose success callbacks will
get the resolved value:

test/q_spec.js
it('fulfills on chained handler', function() {
 var d = $q.defer();

 var fulfilledSpy = jasmine.createSpy();
 d.promise.catch(_.noop).then(fulfilledSpy);

 d.resolve(42);
 $rootScope.$apply();

Promise Chaining 22

545 Errata© Tero Parviainen 2016

 expect(fulfilledSpy).toHaveBeenCalledWith(42);
});

These tests use _.noop, so we need to bring LoDash into the test file:

test/q_spec.js
'use strict';

var _ = require('lodash');
var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

All of this is made possible with a simple modification to the processQueue function. For each
handler, if there is no callback for the status we’re in, we just resolve or reject the chained Deferred
with the current Promise’s value. This propagates the value through the chain:

src/q.js
function processQueue(state) {
 var pending = state.pending;
 state.pending = undefined;
 _.forEach(pending, function(handlers) {
 var deferred = handlers[0];
 var fn = handlers[state.status];
 if (_.isFunction(fn)) {
 deferred.resolve(fn(state.value));
 } else if (state.status === 1) {
 deferred.resolve(state.value);
 } else {
 deferred.reject(state.value);
 }
 });
}

Another point about chaining is that when there is a rejection, the next catch handler will actually
catch it, and the catch handler’s own return value will be treated as a resolution, not a rejection.
Our implementation already behaves correctly in this manner, but this may not be obvious. The
trick is that we always call d.resolve in processQueue when we have a callback function for the
current state, regardless of whether it’s a resolution or a rejection.

This should make more sense if you think of it as the equivalent of a traditional, synchronous
catch block. The catch handles the error and it is no longer propagated. Normal execution re-
sumes.

test/q_spec.js
it('treats catch return value as resolution', function() {
 var d = $q.defer();

Exception Handling 22

546 Errata© Tero Parviainen 2016

 var fulfilledSpy = jasmine.createSpy();
 d.promise
 .catch(function() {
 return 42;
 })
 .then(fulfilledSpy);

 d.reject('fail');
 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith(42);
});

Exception Handling

Explicitly rejecting a Promise is one thing, but something may also just go wrong with your code
when executing a Promise callback. When an exception is thrown from a Promise callback, this
should cause the next rejection handler in the chain to be invoked. It should receive the thrown
exception:

test/q_spec.js
it('rejects chained promise when handler throws', function() {
 var d = $q.defer();

 var rejectedSpy = jasmine.createSpy();
 d.promise.then(function() {
 throw 'fail';
 }).catch(rejectedSpy);
 d.resolve(42);

 $rootScope.$apply();

 expect(rejectedSpy).toHaveBeenCalledWith('fail');
});

The propagation of the exception happens in processQueue, where we invoke our handlers. If an
exception is thrown, it is caught and the next Deferred in the chain is rejected with the exception:

src/q.js
function processQueue(state) {
 var pending = state.pending;
 state.pending = undefined;
 _.forEach(pending, function(handlers) {
 var deferred = handlers[0];
 var fn = handlers[state.status];
 try {
 if (_.isFunction(fn)) {

Callbacks Returning Promises 22

547 Errata© Tero Parviainen 2016

 deferred.resolve(fn(state.value));
 } else if (state.status === 1) {
 deferred.resolve(state.value);
 } else {
 deferred.reject(state.value);
 }
 } catch (e) {
 deferred.reject(e);
 }
 });
}

It is important to notice that an exception does not reject the Deferred whose Promise handler it
is thrown from, but the next one in the chain. If we are executing a Promise handler, the respective
Deferred must already have been resolved (or rejected), and we don’t go back and change it. This
means that the following test case passes, as it should:

test/q_spec.js
it('does not reject current promise when handler throws', function() {
 var d = $q.defer();

 var rejectedSpy = jasmine.createSpy();
 d.promise.then(function() {
 throw 'fail';
 });
 d.promise.catch(rejectedSpy);
 d.resolve(42);

 $rootScope.$apply();

 expect(rejectedSpy).not.toHaveBeenCalled();
});

The difference between this test case and the previous one is that here we set the rejection handler
on the original Promise instead of chaining it on the success handler. This is an important distinc-
tion.

Callbacks Returning Promises

So, when a Promise callback returns a value, that value becomes the resolution of the next Prom-
ise in the chain. And when a Promise callback throws an exception, that exception becomes the
rejection of the next Promise in the chain. In both of these cases, the value or exception from the
callback comes synchronously. But what if you actually want to do some more asynchronous work in
Promise callbacks? In other words, what if a Promise callback returns another Promise?

The answer is that we should connect the Promise returned by the callback to the next callback in
the chain:

Callbacks Returning Promises 22

548 Errata© Tero Parviainen 2016

test/q_spec.js
it('waits on promise returned from handler', function() {
 var d = $q.defer();
 var fulfilledSpy = jasmine.createSpy();

 d.promise.then(function(v) {
 var d2 = $q.defer();
 d2.resolve(v + 1);
 return d2.promise;
 }).then(function(v) {
 return v * 2;
 }).then(fulfilledSpy);
 d.resolve(20);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith(42);
});

Here we have three Promise callbacks in a chain. The first of them goes off to do some “asynchro-
nous” work of its own, and only when it is resolved do we proceed to the second callback in the
chain.

Another way to combine asynchronous workflows is to resolve one Promise with another Promise.
In this case one Promise’s resolution becomes the resolution of the other:

test/q_spec.js
it('waits on promise given to resolve', function() {
 var d = $q.defer();
 var d2 = $q.defer();
 var fulfilledSpy = jasmine.createSpy();

 d.promise.then(fulfilledSpy);
 d2.resolve(42);
 d.resolve(d2.promise);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith(42);
});

Something similar also happens with rejections. When there’s an inner Promise and it is rejected,
that rejection is propagated on the chain:

test/q_spec.js
it('rejects when promise returned from handler rejects', function() {
 var d = $q.defer();
 var rejectedSpy = jasmine.createSpy();

Chaining Handlers on finally 22

549 Errata© Tero Parviainen 2016

 d.promise.then(function() {
 var d2 = $q.defer();
 d2.reject('fail');
 return d2.promise;
 }).catch(rejectedSpy);
 d.resolve('ok');

 $rootScope.$apply();

 expect(rejectedSpy).toHaveBeenCalledWith('fail');
});

What all of this effectively means is that a Deferred may be resolved with another Promise, and in
that case the Deferred’s resolution is dependent on the resolution of the other Promise. So, when
we are given a value in resolve, we must check if that value itself looks like a Promise. If we
decide it does, we do not resolve immediately, but instead attach callbacks to it, that will later call
our own resolve (or reject) again:

src/q.js
Deferred.prototype.resolve = function(value) {
 if (this.promise.$$state.status) {
 return;
 }
 if (value && _.isFunction(value.then)) {
 value.then(
 _.bind(this.resolve, this),
 _.bind(this.reject, this)
);
 } else {
 this.promise.$$state.value = value;
 this.promise.$$state.status = 1;
 scheduleProcessQueue(this.promise.$$state);
 }
};

Now our resolve (or reject) method will later get invoked again when that Promise resolves.
This actually makes all our test cases pass, since all of them go through resolve.

Notice that we didn’t add a strict type check for value in the implementation above. We don’t require
that it’s actually an instance of Promise, but just something that has a then method (sometimes called a
“thenable” object). This means that the nested Promise may actually be from some other Promise imple-
mentation than Angular’s, which can be useful when integrating other libraries to your app or when mixing
native ES2015 Promises into it.

Chaining Handlers on finally

When we implemented finally earlier, we discussed that we were going to come back to it when
we have Promise chaining support. Now that we do, let’s see how Promise chaining and finally

Chaining Handlers on finally 22

550 Errata© Tero Parviainen 2016

work together.

An important aspect of finally is that its return value should be ignored. Finally is only meant for
cleaning up resources and it does not participate in the formation of a Promise chain’s eventual
value. That means that any value a Promise chain has been resolved to should flow through inter-
mediate finally handlers untouched:

test/q_spec.js
it('allows chaining handlers on finally, with original value', function() {
 var d = $q.defer();

 var fulfilledSpy = jasmine.createSpy();
 d.promise.then(function(result) {
 return result + 1;
 }).finally(function(result) {
 return result * 2;
 }).then(fulfilledSpy);
 d.resolve(20);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith(21);
});

The same exact behavior is needed for rejections. When a Promise is rejected, the rejection flows
through any finally handlers to the next rejection handler in the chain:

test/q_spec.js
it('allows chaining handlers on finally, with original rejection', function() {
 var d = $q.defer();

 var rejectedSpy = jasmine.createSpy();
 d.promise.then(function(result) {
 throw 'fail';
 }).finally(function() {
 }).catch(rejectedSpy);
 d.resolve(20);

 $rootScope.$apply();

 expect(rejectedSpy).toHaveBeenCalledWith('fail');
});

So, in the then handler that we set up for finally, we should just return the value given to us, so
that the next handler in the chain receives it. Whatever our own callback may return is ignored:

src/q.js
Promise.prototype.finally = function(callback) {
 return this.then(function(value) {

Chaining Handlers on finally 22

551 Errata© Tero Parviainen 2016

 callback();
 return value;
 }, function() {
 callback();
 });
};

To do the same for the rejection, we can’t simply return it because that would propagate to a success
handler. We need to create a new rejected Promise for the same rejection:

src/q.js
Promise.prototype.finally = function(callback) {
 return this.then(function(value) {
 callback();
 return value;
 }, function(rejection) {
 callback();
 var d = new Deferred();
 d.reject(rejection);
 return d.promise;
 });
};

Since the resource cleanup done in a finally handler may be asynchronous itself, we should also
support finally handlers that return Promise. When a Promise is returned from a finally han-
dler, we should wait for it to resolve before continuing with the chain. Howerver, we should still
ignore its resolved value and just use the original one:

test/q_spec.js
it('resolves to orig value when nested promise resolves', function() {
 var d = $q.defer();

 var fulfilledSpy = jasmine.createSpy();
 var resolveNested;

 d.promise.then(function(result) {
 return result + 1;
 }).finally(function(result) {
 var d2 = $q.defer();
 resolveNested = function() {
 d2.resolve('abc');
 };
 return d2.promise;
 }).then(fulfilledSpy);
 d.resolve(20);

 $rootScope.$apply();
 expect(fulfilledSpy).not.toHaveBeenCalled();

 resolveNested();

Chaining Handlers on finally 22

552 Errata© Tero Parviainen 2016

 $rootScope.$apply();
 expect(fulfilledSpy).toHaveBeenCalledWith(21);
});

Here we test that when there’s some async work done in a finally handler, the chain does not
resolve immediately, but only when that async work is resolved. The value of that async work is
ignored.

Again, we need to provide the same behavior for rejections: If a Promise is rejected, any asynchro-
nous finally handlers between it and the next rejection handler are resolved first:

test/q_spec.js
it('rejects to original value when nested promise resolves', function() {
 var d = $q.defer();

 var rejectedSpy = jasmine.createSpy();
 var resolveNested;

 d.promise.then(function(result) {
 throw 'fail';
 }).finally(function(result) {
 var d2 = $q.defer();
 resolveNested = function() {
 d2.resolve('abc');
 };
 return d2.promise;
 }).catch(rejectedSpy);
 d.resolve(20);

 $rootScope.$apply();
 expect(rejectedSpy).not.toHaveBeenCalled();

 resolveNested();
 $rootScope.$apply();
 expect(rejectedSpy).toHaveBeenCalledWith('fail');
});

There is one case in which the result of a finally handler is not ignored, and that is when it itself
is rejected. When that happens, the rejection takes over from any previous value in the chain. We
don’t want failures in resource cleanup to go unnoticed:

test/q_spec.js
it('rejects when nested promise rejects in finally', function() {
 var d = $q.defer();

 var fulfilledSpy = jasmine.createSpy();
 var rejectedSpy = jasmine.createSpy();
 var rejectNested;

Chaining Handlers on finally 22

553 Errata© Tero Parviainen 2016

 d.promise.then(function(result) {
 return result + 1;
 }).finally(function(result) {
 var d2 = $q.defer();
 rejectNested = function() {
 d2.reject('fail');
 };
 return d2.promise;
 }).then(fulfilledSpy, rejectedSpy);
 d.resolve(20);

 $rootScope.$apply();
 expect(fulfilledSpy).not.toHaveBeenCalled();

 rejectNested();
 $rootScope.$apply();
 expect(fulfilledSpy).not.toHaveBeenCalled();
 expect(rejectedSpy).toHaveBeenCalledWith('fail');
});

So, once we get to a finally handler, we should check if the value we get from it looks like a
Promise. If it does, we chain a handler on it. The chained handler always resolves to the original
value, but it does not have a rejection callback, which means that it will propagate any rejections
from the finally handler:

src/q.js
Promise.prototype.finally = function(callback) {
 return this.then(function(value) {
 var callbackValue = callback();
 if (callbackValue && callbackValue.then) {
 return callbackValue.then(function() {
 return value;
 });
 } else {
 return value;
 }
 }, function(rejection) {
 callback();
 var d = new Deferred();
 d.reject(rejection);
 return d.promise;
 });
};

We should do a similar trick if we were originally passed a rejection: If the finally callback
returned a Promise, wait for it and then send the rejection forward. In this branch the end result
is always a rejected Promise - either one with the original rejection or one with a rejection from
finally:

Chaining Handlers on finally 22

554 Errata© Tero Parviainen 2016

src/q.js
Promise.prototype.finally = function(callback) {
 return this.then(function(value) {
 var callbackValue = callback();
 if (callbackValue && callbackValue.then) {
 return callbackValue.then(function() {
 return value;
 });
 } else {
 return value;
 }
 }, function(rejection) {
 var callbackValue = callback();
 if (callbackValue && callbackValue.then) {
 return callbackValue.then(function() {
 var d = new Deferred();
 d.reject(rejection);
 return d.promise;
 });
 } else {
 var d = new Deferred();
 d.reject(rejection);
 return d.promise;
 }
 });
};

Now we have a fully functional implementation of finally, but it is a bit on the verbose side. Let’s
add a couple of helper functions to break it down a bit.

First, we could use a general helper function that takes a value and a boolean flag, and returns a
Promise that either resolves or rejects with the value, based on the boolean flag:

src/q.js
function makePromise(value, resolved) {
 var d = new Deferred();
 if (resolved) {
 d.resolve(value);
 } else {
 d.reject(value);
 }
 return d.promise;
}

We can now use this new helper function in a few places in finally:

src/q.js
Promise.prototype.finally = function(callback) {
 return this.then(function(value) {
 var callbackValue = callback();

Chaining Handlers on finally 22

555 Errata© Tero Parviainen 2016

 if (callbackValue && callbackValue.then) {
 return callbackValue.then(function() {
 return makePromise(value, true);
 });
 } else {
 return value;
 }
 }, function(rejection) {
 var callbackValue = callback();
 if (callbackValue && callbackValue.then) {
 return callbackValue.then(function() {
 return makePromise(rejection, false);
 });
 } else {
 return makePromise(rejection, false);
 }
 });
};

Another thing we can do is make a general handler for the finally callback, which we can use in
both the resolution and rejection branches since they are quite similar:

src/q.js
Promise.prototype.finally = function(callback) {
 return this.then(function(value) {
 return handleFinallyCallback(callback, value, true);
 }, function(rejection) {
 return handleFinallyCallback(callback, rejection, false);
 });
};

The helper function invokes the finally callback, and then returns a Promise for the original
resolution or rejection. That is, unless the finally callback itself rejects, in which case the returned
Promise returned always rejects:

src/q.js
function handleFinallyCallback(callback, value, resolved) {
 var callbackValue = callback();
 if (callbackValue && callbackValue.then) {
 return callbackValue.then(function() {
 return makePromise(value, resolved);
 });
 } else {
 return makePromise(value, resolved);
 }
}

So, in summary, whenever a finally returns a Promise, we wait for it to become resolved before
continuing. We ignore that Promise’s resolution in favor of the original one, except when it rejects,

Notifying Progress 22

556 Errata© Tero Parviainen 2016

in which case we pass the rejection forward in the chain.

Notifying Progress

Sometimes, when you are performing asynchronous work, you have some information available
of what kind of progress you’ve made or how much work there’s left. While you’re not ready to
resolve the Promise yet, you may want to send information downstream about what’s going on.

Angular’s $q has a built-in feature for sending this kind of information: The notify method on
Deferred. You can invoke it with some value, and that gets passed to anyone listening. You can
register to receive progress information by supplying a third callback argument to then:

test/q_spec.js
it('can report progress', function() {
 var d = $q.defer();
 var progressSpy = jasmine.createSpy();
 d.promise.then(null, null, progressSpy);

 d.notify('working...');
 $rootScope.$apply();

 expect(progressSpy).toHaveBeenCalledWith('working...');
});

The big difference between notify on the one hand and resolve and reject on the other is
that you can call notify several times, and your callback may also get invoked several times. This
is not the case with resolve and reject because a Promise never resolves or rejects more than
once.

test/q_spec.js
it('can report progress many times', function() {
 var d = $q.defer();
 var progressSpy = jasmine.createSpy();
 d.promise.then(null, null, progressSpy);

 d.notify('40%');
 $rootScope.$apply();

 d.notify('80%');
 d.notify('100%');
 $rootScope.$apply();

 expect(progressSpy.calls.count()).toBe(3);
});

How we can make this work is by first grabbing the progress callback in then. We’ll just add it as

Notifying Progress 22

557 Errata© Tero Parviainen 2016

the fourth item in the pending array:

src/q.js
Promise.prototype.then = function(onFulfilled, onRejected, onProgress) {
 var result = new Deferred();
 this.$$state.pending = this.$$state.pending || [];
 this.$$state.pending.push([result, onFulfilled, onRejected, onProgress]);
 if (this.$$state.status > 0) {
 scheduleProcessQueue(this.$$state);
 }
 return result.promise;
};

Now we can implement the notify method. It iterates over all the pending handlers and invokes
their progress callbacks. To comply with the general contract of promises, the callbacks don’t get
called immediately when notify is called, but asynchronously a bit later. To achieve this we again
use the $evalAsync function from the $rootScope:

src/q.js
Deferred.prototype.notify = function(progress) {
 var pending = this.promise.$$state.pending;
 if (pending && pending.length) {
 $rootScope.$evalAsync(function() {
 _.forEach(pending, function(handlers) {
 var progressBack = handlers[3];
 if (_.isFunction(progressBack)) {
 progressBack(progress);
 }
 });
 });
 }
};

The disposable nature of Promises does come into effect once we consider what happens after
Promise resolution. At that point, notify should not cause progress callbacks to be invoked any-
more:

test/q_spec.js
it('does not notify progress after being resolved', function() {
 var d = $q.defer();
 var progressSpy = jasmine.createSpy();
 d.promise.then(null, null, progressSpy);

 d.resolve('ok');
 d.notify('working...');
 $rootScope.$apply();

 expect(progressSpy).not.toHaveBeenCalled();
});

Notifying Progress 22

558 Errata© Tero Parviainen 2016

The same is true after rejection - notify does nothing at that point:

test/q_spec.js
it('does not notify progress after being rejected', function() {
 var d = $q.defer();
 var progressSpy = jasmine.createSpy();
 d.promise.then(null, null, progressSpy);

 d.reject('fail');
 d.notify('working...');
 $rootScope.$apply();

 expect(progressSpy).not.toHaveBeenCalled();
});

We can satisfy these test cases by adding an additional check to notify for the status of the asso-
ciated promise. If there’s any kind of truthy value in it, the notification is skipped:

src/q.js
Deferred.prototype.notify = function(progress) {
 var pending = this.promise.$$state.pending;
 if (pending && pending.length && !this.promise.$$state.status) {
 $rootScope.$evalAsync(function() {
 _.forEach(pending, function(handlers) {
 var progressBack = handlers[3];
 if (_.isFunction(progressBack)) {
 progressBack(progress);
 }
 });
 });
 }
};

When it comes to Promise chains, the notification system has some interesting properties. First of
all, notifications are propagated through chains. When you notify on one Deferred, any chained
Promises get the notification too, so you can do something like this:

test/q_spec.js
it('can notify progress through chain', function() {
 var d = $q.defer();
 var progressSpy = jasmine.createSpy();

 d.promise
 .then(_.noop)
 .catch(_.noop)
 .then(null, null, progressSpy);

 d.notify('working...');

Notifying Progress 22

559 Errata© Tero Parviainen 2016

 $rootScope.$apply();

 expect(progressSpy).toHaveBeenCalledWith('working...');
});

To implement this, we can make use of the fact that for each item in the array of pending han-
dlers, the chained Deferred will be stored as the first item. From notify we just call notify on
the chained Deferred:

src/q.js
Deferred.prototype.notify = function(progress) {
 var pending = this.promise.$$state.pending;
 if (pending && pending.length &&
 !this.promise.$$state.status) {
 $rootScope.$evalAsync(function() {
 _.forEach(pending, function(handlers) {
 var deferred = handlers[0];
 var progressBack = handlers[3];
 if (_.isFunction(progressBack)) {
 progressBack(progress);
 }
 deferred.notify(progress);
 });
 });
 }
};

Where it gets more interesting is when you actually have several progress callbacks along the
chain. What happens then is the return value of each progress handler becomes the notification
for the next. You can effectively transform the progress information as it passes through the chain:

test/q_spec.js
it('transforms progress through handlers', function() {
 var d = $q.defer();
 var progressSpy = jasmine.createSpy();

 d.promise
 .then(_.noop)
 .then(null, null, function(progress) {
 return '***' + progress + '***';
 })
 .catch(_.noop)
 .then(null, null, progressSpy);

 d.notify('working...');
 $rootScope.$apply();

 expect(progressSpy).toHaveBeenCalledWith('***working...***');
});

Notifying Progress 22

560 Errata© Tero Parviainen 2016

We can do this by simply notifying the next Deferred with the return value of the current progress
callback, if there is one:

src/q.js
Deferred.prototype.notify = function(progress) {
 var pending = this.promise.$$state.pending;
 if (pending && pending.length &&
 !this.promise.$$state.status) {
 $rootScope.$evalAsync(function() {
 _.forEach(pending, function(handlers) {
 var deferred = handlers[0];
 var progressBack = handlers[3];
 deferred.notify(_.isFunction(progressBack) ?
 progressBack(progress) :
 progress
);
 });
 });
 }
};

When one of the progress callbacks happens to throw an exception, we should not let that inter-
fere with other callbacks:

test/q_spec.js
it('recovers from progressback exceptions', function() {
 var d = $q.defer();
 var progressSpy = jasmine.createSpy();
 var fulfilledSpy = jasmine.createSpy();

 d.promise.then(null, null, function(progress) {
 throw 'fail';
 });
 d.promise.then(fulfilledSpy, null, progressSpy);

 d.notify('working...');
 d.resolve('ok');
 $rootScope.$apply();

 expect(progressSpy).toHaveBeenCalledWith('working...');
 expect(fulfilledSpy).toHaveBeenCalledWith('ok');
});

So we wrap the invocation of each promise callback into a try..catch. If an exception occurs,
we don’t do anything special apart from logging the error out:

src/q.js
Deferred.prototype.notify = function(progress) {
 var pending = this.promise.$$state.pending;

Notifying Progress 22

561 Errata© Tero Parviainen 2016

 if (pending && pending.length &&
 !this.promise.$$state.status) {
 $rootScope.$evalAsync(function() {
 _.forEach(pending, function(handlers) {
 var deferred = handlers[0];
 var progressBack = handlers[3];
 try {
 deferred.notify(_.isFunction(progressBack) ?
 progressBack(progress) :
 progress
);
 } catch (e) {
 console.log(e);
 }
 });
 });
 }
};

When one of these exceptions occurs, the notification stops propagating in the chain, since we never call
notify in the next Deferred. Other notification callbacks on the same Promise are still invoked, which is
what our test verifies.

Notifications also work over asynchronous Promise handlers. When one Promise is waiting for
another one to resolve, and the Promise we’re waiting for sends out a notification, the notification
is propagated to chained callbacks:

test/q_spec.js
it('can notify progress through promise returned from handler', function() {
 var d = $q.defer();

 var progressSpy = jasmine.createSpy();
 d.promise.then(null, null, progressSpy);

 var d2 = $q.defer();
 // Resolve original with nested promise
 d.resolve(d2.promise);
 // Notify on the nested promise
 d2.notify('working...');

 $rootScope.$apply();

 expect(progressSpy).toHaveBeenCalledWith('working...');
});

All we need to do for this one is to bind our notify method as a progress callback to the Promise,
like we are already doing with resolve and reject:

Immediate Rejection - $q.reject 22

562 Errata© Tero Parviainen 2016

src/q.js
Deferred.prototype.resolve = function(value) {
 if (this.promise.$$state.status) {
 return;
 }
 if (value && _.isFunction(value.then)) {
 value.then(
 _.bind(this.resolve, this),
 _.bind(this.reject, this),
 _.bind(this.notify, this)
);
 } else {
 this.promise.$$state.value = value;
 this.promise.$$state.status = 1;
 scheduleProcessQueue(this.promise.$$state);
 }
};

And finally, you can also attach a progress callback when using finally. You give it as the second
argument, after the finally handler itself:

test/q_spec.js
it('allows attaching progressback in finally', function() {
 var d = $q.defer();
 var progressSpy = jasmine.createSpy();
 d.promise.finally(null, progressSpy);

 d.notify('working...');
 $rootScope.$apply();

 expect(progressSpy).toHaveBeenCalledWith('working...');
});

The finally implementation can just pass this argument through to then:

src/q.js
Promise.prototype.finally = function(callback, progressBack) {
 return this.then(function(value) {
 return handleFinallyCallback(callback, value, true);
 }, function(rejection) {
 return handleFinallyCallback(callback, rejection, false);
 }, progressBack);
};

Immediate Rejection - $q.reject

Sometimes, when writing a function that’s expected to return a Promise, you know right away that
things are not going to work out. In this case you want to return a rejected Promise without actual-
ly doing anything asynchronously. This can certainly be done with our existing API:

Immediate Resolution - $q.when 22

563 Errata© Tero Parviainen 2016

var d = $q.defer();
d.reject('fail');
return d.promise;

This is a fairly verbose way to do it though, and as a pattern this is common enough that $q pro-
vides a helper method that does the same in a more succinct way. It’s called reject:

test/q_spec.js
it('can make an immediately rejected promise', function() {
 var fulfilledSpy = jasmine.createSpy();
 var rejectedSpy = jasmine.createSpy();

 var promise = $q.reject('fail');
 promise.then(fulfilledSpy, rejectedSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).not.toHaveBeenCalled();
 expect(rejectedSpy).toHaveBeenCalledWith('fail');
});

The implementation of reject does exactly what our example code did above:

src/q.js
function reject(rejection) {
 var d = defer();
 d.reject(rejection);
 return d.promise;
}

And now we just need to expose reject as part of $q’s public API:

src/q.js
return {
 defer: defer,
 reject: reject
};

Immediate Resolution - $q.when

Whereas $q.reject lets you easily create a rejected Promise, sometimes you need to create an
immediately resolved Promise. This is quite common in, for example, caching functions that may or may
not need to do something asynchronous but should predictably return a Promise in either case. For this
purpose, $q.when provides the mirror image of $q.reject:

test/q_spec.js

Immediate Resolution - $q.when 22

564 Errata© Tero Parviainen 2016

it('can make an immediately resolved promise', function() {
 var fulfilledSpy = jasmine.createSpy();
 var rejectedSpy = jasmine.createSpy();

 var promise = $q.when('ok');
 promise.then(fulfilledSpy, rejectedSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith('ok');
 expect(rejectedSpy).not.toHaveBeenCalled();
});

That’s not all that $q.when can do, however. It can also adopt another promise-like object and
turn it into a native Angular Promise. Here we have an ad-hoc “Promise” implementation - an
object with a then method. After giving it to $q.when we can treat it as any $q promise, which is
what it is at that point:

test/q_spec.js
it('can wrap a foreign promise', function() {
 var fulfilledSpy = jasmine.createSpy();
 var rejectedSpy = jasmine.createSpy();

 var promise = $q.when({
 then: function(handler) {
 $rootScope.$evalAsync(function() {
 handler('ok');
 });
 }
 });
 promise.then(fulfilledSpy, rejectedSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith('ok');
 expect(rejectedSpy).not.toHaveBeenCalled();
});

Here’s how we can implement when:

src/q.js
function when(value) {
 var d = defer();
 d.resolve(value);
 return d.promise;
}

And here’s its addition to $q’s public API:

Immediate Resolution - $q.when 22

565 Errata© Tero Parviainen 2016

src/q.js
return {
 defer: defer,
 reject: reject,
 when: when
};

Notice that we didn’t really have to do anything to make the adoption of foreign Promises work.
That’s because our then implementation already knows how to wrap a foreign Promise, and when
merely wraps then. However, wrapping foreign Promises with $q.when is such a common pat-
tern that it’s worth highlighting here.

An additional trick that $q.when has up its sleeve is that it can take the three supported promise
callbacks - resolved, rejected, and notify - directly as additional arguments. You can choose to
give those directly to when, instead of doing an additional then invocation on the Promise that it
returns:

test/q_spec.js
it('takes callbacks directly when wrapping', function() {
 var fulfilledSpy = jasmine.createSpy();
 var rejectedSpy = jasmine.createSpy();
 var progressSpy = jasmine.createSpy();

 var wrapped = $q.defer();
 $q.when(
 wrapped.promise,
 fulfilledSpy,
 rejectedSpy,
 progressSpy
);

 wrapped.notify('working...');
 wrapped.resolve('ok');
 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith('ok');
 expect(rejectedSpy).not.toHaveBeenCalled();
 expect(progressSpy).toHaveBeenCalledWith('working...');
});

This can be implemented with chaining. We’ll add a then handler to the promise right in when,
and return its chained promise to the caller:

src/q.js
function when(value, callback, errback, progressback) {
 var d = defer();
 d.resolve(value);
 return d.promise.then(callback, errback, progressback);
}

Working with Promise Collections - $q.all 22

566 Errata© Tero Parviainen 2016

The same exact functionality provided by $q.when is also made available under the name $q.re-
solve:

test/q_spec.js
it('makes an immediately resolved promise with resolve', function() {
 var fulfilledSpy = jasmine.createSpy();
 var rejectedSpy = jasmine.createSpy();

 var promise = $q.resolve('ok');
 promise.then(fulfilledSpy, rejectedSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith('ok');
 expect(rejectedSpy).not.toHaveBeenCalled();
});

This alias is added because ES2015 Promises have a Promise.resolve method with a similar purpose.

We can just make the when implementation available through resolve as well:

src/q.js
return {
 defer: defer,
 reject: reject,
 when: when,
 resolve: when
};

Working with Promise Collections - $q.all

When you have multiple asynchronous tasks to do, treating them as collections of Promises can
be really useful. Since Promises are just regular JavaScript objects, you can easily do that with any
functions and libraries that produce, consume, and transform collections.

However, sometimes it’s useful to have collection processing methods that are Promise-aware, and
that can combine and process the asynchronous operations in them. There are libraries that spe-
cialize in this, but AngularJS also ships with one built-in method that deals with Promise collec-
tions: $q.all.

The $q.all method takes a collection of Promises as its input. It returns a single Promise that
resolves to an array of results. The resulting array has an item for each of the Promises in the
argument array. This makes $q.all a very useful tool for waiting on a number of simultaneous
asynchronous tasks to finish:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/resolve
https://www.npmjs.com/package/async-q
https://www.npmjs.com/package/async-q

Working with Promise Collections - $q.all 22

567 Errata© Tero Parviainen 2016

test/q_spec.js
describe('all', function() {

 it('can resolve an array of promises to array of results', function() {
 var promise = $q.all([$q.when(1), $q.when(2), $q.when(3)]);
 var fulfilledSpy = jasmine.createSpy();
 promise.then(fulfilledSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith([1, 2, 3]);
 });

});

This is a new function that we’ll expose as a public method of $q:
src/q.js
function all(promises) {

}

return {
 defer: defer,
 reject: reject,
 when: when,
 resolve: when,
 all: all
};

The function creates an array of results, and adds a callback to each of the given Promises. Each
callback populates the result array in the corresponding index:

src/q.js
function all(promises) {
 var results = [];
 _.forEach(promises, function(promise, index) {
 promise.then(function(value) {
 results[index] = value;
 });
 });
}

The function also maintains an integer counter that’s incremented each time a Promise callback is
added, and decremented each time a callback is invoked:

src/q.js
function all(promises) {
 var results = [];
 var counter = 0;

Working with Promise Collections - $q.all 22

568 Errata© Tero Parviainen 2016

 _.forEach(promises, function(promise, index) {
 counter++;
 promise.then(function(value) {
 results[index] = value;
 counter--;
 });
 });
}

What this means is that when the counter reaches zero in one of the callback handlers, all of the
Promises will have been resolved. If we just construct a Deferred that is resolved to the result array
at that point, we’ll have a working $q.all implementation:

src/q.js
function all(promises) {
 var results = [];
 var counter = 0;
 var d = defer();
 _.forEach(promises, function(promise, index) {
 counter++;
 promise.then(function(value) {
 results[index] = value;
 counter--;
 if (!counter) {
 d.resolve(results);
 }
 });
 });
 return d.promise;
}

$q.all works not only with arrays, but also with objects. If you give it an object where values are
Promises, it returns a Promise that resolves to an object with the same keys. In the result object the
values are the resolutions of the original Promises:

test/q_spec.js
it('can resolve an object of promises to an object of results', function() {
 var promise = $q.all({a: $q.when(1), b: $q.when(2)});
 var fulfilledSpy = jasmine.createSpy();
 promise.then(fulfilledSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith({a: 1, b: 2});
});

When initializing the results collection, we should check if the incoming collection is an array or
an object, and make the results collection match the type. The rest of our code will just work, since
_.forEach works uniformly for arrays and objects:

Working with Promise Collections - $q.all 22

569 Errata© Tero Parviainen 2016

src/q.js
function all(promises) {
 var results = _.isArray(promises) ? [] : {};
 var counter = 0;
 var d = defer();
 _.forEach(promises, function(promise, index) {
 counter++;
 promise.then(function(value) {
 results[index] = value;
 counter--;
 if (!counter) {
 d.resolve(results);
 }
 });
 });
 return d.promise;
}

We do have one problem with our current implementation of $q.all, which is that if the in-
coming array happens to be empty, the resulting Promise never resolves. A user might expect it to
resolve to an empty array instead:

test/q_spec.js
it('resolves an empty array of promises immediately', function() {
 var promise = $q.all([]);
 var fulfilledSpy = jasmine.createSpy();
 promise.then(fulfilledSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith([]);
});

The same holds for empty objects. If we give one to $q.all, we never hear anything back:

test/q_spec.js
it('resolves an empty object of promises immediately', function() {
 var promise = $q.all({});
 var fulfilledSpy = jasmine.createSpy();
 promise.then(fulfilledSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith({});
});

So empty collections need some special care. What we can do is add an additional check right af-
ter looping over the collection of Promises: If the counter is already zero there was nothing to do,

Working with Promise Collections - $q.all 22

570 Errata© Tero Parviainen 2016

and we can resolve immediately.

src/q.js
function all(promises) {
 var results = _.isArray(promises) ? [] : {};
 var counter = 0;
 var d = defer();
 _.forEach(promises, function(promise, index) {
 counter++;
 promise.then(function(value) {
 results[index] = value;
 counter--;
 if (!counter) {
 d.resolve(results);
 }
 });
 });
 if (!counter) {
 d.resolve(results);
 }
 return d.promise;
}

As we have seen, not everything always goes as we plan it, and Promises may be rejected instead
of being resolved. What should $q.all do when one or more of the Promises given to it are re-
jected?

What it does is reject the returned Promise. You effectively lose the results of all the Promises if
one of them rejects:

test/q_spec.js
it('rejects when any of the promises rejects', function() {
 var promise = $q.all([$q.when(1), $q.when(2), $q.reject('fail')]);
 var fulfilledSpy = jasmine.createSpy();
 var rejectedSpy = jasmine.createSpy();
 promise.then(fulfilledSpy, rejectedSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).not.toHaveBeenCalled();
 expect(rejectedSpy).toHaveBeenCalledWith('fail');
});

We can do this by supplying a failure callback to each of our Promises. The moment one of those
failure callbacks gets invoked, we immediately reject our Deferred. Any further incoming results
will simply be ignored:

src/q.js
function all(promises) {

Working with Promise Collections - $q.all 22

571 Errata© Tero Parviainen 2016

 var results = _.isArray(promises) ? [] : {};
 var counter = 0;
 var d = defer();
 _.forEach(promises, function(promise, index) {
 counter++;
 promise.then(function(value) {
 results[index] = value;
 counter--;
 if (!counter) {
 d.resolve(results);
 }
 }, function(rejection) {
 d.reject(rejection);
 });
 });
 if (!counter) {
 d.resolve(results);
 }
 return d.promise;
}

We’re almost done with $q.all, but there’s just one more little feature it has: Not every item in
the collection given to $q.all actually has to be a Promise. Some or even all of the values in the
collection may be just plain values, and they’ll end up in the resulting collection untouched:

test/q_spec.js
it('wraps non-promises in the input collection', function() {
 var promise = $q.all([$q.when(1), 2, 3]);
 var fulfilledSpy = jasmine.createSpy();
 promise.then(fulfilledSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith([1, 2, 3]);
});

We can implement this by simply passing each value to when before attaching the callback to it.
Recall that when can take either a plain value or a thenable object, and always returns a Promise:

src/q.js
function all(promises) {
 var results = _.isArray(promises) ? [] : {};
 var counter = 0;
 var d = defer();
 _.forEach(promises, function(promise, index) {
 counter++;
 when(promise).then(function(value) {
 results[index] = value;
 counter--;
 if (!counter) {

ES2015-Style Promises 22

572 Errata© Tero Parviainen 2016

 d.resolve(results);
 }
 }, function(rejection) {
 d.reject(rejection);
 });
 });
 if (!counter) {
 d.resolve(results);
 }
 return d.promise;
}

And that’s $q.all! It’s not only useful in itself, but also serves as an example of how easy it is to
compose Promises. Other similar Promise collection utility methods, like filter or reduce, could
easily be built in a similar way.

ES2015-Style Promises

As discussed at the beginning of the chapter, the ECMAScript 2015 edition of the the JavaScript
language - comes with a built-in Promise implementation. Our Promise implementation in $q
already interoperates with the standard implementation nicely, because it can chain and compose
any Promise-like objects that have a then method, and ES2015 Promises have one.

If you want to go a little bit further and use a style of creating Promises that’s closer to the stan-
dard implementation, $q supports that as well. The main difference to what we’ve seen earlier
is that ES2015 standard Promises do not have Deferreds as an explicit concept. Instead, you just
create a new Promise, giving it a function as an argument. The function receives two callbacks,
resolve and reject, that you can call when you’re ready to resolve or reject, respectively.

With ES6 promises you replace this:

var deferred = Q.defer();
doAsyncStuff(function(err) {
 if (err) {
 deferred.reject(err);
 } else {
 deferred.resolve();
 }
});
return deferred.promise;

With this:

return new Promise(function(resolve, reject) {
 doAsyncStuff(function(err) {
 if (err) {
 reject(err);

ES2015-Style Promises 22

573 Errata© Tero Parviainen 2016

 } else {
 resolve();
 }
 });
});

So the Deferred object itself is replaced with these nested callbacks, leaving Promise as the only explicit
API concept.

Let’s see how $q can support a similar kind of API. First of all, $q is actually a function itself:

test/q_spec.js
describe('ES2015 style', function() {

 it('is a function', function() {
 expect($q instanceof Function).toBe(true);
 });

});

Let’s create a function called $Q inside our provider, and then just attach all the methods we’ve
seen so far as attributes of that function:

src/q.js
var $Q = function Q() {

};

return _.extend($Q, {
 defer: defer,
 reject: reject,
 when: when,
 resolve: when,
 all: all
});

Like an ES2015 Promise constructor, this new function expects to get a function as an argument.
We’ll call it the resolver function, and it is mandatory:

test/q_spec.js
it('expects a function as an argument', function() {
 expect($q).toThrow();
 $q(_.noop); // Just checking that this doesn't throw
});

src/q.js
var $Q = function Q(resolver) {

ES2015-Style Promises 22

574 Errata© Tero Parviainen 2016

 if (!_.isFunction(resolver)) {
 throw 'Expected function, got ' + resolver;
 }
};

What you get back from this function is a Promise:

test/q_spec.js
it('returns a promise', function() {
 expect($q(_.noop)).toBeDefined();
 expect($q(_.noop).then).toBeDefined();
});

Internally we can implement this with our existing defer function:

src/q.js
var $Q = function Q(resolver) {
 if (!_.isFunction(resolver)) {
 throw 'Expected function, got ' + resolver;
 }
 var d = defer();

 return d.promise;
};

Just like in the ES2015 Promise example we saw earlier, the resolver function gets invoked with a
resolve callback argument. When that callback is invoked, the Promise becomes resolved:

test/q_spec.js
it('calls function with a resolve function', function() {
 var fulfilledSpy = jasmine.createSpy();

 $q(function(resolve) {
 resolve('ok');
 }).then(fulfilledSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).toHaveBeenCalledWith('ok');
});

We can actually implement that resolve function by just passing in the resolve method of our
Deferred - as long as we bind its this value correctly before passing it in:

src/q.js
var $Q = function Q(resolver) {
 if (!_.isFunction(resolver)) {
 throw 'Expected function, got ' + resolver;

Promises Without $digest Integration: $$q 22

575 Errata© Tero Parviainen 2016

 }
 var d = defer();
 resolver(_.bind(d.resolve, d));
 return d.promise;
};

With reject we have a similar situation: It is passed in as the second argument to the resolver
function. If it is invoked by the resolver, the Promise gets rejected:

test/q_spec.js
it('calls function with a reject function', function() {
 var fulfilledSpy = jasmine.createSpy();
 var rejectedSpy = jasmine.createSpy();

 $q(function(resolve, reject) {
 reject('fail');
 }).then(fulfilledSpy, rejectedSpy);

 $rootScope.$apply();

 expect(fulfilledSpy).not.toHaveBeenCalled();
 expect(rejectedSpy).toHaveBeenCalledWith('fail');
});

We implement the rejection callback exactly like the resolve callback: It is the reject method of
the Deferred, pre-bound:

src/q.js
var $Q = function Q(resolver) {
 if (!_.isFunction(resolver)) {
 throw 'Expected function, got ' + resolver;
 }
 var d = defer();
 resolver(
 _.bind(d.resolve, d),
 _.bind(d.reject, d)
);
 return d.promise;
};

And there we have an ES2015-esque API for $q! It is just a thin veneer on top of the Deferred
implementation built in this chapter, but it is there for you to use if you prefer an API that’s closer to
standard ES2015 Promises.

Promises Without $digest Integration: $$q

We’ll end the chapter with an interesting little-known feature Angular ships with: The $$q service.
This is a Promise implementation, like $q, but instead of integrating resolutions to the $root-

Promises Without $digest Integration: $$q 22

576 Errata© Tero Parviainen 2016

Scope digest, it resolves things with a browser timeout and doesn’t involve a digest at all. In that
sense it is much closer to non-Angular Promise implementations than $q.

As the double-dollar prefix in the name implies, $$q is a private service in Angular, and using it comes
with the usual warnings: You take the risk of your app breaking when you upgrade Angular, as $$q may be
removed or changed without much notice in future versions.

$$q is used by Angular internally by the $timeout and $interval services when you invoke
them with the skipApply flag. It is also used by ngAnimate for some of its async work.

Before we can start testing $$q, we should get it injected into our $q test suite, so let’s get it from
the injector. This will also temporarily break a whole lot of test cases:

test/q_spec.js
var $q, $$q, $rootScope;

beforeEach(function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 $q = injector.get('$q');
 $$q = injector.get('$$q');
 $rootScope = injector.get('$rootScope');
});

To restore those test cases, let’s first make a provider for $$q in the src/q.js file and modify the
file’s exports to contain both $QProvider and $$QProvider:

src/q.js
function $$QProvider() {
 this.$get = function() {

 };
}

module.exports = {
 $QProvider: $QProvider,
 $$QProvider: $$QProvider
};

Then we can publish $$q in the ng module:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = window.angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));

Promises Without $digest Integration: $$q 22

577 Errata© Tero Parviainen 2016

 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
}

And now we’re ready to add our first test cases for $$q. The first thing we’ll do is test that you can
create Deferreds and Promises with it, just like you can with $q, but that they do not resolve when
you run a digest:

test/q_spec.js
describe('$$q', function() {

 it('uses deferreds that do not resolve at digest', function() {
 var d = $$q.defer();
 var fulfilledSpy = jasmine.createSpy();
 d.promise.then(fulfilledSpy);
 d.resolve('ok');

 $rootScope.$apply();

 expect(fulfilledSpy).not.toHaveBeenCalled();
 });

});

Instead, those Promises get resolved when some time has passed. We can test this quite easily by
using the fake clock feature that comes with Jasmine. It lets us essentially move the clock forward
and see what happens:

test/q_spec.js
describe('$$q', function() {

 beforeEach(function() {
 jasmine.clock().install();
 });
 afterEach(function() {
 jasmine.clock().uninstall();
 });

 it('uses deferreds that do not resolve at digest', function() {
 var d = $$q.defer();
 var fulfilledSpy = jasmine.createSpy();
 d.promise.then(fulfilledSpy);
 d.resolve('ok');

 $rootScope.$apply();

 expect(fulfilledSpy).not.toHaveBeenCalled();
 });

http://jasmine.github.io/2.0/introduction.html#section-Mocking_the_JavaScript_Timeout_Functions

 22

578 Errata© Tero Parviainen 2016

 it('uses deferreds that resolve later', function() {
 var d = $$q.defer();
 var fulfilledSpy = jasmine.createSpy();
 d.promise.then(fulfilledSpy);
 d.resolve('ok');

 jasmine.clock().tick(1);

 expect(fulfilledSpy).toHaveBeenCalledWith('ok');
 });

});

Here we forward the clock by one millisecond and see that we have a resolution afterwards.

Also, an important performance-related characteristic of $$q is that when it does resolve its Prom-
ises, it does not cause a digest to run:

test/q_spec.js
it('does not invoke digest', function() {
 var d = $$q.defer();
 d.promise.then(_.noop);
 d.resolve('ok');

 var watchSpy = jasmine.createSpy();
 $rootScope.$watch(watchSpy);

 jasmine.clock().tick(1);

 expect(watchSpy).not.toHaveBeenCalled();
});

So, how do we create $$q? Do we need to reimplement everything we did for $q to have this
alternative implementation? The answer is no, we do not. If you think about it, the only difference
between $q and $$q is the way in which the resolution of Deferreds is postponed: $q does it with
$evalAsync, and for $$q we should use setTimeout.

So, what we’ll do is wrap everything that we currently have inside $QProvider.$get into a
helper function, called qFactory. We can then give that function the “postponing strategy” as an
argument. Here’s how our updated $QProvider and $$QProvider implementations should look:

src/q.js
function $QProvider() {
 this.$get = ['$rootScope', function($rootScope) {
 return qFactory(function(callback) {
 $rootScope.$evalAsync(callback);
 });
 }];

 22

579 Errata© Tero Parviainen 2016

}

function $$QProvider() {
 this.$get = function() {
 return qFactory(function(callback) {
 setTimeout(callback, 0);
 });
 };
}

All of our existing $q setup code now goes into qFactory, which, instead of using $evalAsync,
uses the supplied “call later” function. Here’s the final, full source code of q.js:

src/q.js
'use strict';

var _ = require('lodash');

function qFactory(callLater) {

 function processQueue(state) {
 var pending = state.pending;
 state.pending = undefined;
 _.forEach(pending, function(handlers) {
 var deferred = handlers[0];
 var fn = handlers[state.status];
 try {
 if (_.isFunction(fn)) {
 deferred.resolve(fn(state.value));
 } else if (state.status === 1) {
 deferred.resolve(state.value);
 } else {
 deferred.reject(state.value);
 }
 } catch (e) {
 deferred.reject(e);
 }
 });
 }

 function scheduleProcessQueue(state) {
 callLater(function() {
 processQueue(state);
 });
 }

 function makePromise(value, resolved) {
 var d = new Deferred();
 if (resolved) {
 d.resolve(value);
 } else {

 22

580 Errata© Tero Parviainen 2016

 d.reject(value);
 }
 return d.promise;
 }

 function handleFinallyCallback(callback, value, resolved) {
 var callbackValue = callback();
 if (callbackValue && callbackValue.then) {
 return callbackValue.then(function() {
 return makePromise(value, resolved);
 });
 } else {
 return makePromise(value, resolved);
 }
 }

 function Promise() {
 this.$$state = {};
 }
 Promise.prototype.then = function(onFulfilled, onRejected, onProgress) {
 var result = new Deferred();
 this.$$state.pending = this.$$state.pending || [];
 this.$$state.pending.push([result, onFulfilled, onRejected, onProgress]);
 if (this.$$state.status > 0) {
 scheduleProcessQueue(this.$$state);
 }
 return result.promise;
 };
 Promise.prototype.catch = function(onRejected) {
 return this.then(null, onRejected);
 };
 Promise.prototype.finally = function(callback, progressBack) {
 return this.then(function(value) {
 return handleFinallyCallback(callback, value, true);
 }, function(rejection) {
 return handleFinallyCallback(callback, rejection, false);
 }, progressBack);
 };

 function Deferred() {
 this.promise = new Promise();
 }
 Deferred.prototype.resolve = function(value) {
 if (this.promise.$$state.status) {
 return;
 }
 if (value && _.isFunction(value.then)) {
 value.then(
 _.bind(this.resolve, this),
 _.bind(this.reject, this),
 _.bind(this.notify, this)
);
 } else {

 22

581 Errata© Tero Parviainen 2016

 this.promise.$$state.value = value;
 this.promise.$$state.status = 1;
 scheduleProcessQueue(this.promise.$$state);
 }
 };
 Deferred.prototype.reject = function(reason) {
 if (this.promise.$$state.status) {
 return;
 }
 this.promise.$$state.value = reason;
 this.promise.$$state.status = 2;
 scheduleProcessQueue(this.promise.$$state);
 };
 Deferred.prototype.notify = function(progress) {
 var pending = this.promise.$$state.pending;
 if (pending && pending.length &&
 !this.promise.$$state.status) {
 callLater(function() {
 _.forEach(pending, function(handlers) {
 var deferred = handlers[0];
 var progressBack = handlers[3];
 try {
 deferred.notify(_.isFunction(progressBack) ?
 progressBack(progress) :
 progress
);
 } catch (e) {
 console.log(e);
 }
 });
 });
 }
 };

 function defer() {
 return new Deferred();
 }

 function reject(rejection) {
 var d = defer();
 d.reject(rejection);
 return d.promise;
 }

 function when(value, callback, errback, progressback) {
 var d = defer();
 d.resolve(value);
 return d.promise.then(callback, errback, progressback);
 }

 function all(promises) {
 var results = _.isArray(promises) ? [] : {};
 var counter = 0;

 22

582 Errata© Tero Parviainen 2016

 var d = defer();
 _.forEach(promises, function(promise, index) {
 counter++;
 when(promise).then(function(value) {
 results[index] = value;
 counter--;
 if (!counter) {
 d.resolve(results);
 }
 }, function(rejection) {
 d.reject(rejection);
 });
 });
 if (!counter) {
 d.resolve(results);
 }
 return d.promise;
 }

 var $Q = function Q(resolver) {
 if (!_.isFunction(resolver)) {
 throw 'Expected function, got ' + resolver;
 }
 var d = defer();
 resolver(
 _.bind(d.resolve, d),
 _.bind(d.reject, d)
);
 return d.promise;
 };

 return _.extend($Q, {
 defer: defer,
 reject: reject,
 when: when,
 resolve: when,
 all: all
 });

}

function $QProvider() {
 this.$get = ['$rootScope', function($rootScope) {
 return qFactory(function(callback) {
 $rootScope.$evalAsync(callback);
 });
 }];
}

function $$QProvider() {
 this.$get = function() {
 return qFactory(function(callback) {
 setTimeout(callback, 0);

Summary 22

583 Errata© Tero Parviainen 2016

 });
 };
}

module.exports = {
 $QProvider: $QProvider,
 $$QProvider: $$QProvider
};

Simple function composition gets us a lot of mileage here! We essentially get two services for the
price of one.

Summary

$q is a relatively simple service, at least compared to some of the other Angular components we
build in this book. But since asynchronous programming itself can be tricky, using $q is not always
as straightforward as one might like, and reasoning about workflows and failure modes can be
difficult.

Since you now know exactly how $q works, you are well-equipped to use everything it has to offer
to make working with asynchrony much less painful than it used to be.

In this chapter you have learned:

• What kinds of problems Promises are designed to solve.
• About some of the existing Promise implementations for JavaScript.
• How AngularJS Promises compare to some of the other existing implementations.
• That Promises are made available in Angular by the $q and $$q services.
• That Promises are always paired with Deferreds, and whereas a Promise is accessed by the

consumer of an asynchronously produced value, a Deferred is accessed by its producer.
• That when a Deferred is resolved, the associated Promise callbacks get invoked with $eva-

lAsync.
• That each Promise is resolved at most once.
• That each Promise callback is invoked at most once.
• How a Promise callback is invoked even when registered after the Promise was already re-

solved.
• How Promises can be either resolved or rejected.
• That rejections can be caught by rejection errbacks.
• That you can execute resource cleanup code in finally callbacks, which are callbacks that are

invoked for both rejected and resolved Promises.
• How you can chain several then, catch, and finally calls together, and each call creates a

new Promise chained to the previous one.
• How even the last (or only) then in your Promise chain creates another Promise, but that it is

simply ignored.
• How an exception thrown in a Promise handler rejects the next Promise in the chain.

Summary 22

584 Errata© Tero Parviainen 2016

• How an exception caught by a rejection errback resolves the next Promise in the chain.
• That a Promise callback may return another Promise, and how that Promise’s eventual resolu-

tion or rejection is linked to the Promise chain.
• That finally handlers can also return Promises and they are resolved before continuing with

the chain, but that the values they resolve to are ignored.
• How Deferreds can notify about progress, and how progress callbacks are registered.
• That, unlike all other Promise callbacks, progress callbacks may get called several times.
• How progress notification messages can be transformed in a Promise chain.
• How an immediately rejected Promise can be created with $q.reject.
• How an immediately resolved Promise can be created with $q.when.
• How $q.when can also be used to adopt a foreign Promise.
• How an array or object of Promises can be resolved to an array or object of values with

$q.all.
• That $q.all is rejected if even one of its argument Promises is rejected.
• That not all of the items in the collection given to $q.all have to be Promises.
• How $q also supports an alternative ES2015-style Promise API.

 23

585 Errata© Tero Parviainen 2016

Chapter 15

HTTP

What We Will Skip 23

586 Errata© Tero Parviainen 2016

Before moving on to the final major theme of the book - the directive system - there’s one more
crucial piece of infrastructure we need to have, and that is the $http service. This is the service
that handles all HTTP communication in Angular applications.

Most Angular applications use $http either directly or indirectly through ngResource or other
API wrappers. Angular also uses $http internally to load things like HTML templates, as we will
see when we get into the directive implementation.

In this chapter we’ll see what $http does and how it uses core services like $rootScope and $q
to provide its features.

Download the code for the starting point of this chapter.

What We Will Skip

We’re going to omit a few things that are not central to our discussion:

• The integration between $http and the $cache service
• The cross-site request forgery support in $http
• The JSONP support in $http

If you are interested in any of these features, picking them up from the AngularJS source code
should be straightforward once you have gone through this chapter and learned how the $http
service is constructed.

The Providers

Just as we did with $q, we’ll begin by setting up a Provider that will make $http available. In this
instance, we will actually set up two providers, since the work related to HTTP communication
is divided among two services in AngularJS: There’s $http itself, and there’s something called
$httpBackend.

The division of labor between these two services is such that $httpBackend handles the low-lev-
el XMLHttpRequest integration, while $http handles the high-level, user-facing features. From
an application developer’s point of view, this division does not come up that often since most of
the time $http is the only service used directly, while $httpBackend is only used internally by
$http.

The distinction does become useful when you want to use some alternative implementation for
the HTTP transport. For example, the ngMock module overrides $httpBackend to replace actual
HTTP calls with fake HTTP calls for testing purposes.

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter14-promises

The Providers 23

587 Errata© Tero Parviainen 2016

In any case, we can expect both of these services to be available in our injector through the ng
module:
test/angular_public_spec.js
it('sets up $http and $httpBackend', function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 expect(injector.has('$http')).toBe(true);
 expect(injector.has('$httpBackend')).toBe(true);
});

The two services will live in two separate files. $httpBackend will be in http_backend.js,
where it is created by a provider:

src/http_backend.js
'use strict';

function $HttpBackendProvider() {

 this.$get = function() {

 };

}

module.exports = $HttpBackendProvider;

The $http service itself is in http.js, and is also created by a provider. This provider’s $get
method has a dependency to the $httpBackend, though we won’t actually use it just yet:

src/http.js
'use strict';

function $HttpProvider() {

 this.$get = ['$httpBackend', function($httpBackend) {

 }];

}

module.exports = $HttpProvider;

Now we can register both of these providers into the ng module:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

Sending HTTP Requests 23

588 Errata© Tero Parviainen 2016

 var ngModule = angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
 ngModule.provider('$httpBackend', require('./http_backend'));
 ngModule.provider('$http', require('./http'));

}

Sending HTTP Requests

With the providers out of the way, we can start thinking about what $http is actually supposed to
do. The core of it is to send HTTP requests to remote servers and give back the responses. So let’s
take that as our goal for this section.

First of all, what the $http service should be is a function one can call to make a request. Let’s
add a test case for that, into a new test file http_spec.js:

test/http_spec.js
'use strict';

var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('$http', function() {

 var $http;

 beforeEach(function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 $http = injector.get('$http');
 });

 it('is a function', function() {
 expect($http instanceof Function).toBe(true);
 });

});

The $http function should make an HTTP request and return a response. But since HTTP re-
quests are asynchronous, the function can’t just return a response directly. It needs to return a
Promise for a response instead:

test/http_spec.js
it('returns a Promise', function() {

Sending HTTP Requests 23

589 Errata© Tero Parviainen 2016

 var result = $http({});
 expect(result).toBeDefined();
 expect(result.then).toBeDefined();
});

We can make these first two test cases pass by just having $httpProvider.$get return a func-
tion that creates a Deferred and then returns its Promise. We need to inject $q in order to do that:

src/http.js
this.$get = ['$httpBackend', '$q', function($httpBackend, $q) {

 return function $http() {
 var deferred = $q.defer();
 return deferred.promise;
 };

}];

So that’s how $http receives a request and eventually returns a response, but what should happen
in between? We should make the actual HTTP request here, and for that we’re going to use the
standard XMLHttpRequest object that all browsers provide.

We will want to unit test all of this too, but we don’t want to be making any actual network re-
quests from our unit tests, since that would necessitate having a server. Here’s where the SinonJS
library we installed back in Chapter 0 becomes handy. Sinon ships with a fake XMLHttpRequest
implementation that can temporarily replace the browser’s built-in XMLHttpRequest. It can be
used to introspect what requests have been made and to return fake responses without ever leaving
the browser’s JavaScript execution environment.

To enable Sinon’s fake XMLHttpRequest, we need to set it up in a beforeEach function, and then
remove it in an afterEach function so that we have a fresh environment after each test:

test/http_spec.js
'use strict';

var sinon = require('sinon');
var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('$http', function() {

 var $http;
 var xhr;

 beforeEach(function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 $http = injector.get('$http');

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
http://sinonjs.org/

Sending HTTP Requests 23

590 Errata© Tero Parviainen 2016

 });

 beforeEach(function() {
 xhr = sinon.useFakeXMLHttpRequest();
 });
 afterEach(function() {
 xhr.restore();
 });

 // ...

});

Let’s also make it easier for ourselves to check what requests have been made. For each request
sent, Sinon will call the onCreate function of the fake XHR. If we attach a function to onCreate
we can collect all of those requests into an array:

test/http_spec.js
describe('$http', function() {

 var $http;
 var xhr, requests;

 beforeEach(function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 $http = injector.get('$http');
 });

 beforeEach(function() {
 xhr = sinon.useFakeXMLHttpRequest();
 requests = [];
 xhr.onCreate = function(req) {
 requests.push(req);
 };
 });
 afterEach(function() {
 xhr.restore();
 });

 // ...

});

Now we’re ready to create our first test for request sending. If we call $http with an object that
says “send a POST request with data hello to http://teropa.info”, we can check that an asyn-
chronous XMLHttpRequest with those parameters is indeed sent:

test/http_spec.js
it('makes an XMLHttpRequest to given URL', function() {

Sending HTTP Requests 23

591 Errata© Tero Parviainen 2016

 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: 'hello'
 });
 expect(requests.length).toBe(1);
 expect(requests[0].method).toBe('POST');
 expect(requests[0].url).toBe('http://teropa.info');
 expect(requests[0].async).toBe(true);
 expect(requests[0].requestBody).toBe('hello');
});

As discussed earlier, $http will delegate the actual network communication tasks to the $http-
Backend service, so that is where the XMLHttpRequest will actually be created. Let’s just assume
that $httpBackend is a function, and call it with the method, URL, and data arguments un-
packed from the request config:

src/http.js
return function $http(config) {
 var deferred = $q.defer();
 $httpBackend(config.method, config.url, config.data);
 return deferred.promise;
};

In $httpBackend we can now make a standard XMLHttpRequest, open it with the arguments
given, and send the data:

src/http_backend.js
this.$get = function() {
 return function(method, url, post) {
 var xhr = new window.XMLHttpRequest();
 xhr.open(method, url, true);
 xhr.send(post || null);
 };
};

The three arguments to xhr.open are the HTTP method to use, the URL to send to, and whether
the request is asynchronous (which it always is in AngularJS).

The one argument to xhr.send is the data to send. Not all requests have data, and when there
isn’t any we send an explicit null value.

This satisfies our current test suite, but there’s one crucial step we’re missing: The Promise we are
returning is never actually getting resolved, because we haven’t connected it to the XMLHttpRe-
quest in any way. That Promise should be resolved with a response object that gives the user access
to the HTTP response status and data, as well as the original request configuration:

Sending HTTP Requests 23

592 Errata© Tero Parviainen 2016

test/http_spec.js
it('resolves promise when XHR result received', function() {
 var requestConfig = {
 method: 'GET',
 url: 'http://teropa.info'
 };

 var response;
 $http(requestConfig).then(function(r) {
 response = r;
 });

 requests[0].respond(200, {}, 'Hello');

 expect(response).toBeDefined();
 expect(response.status).toBe(200);
 expect(response.statusText).toBe('OK');
 expect(response.data).toBe('Hello');
 expect(response.config.url).toEqual('http://teropa.info');
});

In tests we can use Sinon’s respond method to respond to a fake XMLHttpRequest. The three
arguments given to respond are the HTTP status code, the HTTP response headers, and the re-
sponse body.

The way this works between $http and $httpBackend is that $httpBackend does not use any
Deferreds or Promises. Instead, it receives a traditional callback function. It then attaches an on-
load handler to the XMLHttpRequest, and invokes the callback when that handler fires:

src/http_backend.js
this.$get = function() {
 return function(method, url, post, callback) {
 var xhr = new window.XMLHttpRequest();
 xhr.open(method, url, true);
 xhr.send(post || null);
 xhr.onload = function() {
 var response = ('response' in xhr) ? xhr.response :
 xhr.responseText;
 var statusText = xhr.statusText || '';
 callback(xhr.status, response, statusText);
 };
 };
};

Inside onload, we try to get the response body primarily from xhr.response and secondarily
from xhr.responseText. Some browsers support one, some the other, so we need to try both.
We also get the numeric and textual status from the response, and then pass everything we have to
the callback function.

Sending HTTP Requests 23

593 Errata© Tero Parviainen 2016

Back in $http we can now tie all of this together. We need to construct that callback, which we’ll
call done. When it is invoked, it resolves the Promise constructed earlier. The resolution value is
the response object - an object that bundles all the information we have about the response:

src/http.js
return function $http(config) {
 var deferred = $q.defer();

 function done(status, response, statusText) {
 deferred.resolve({
 status: status,
 data: response,
 statusText: statusText,
 config: config
 });
 }

 $httpBackend(config.method, config.url, config.data, done);
 return deferred.promise;
};

As far as our test goes, this isn’t quite enough yet though. The problem is related to the Promise
resolution: You may recall from the previous chapter that when a Promise is resolved, callbacks
are not executed immediately, but only during the next digest.

What we should do in $http is to kick off a digest if one isn’t already running. We can do this using
the $apply function of $rootScope:

src/http.js
this.$get = ['$httpBackend', '$q', '$rootScope',
 function($httpBackend, $q, $rootScope) {

 return function $http(config) {
 var deferred = $q.defer();

 function done(status, response, statusText) {
 deferred.resolve({
 status: status,
 data: response,
 statusText: statusText,
 config: config
 });
 if (!$rootScope.$$phase) {
 $rootScope.$apply();
 }
 }

 $httpBackend(config.method, config.url, config.data, done);
 return deferred.promise;

Sending HTTP Requests 23

594 Errata© Tero Parviainen 2016

 };

}];

And now our test is passing!

This is one of the reasons it’s nice to use $http when doing Ajax in Angular: You don’t need to
care about calling $apply because the framework does it for you.

Another reason is related to what happens when things go wrong, and with HTTP requests, it is
quite common that things go wrong. Servers may return HTTP statuses that indicate failures, or
fail to respond at all. In these cases, the built-in error management that we have in Promises is very
useful. We can just reject the Promise instead of resolving it. This is the case, for example, when a
server responds with 401:

test/http_spec.js
it('rejects promise when XHR result received with error status', function() {
 var requestConfig = {
 method: 'GET',
 url: 'http://teropa.info'
 };

 var response;
 $http(requestConfig).catch(function(r) {
 response = r;
 });

 requests[0].respond(401, {}, 'Fail');

 expect(response).toBeDefined();
 expect(response.status).toBe(401);
 expect(response.statusText).toBe('Unauthorized');
 expect(response.data).toBe('Fail');
 expect(response.config.url).toEqual('http://teropa.info');
});

The data given to the Promise handler is the same as it was with the successful response: The re-
sponse object. The only difference is which handler gets called: then or catch.

We can dynamically select the Deferred method to invoke, based on the status code:

src/http.js
function done(status, response, statusText) {
 deferred[isSuccess(status) ? 'resolve' : 'reject']({
 status: status,
 data: response,
 statusText: statusText,
 config: config

Sending HTTP Requests 23

595 Errata© Tero Parviainen 2016

 });
 if (!$rootScope.$$phase) {
 $rootScope.$apply();
 }
}

The new isSuccess helper function used here will return true if the status code is between 200
and 299, and false otherwise:

src/http.js
function isSuccess(status) {
 return status >= 200 && status < 300;
}

This function would consider redirect responses, such as 302, as errors. However, redirects do not trigger
errors since they are handled internally by the web browser and never get to our JavaScript code.

Another reason for an $http Promise to become rejected is if the request fails completely, so that
there is no response. There are various reasons why this could happen: The network could be
down, there could be a Cross-Origin Resource Sharing problem, or the request could be explicitly
aborted.

To unit tests such a situation, we can just invoke the onerror handler of the (fake) request direct-
ly, since that is what gets called in real XMLHttpRequests when things go wrong:

test/http_spec.js
it('rejects promise when XHR result errors/aborts', function() {
 var requestConfig = {
 method: 'GET',
 url: 'http://teropa.info'
 };

 var response;
 $http(requestConfig).catch(function(r) {
 response = r;
 });

 requests[0].onerror();

 expect(response).toBeDefined();
 expect(response.status).toBe(0);
 expect(response.data).toBe(null);
 expect(response.config.url).toEqual('http://teropa.info');
});

In this case, we expect the status code of the response to become 0, and the response data to be-
come null.

Default Request Configuration 23

596 Errata© Tero Parviainen 2016

In $httpBackend we should attach an onerror handler to catch errors from the native XML-
HttpRequest. When it’s called, we invoke the callback with a -1 status code, a null response, and
an empty status text:

src/http_backend.js
return function(method, url, post, callback) {
 var xhr = new window.XMLHttpRequest();
 xhr.open(method, url, true);
 xhr.send(post || null);
 xhr.onload = function() {
 var response = ('response' in xhr) ? xhr.response :
 xhr.responseText;
 var statusText = xhr.statusText || '';
 callback(xhr.status, response, statusText);
 };
 xhr.onerror = function() {
 callback(-1, null, '');
 };
};

All that remains to be done in $http is a “normalization” of the status code. In error responses,
$httpBackend may return negative status codes, but $http never resolves to anything smaller
than 0:

src/http.js
function done(status, response, statusText) {
 status = Math.max(status, 0);
 deferred[isSuccess(status) ? 'resolve' : 'reject']({
 status: status,
 data: response,
 statusText: statusText,
 config: config
 });
 if (!$rootScope.$$phase) {
 $rootScope.$apply();
 }
}

Default Request Configuration

As we have already seen, the $http function takes a request configuration object as its one and
only argument. That object includes all the attributes needed to make the request: The URL, the
HTTP method, the content, and so on. Not all of these attributes are always required, however.
There are also default values that are used for attributes that are omitted from the request config.

At this point, we’ll set up the first of these default values: The request method. If no method is

Request Headers 23

597 Errata© Tero Parviainen 2016

supplied when a request is made, it is assumed to be a GET.

test/http_spec.js
it('uses GET method by default', function() {
 $http({
 url: 'http://teropa.info'
 });
 expect(requests.length).toBe(1);
 expect(requests[0].method).toBe('GET');
});

We can apply defaults like these by just constructing a “default config” object in the $http func-
tion, and then extending it with the config given as an argument, allowing it to override the de-
faults:

src/http.js
return function $http(requestConfig) {
 var deferred = $q.defer();

 var config = _.extend({
 method: 'GET'
 }, requestConfig);

 // ...

};

We now need LoDash in http.js:

src/http.js
'use strict';

var _ = require('lodash');

Not everything in $http can be preconfigured as default values, but there are a few more defaults
we’ll add during the course of this chapter.

Request Headers

When sending requests to HTTP servers, it is vital to have the ability to attach headers. Headers are
needed for all kinds of information we want the server to know about, like authentication tokens,
preferred content types, and HTTP cache control.

The $http service has full support for HTTP headers, through a headers object that you can
attach to the request configuration object:

Request Headers 23

598 Errata© Tero Parviainen 2016

test/http_spec.js
it('sets headers on request', function() {
 $http({
 url: 'http://teropa.info',
 headers: {
 'Accept': 'text/plain',
 'Cache-Control': 'no-cache'
 }
 });
 expect(requests.length).toBe(1);
 expect(requests[0].requestHeaders.Accept).toBe('text/plain');
 expect(requests[0].requestHeaders['Cache-Control']).toBe('no-cache');
});

The $httpBackend service will do most of the work here. From $http we just need to pass the
headers object along:

src/http.js
return function $http(requestConfig) {
 // ...

 $httpBackend(
 config.method,
 config.url,
 config.data,
 done,
 config.headers
);
 return deferred.promise;
};

What $httpBackend should do is take all the headers given to it and set them on the XML-
HttpRequest, using its setRequestHeader() method:

src/http_backend.js
'use strict';

var _ = require('lodash');

function $HttpBackendProvider() {

 this.$get = function() {
 return function(method, url, post, callback, headers) {
 var xhr = new window.XMLHttpRequest();
 xhr.open(method, url, true);
 _.forEach(headers, function(value, key) {
 xhr.setRequestHeader(key, value);
 });
 xhr.send(post || null);
 // ...

Request Headers 23

599 Errata© Tero Parviainen 2016

 };
 };
}

module.exports = $HttpBackendProvider;

There are also some default headers that are set, even when omitted from the request config object.
Most importantly, the Accept header is by default set to a value that tells the server we primarily
prefer JSON responses, and secondarily plain text responses:

test/http_spec.js
it('sets default headers on request', function() {
 $http({
 url: 'http://teropa.info'
 });
 expect(requests.length).toBe(1);
 expect(requests[0].requestHeaders.Accept).toBe(
 'application/json, text/plain, */*');
});

Let’s store these default headers in a variable called defaults, set up in the scope of the $Http-
Provider constructor. The variable points to an object that has a headers key. In it we have a
nested key called common, to store all headers that are common across all HTTP methods. The
Accept header is one of them:

src/http.js
function $HttpProvider() {

 var defaults = {
 headers: {
 common: {
 Accept: 'application/json, text/plain, */*'
 }
 }
 };

 // ...

}

We need to merge these defaults with any headers actually given in the request config object. We’ll
do this in a new helper function called mergeHeaders:

src/http.js
return function $http(requestConfig) {
 var deferred = $q.defer();

 var config = _.extend({

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1

Request Headers 23

600 Errata© Tero Parviainen 2016

 method: 'GET'
 }, requestConfig);
 config.headers = mergeHeaders(requestConfig);

 // ...

};

For now, this function will just create a new object, into which it pours all the common default
headers from the defaults object, and then all the headers given in the request configuration
object:

src/http.js
function mergeHeaders(config) {
 return _.extend(
 {},
 defaults.headers.common,
 config.headers
);
}

Not all default headers are common across all HTTP methods. POSTs, for example, should have
a default Content-Type header, set to a JSON content type, whereas GET methods should not.
This is because GET requests do not have a body, so setting their content type is not appropriate.

test/http_spec.js
it('sets method-specific default headers on request', function() {
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: '42'
 });
 expect(requests.length).toBe(1);
 expect(requests[0].requestHeaders['Content-Type']).toBe(
 'application/json;charset=utf-8');
});

The defaults variable also contains these method-specific defaults. Let’s set the JSON Con-
tent-Type header for the standard HTTP methods that have a body: POST, PUT, and PATCH:

src/http.js
var defaults = {
 headers: {
 common: {
 Accept: 'application/json, text/plain, */*'
 },
 post: {
 'Content-Type': 'application/json;charset=utf-8'

Request Headers 23

601 Errata© Tero Parviainen 2016

 },
 put: {
 'Content-Type': 'application/json;charset=utf-8'
 },
 patch: {
 'Content-Type': 'application/json;charset=utf-8'
 }
 }
};

We can now extend mergeHeaders to also include any method-specific default headers:

src/http.js
function mergeHeaders(config) {
 return _.extend(
 {},
 defaults.headers.common,
 defaults.headers[(config.method || 'get').toLowerCase()],
 config.headers
);
}

Another aspect of default headers is that as an application developer, you can also modify them.
They are exposed through the defaults attribute of the $http service, and we can just mutate
the object in that attribute to set application-global defaults:

test/http_spec.js
it('exposes default headers for overriding', function() {
 $http.defaults.headers.post['Content-Type'] = 'text/plain;charset=utf-8';
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: '42'
 });
 expect(requests.length).toBe(1);
 expect(requests[0].requestHeaders['Content-Type']).toBe(
 'text/plain;charset=utf-8');
});

We can attach this attribute to the $http function, but to do so we need to also reorganize our
code so that the $http function declaration is separate from the return statement:

src/http.js
function $http(requestConfig) {
 var deferred = $q.defer();

 var config = _.extend({
 method: 'GET'
 }, requestConfig);

Request Headers 23

602 Errata© Tero Parviainen 2016

 config.headers = mergeHeaders(requestConfig);

 function done(status, response, statusText) {
 status = Math.max(status, 0);
 deferred[isSuccess(status) ? 'resolve' : 'reject']({
 status: status,
 data: response,
 statusText: statusText,
 config: config
 });
 if (!$rootScope.$$phase) {
 $rootScope.$apply();
 }
 }

 $httpBackend(config.method, config.url, config.data, done, config.headers);
 return deferred.promise;
}
$http.defaults = defaults;
return $http;

The headers are available not only in $http at runtime, but also in $httpProvider at configura-
tion time. We can test this by creating another injector with a custom function module:

test/http_spec.js
it('exposes default headers through provider', function() {
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.defaults.headers.post['Content-Type'] =
 'text/plain;charset=utf-8';
 }]);
 $http = injector.get('$http');

 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: '42'
 });
 expect(requests.length).toBe(1);
 expect(requests[0].requestHeaders['Content-Type']).toBe(
 'text/plain;charset=utf-8');
});

We can satisfy this requirement by simply attaching the defaults to this as we introduce them
within the $HttpProvider constructor:

src/http.js
function $HttpProvider() {

 var defaults = this.defaults = {
 // ...

Request Headers 23

603 Errata© Tero Parviainen 2016

 };

 // ...

}

We now have default values declared in two places: Default headers are in the defaults variable, and the
default request method is in the object created on the fly inside the $http function. The difference is that
the former is exposed for modification and the latter is not. The default HTTP method can’t be set from
application code.

If you’re familiar with how HTTP headers work, you’ll know that their names are actually case-in-
sensitive: Content-Type and content-type should be treated interchangeably. The way we cur-
rently merge default headers with request-specific headers is not consistent with this: We may end
up having the same header several times, with different casings. We should instead merge headers
in a case-insensitive fashion so that this does not happen.

test/http_spec.js
it('merges default headers case-insensitively', function() {
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: '42',
 headers: {
 'content-type': 'text/plain;charset=utf-8'
 }
 });
 expect(requests.length).toBe(1);
 expect(requests[0].requestHeaders['content-type']).toBe(
 'text/plain;charset=utf-8');
 expect(requests[0].requestHeaders['Content-Type']).toBeUndefined();
});

This means we need to change how the mergeHeaders function works. We’ll first split things into
two objects: One called reqHeaders for all the headers that came with the request configuration
object, and one called defHeaders for default headers - both common and HTTP method specif-
ic:

src/http.js
function mergeHeaders(config) {
 var reqHeaders = _.extend(
 {},
 config.headers
);
 var defHeaders = _.extend(
 {},
 defaults.headers.common,
 defaults.headers[(config.method || 'get').toLowerCase()]
);

Request Headers 23

604 Errata© Tero Parviainen 2016

}

Now we should combine these two objects. We’ll take reqHeaders as a starting point, and apply
everything from defHeaders to it. For each default header, we check if we already have a head-
er with that name, with a case-insensitive check. We add the header to the result only if we don’t
already have it:

src/http.js
function mergeHeaders(config) {
 var reqHeaders = _.extend(
 {},
 config.headers
);
 var defHeaders = _.extend(
 {},
 defaults.headers.common,
 defaults.headers[(config.method || 'get').toLowerCase()]
);
 _.forEach(defHeaders, function(value, key) {
 var headerExists = _.some(reqHeaders, function(v, k) {
 return k.toLowerCase() === key.toLowerCase();
 });
 if (!headerExists) {
 reqHeaders[key] = value;
 }
 });
 return reqHeaders;
}

That takes care of header merging, and we can turn our attention to a couple of further special
cases that have to do with header processing.

We’ve seen the Content-Type header in action, and how it is set to JSON by default. But we
should additionally make sure that Content-Type is not set if there’s no actual body in the re-
quest. If there’s no body, any Content-Type would be misleading, and we should omit it even if
it was configured:

test/http_spec.js
it('does not send content-type header when no data', function() {
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 headers: {
 'Content-Type': 'application/json;charset=utf-8'
 }
 });
 expect(requests.length).toBe(1);
 expect(requests[0].requestHeaders['Content-Type']).not.toBe(
 'application/json;charset=utf-8');

Request Headers 23

605 Errata© Tero Parviainen 2016

});

We can do this by just iterating over the headers and removing the one for content-type if
there’s no data to send:

src/http.js
function $http(requestConfig) {
 var deferred = $q.defer();

 var config = _.extend({
 method: 'GET'
 }, requestConfig);
 config.headers = mergeHeaders(requestConfig);

 if (_.isUndefined(config.data)) {
 _.forEach(config.headers, function(v, k) {
 if (k.toLowerCase() === 'content-type') {
 delete config.headers[k];
 }
 });
 }

 // ...
}

The final aspect of request headers we’ll talk about is that a header’s value may actually not always
be a string, but instead a function that produces a string. If $http encounters a function as a header
value, it invokes that function, giving it the request configuration object as an argument. This can
be useful if you want to set default headers, but still dynamically form them separately for each
request:

test/http_spec.js
it('supports functions as header values', function() {
 var contentTypeSpy = jasmine.createSpy().and.returnValue(
 'text/plain;charset=utf-8');
 $http.defaults.headers.post['Content-Type'] = contentTypeSpy;

 var request = {
 method: 'POST',
 url: 'http://teropa.info',
 data: 42
 };
 $http(request);

 expect(contentTypeSpy).toHaveBeenCalledWith(request);
 expect(requests[0].requestHeaders['Content-Type']).toBe(
 'text/plain;charset=utf-8');
});

Request Headers 23

606 Errata© Tero Parviainen 2016

At the end of mergeHeaders, we’ll invoke a new helper function called executeHeaderFns,
which will resolve any of these function headers:

src/http.js
function mergeHeaders(config) {
 // ...
 return executeHeaderFns(reqHeaders, config);
}

This function iterates over the headers object using _.transform, and replaces any function value
with the return value of the function, when called with the request config:

src/http.js
function executeHeaderFns(headers, config) {
 return _.transform(headers, function(result, v, k) {
 if (_.isFunction(v)) {
 result[k] = v(config);
 }
 }, headers);
}

The one case where the result of the header function should not be attached to the request is when
it is null or undefined. Those values are omitted:

test/http_spec.js
it('ignores header function value when null/undefined', function() {
 var cacheControlSpy = jasmine.createSpy().and.returnValue(null);
 $http.defaults.headers.post['Cache-Control'] = cacheControlSpy;

 var request = {
 method: 'POST',
 url: 'http://teropa.info',
 data: 42
 };
 $http(request);

 expect(cacheControlSpy).toHaveBeenCalledWith(request);
 expect(requests[0].requestHeaders['Cache-Control']).toBeUndefined();
});

The executeHeaderFns function explicitly checks if the return value of the function is null or
undefined, and removes the header if it is:

src/http.js
function executeHeaderFns(headers, config) {
 return _.transform(headers, function(result, v, k) {
 if (_.isFunction(v)) {

Response Headers 23

607 Errata© Tero Parviainen 2016

 v = v(config);
 if (_.isNull(v) || _.isUndefined(v)) {
 delete result[k];
 } else {
 result[k] = v;
 }
 }
 }, headers);
}

Response Headers

We’re now able to set headers on HTTP requests in several ways, and can turn our focus to the
other major task of header processing: Response headers.

The response headers returned by HTTP servers are all made available to application code in
Angular. They are included in the response object you eventually get from $http. The response
object will have a headers attribute that points to a header getter function. That function takes head-
er names and returns the corresponding header values:

test/http_spec.js
it('makes response headers available', function() {
 var response;
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: 42
 }).then(function(r) {
 response = r;
 });

 requests[0].respond(200, {'Content-Type': 'text/plain'}, 'Hello');

 expect(response.headers).toBeDefined();
 expect(response.headers instanceof Function).toBe(true);
 expect(response.headers('Content-Type')).toBe('text/plain');
 expect(response.headers('content-type')).toBe('text/plain');
});

Note that just like with request headers, we expect response header handling to be case-insensivite:
Accessing the Content-Type header and the content-type header should both have exactly the
same effect, regardless of what sort of capitalization the server actually used.

We begin the implementation of response headers from the HTTP backend. As it invokes the re-
sponse callback, it should provide all the headers returned by the server. They are available via the
getAllResponseHeaders() method of the XMLHttpRequest:

Response Headers 23

608 Errata© Tero Parviainen 2016

src/http_backend.js
xhr.onload = function() {
 var response = ('response' in xhr) ? xhr.response :
 xhr.responseText;
 var statusText = xhr.statusText || '';
 callback(
 xhr.status,
 response,
 xhr.getAllResponseHeaders(),
 statusText
);
};

Over in $http we now have the headers (still as an unparsed string at this point), and we can cre-
ate the header getter function for the response object. We’ll use a new helper function called head-
ersGetter to make that function:

src/http.js
function done(status, response, headersString, statusText) {
 status = Math.max(status, 0);
 deferred[isSuccess(status) ? 'resolve' : 'reject']({
 status: status,
 data: response,
 statusText: statusText,
 headers: headersGetter(headersString),
 config: config
 });
 if (!$rootScope.$$phase) {
 $rootScope.$apply();
 }
}

The headersGetter function takes the headers string and returns a function that resolves header
names to header values. This’ll be the function that application code will invoke when it needs to
access a header:

src/http.js
function headersGetter(headers) {
 return function(name) {

 };
}

To gain access to individual headers, we’ll need to parse the combined header string that we have
at the moment. We’ll do this lazily, so that nothing is parsed until the first header is actually re-
quested. We then cache the parse result for subsequent calls:

src/http.js

Response Headers 23

609 Errata© Tero Parviainen 2016

function headersGetter(headers) {
 var headersObj;
 return function(name) {
 headersObj = headersObj || parseHeaders(headers);
 return headersObj[name.toLowerCase()];
 };
}

With this pattern we ensure the cost of parsing headers is not incurred unless someone actually
needs header information.

The actual work of parsing the headers is done by another helper function, parseHeaders. It’ll
take the header string and return an object of the individual headers. This is done by first splitting
the headers string to separate lines (HTTP headers always have one name-value pair per line), and
then by iterating over those lines:

src/http.js
function parseHeaders(headers) {
 var lines = headers.split('\n');
 return _.transform(lines, function(result, line) {

 }, {});
}

Each of the header lines will have a header name, followed by a colon character ’:’, followed by
the header value. We just need to grab the parts before and after the colon character, trim any sur-
rounding whitespace, downcase the header name, and then put what we have into the result object

src/http.js
function parseHeaders(headers) {
 var lines = headers.split('\n');
 return _.transform(lines, function(result, line) {
 var separatorAt = line.indexOf(':');
 var name = _.trim(line.substr(0, separatorAt)).toLowerCase();
 var value = _.trim(line.substr(separatorAt + 1));
 if (name) {
 result[name] = value;
 }
 }, {});
}

The headers function may also be called with zero arguments, in which case it should return the
full, parsed headers object:

test/http_spec.js
it('may returns all response headers', function() {
 var response;
 $http({

Allow CORS Authorization: withCredentials 23

610 Errata© Tero Parviainen 2016

 method: 'POST',
 url: 'http://teropa.info',
 data: 42
 }).then(function(r) {
 response = r;
 });

 requests[0].respond(200, {'Content-Type': 'text/plain'}, 'Hello');

 expect(response.headers()).toEqual({'content-type': 'text/plain'});
});

This is achieved by checking the argument given to the headers getter. If no header name was giv-
en, just return the full parse result:

src/http.js
function headersGetter(headers) {
 var headersObj;
 return function(name) {
 headersObj = headersObj || parseHeaders(headers);
 if (name) {
 return headersObj[name.toLowerCase()];
 } else {
 return headersObj;
 }
 };
}

And there’s our response header processing!

Allow CORS Authorization: withCredentials

Making XMLHttpRequests to domains other than the current page’s origin has some security
related restrictions involved. These days, the management of these restrictions is most often done
with cross-origin resource sharing (CORS).

Most of the things that need to be done with CORS don’t actually involve JavaScript code: It’s
pretty much all done between the web server and the web browser. But there is one thing we
should build into $http to fully support CORS. By default, cross-domain requests do not include
any cookies or authentication headers. If either of those is needed, the withCredentials flag
needs to be set on the XMLHttpRequest.

With Angular, you can make this happen by attaching a withCredentials flag on the request
object:

test/http_spec.js
it('allows setting withCredentials', function() {

http://enable-cors.org/

Allow CORS Authorization: withCredentials 23

611 Errata© Tero Parviainen 2016

 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: 42,
 withCredentials: true
 });

 expect(requests[0].withCredentials).toBe(true);
});

This flag is extracted in $http and given as an argument to the $httpBackend call:

src/http.js
$httpBackend(
 config.method,
 config.url,
 config.data,
 done,
 config.headers,
 config.withCredentials
);

In the backend, the flag is set on the XMLHttpRequest if its value is truthy:

src/http_backend.js
return function(method, url, post, callback, headers, withCredentials) {
 var xhr = new window.XMLHttpRequest();
 xhr.open(method, url, true);
 _.forEach(headers, function(value, key) {
 xhr.setRequestHeader(key, value);
 });
 if (withCredentials) {
 xhr.withCredentials = true;
 }
 xhr.send(post || null);
 // ...
};

The flag can also be set globally, using the request defaults configuration:

test/http_spec.js
it('allows setting withCredentials from defaults', function() {
 $http.defaults.withCredentials = true;

 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: 42
 });

Request Transforms 23

612 Errata© Tero Parviainen 2016

 expect(requests[0].withCredentials).toBe(true);
});

When the request configuration is constructed in $http, the default value is used, but only if the
value in the actual request config is undefined:

src/http.js
function $http(requestConfig) {
 var deferred = $q.defer();

 var config = _.extend({
 method: 'GET'
 }, requestConfig);
 config.headers = mergeHeaders(requestConfig);

 if (_.isUndefined(config.withCredentials) &&
 !_.isUndefined(defaults.withCredentials)) {
 config.withCredentials = defaults.withCredentials;
 }

 // ...

}

Request Transforms

When you communicate with a server, you often need to preprocess your data somehow so that it
is in a format that the server can understand, such as JSON, XML, or some custom format.

When you have such preprocessing needs in your Angular application, it is of course completely
possible to just do it separately for every request you make: You make sure that what you put in
the data attribute of the request is in a format the server can handle. But having to repeat such
preprocessing code isn’t optimal. It would be useful to separate that kind of preprocessing from
your actual application logic. This is where request transforms come in.

A request transform is a function that will be invoked with the request’s body before it’s sent out.
The return value of the transform will replace the original request body.

Transforms are not to be confused with interceptors, which we will cover later in this chapter.

One way to specify a request transform is to attach a transformRequest attribute to your request
object:

test/http_spec.js
it('allows transforming requests with functions', function() {

Request Transforms 23

613 Errata© Tero Parviainen 2016

 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: 42,
 transformRequest: function(data) {
 return '*' + data + '*';
 }
 });

 expect(requests[0].requestBody).toBe('*42*');
});

Transforms are applied in $http, where we invoke a helper function called transformData
before sending the request. The helper function is given the request data and the transformRe-
quest attribute’s value. The return value is then used as the actual request data:

src/http.js
function $http(requestConfig) {
 var deferred = $q.defer();

 var config = _.extend({
 method: 'GET'
 }, requestConfig);
 config.headers = mergeHeaders(requestConfig);

 if (_.isUndefined(config.withCredentials) &&
 !_.isUndefined(defaults.withCredentials)) {
 config.withCredentials = defaults.withCredentials;
 }

 var reqData = transformData(config.data, config.transformRequest);

 if (_.isUndefined(reqData)) {
 _.forEach(config.headers, function(v, k) {
 if (k.toLowerCase() === 'content-type') {
 delete config.headers[k];
 }
 });
 }

 function done(status, response, headersString, statusText) {
 status = Math.max(status, 0);
 deferred[isSuccess(status) ? 'resolve' : 'reject']({
 status: status,
 data: response,
 statusText: statusText,
 headers: headersGetter(headersString),
 config: config
 });
 if (!$rootScope.$$phase) {
 $rootScope.$apply();

Request Transforms 23

614 Errata© Tero Parviainen 2016

 }
 }

 $httpBackend(
 config.method,
 config.url,
 reqData,
 done,
 config.headers,
 config.withCredentials
);
 return deferred.promise;
}

The transformData function invokes the transform if there is one. Otherwise it just returns the
original request data:

src/http.js
function transformData(data, transform) {
 if (_.isFunction(transform)) {
 return transform(data);
 } else {
 return data;
 }
}

It is also possible to have a chain of several request transforms, which you can do by pointing the
transformRequest attribute to an array of transforms. They will be invoked in order:

test/http_spec.js
it('allows multiple request transform functions', function() {
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: 42,
 transformRequest: [function(data) {
 return '*' + data + '*';
 }, function(data) {
 return '-' + data + '-';
 }]
 });

 expect(requests[0].requestBody).toBe('-*42*-');
});

We can support this by reducing the request data in transformData with the array of transforms.
We’ll also rely on the fact that _.reduce returns the original value if there are no transforms giv-
en:

Request Transforms 23

615 Errata© Tero Parviainen 2016

src/http.js
function transformData(data, transform) {
 if (_.isFunction(transform)) {
 return transform(data);
 } else {
 return _.reduce(transform, function(data, fn) {
 return fn(data);
 }, data);
 }
}

Attaching transformRequest in each request object can be useful, but arguably it is much more
common to do it through the default configuration. If you attach transforms into $http.de-
faults, you can say “run this function for every request before it is sent”, allowing for a much
improved separation of concerns - you don’t have to think about transforms every time you make a
request:

test/http_spec.js
it('allows settings transforms in defaults', function() {
 $http.defaults.transformRequest = [function(data) {
 return '*' + data + '*';
 }];
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: 42
 });

 expect(requests[0].requestBody).toBe('*42*');
});

We can insert the default transformRequest when we construct the request config object:

src/http.js
function $http(requestConfig) {
 var deferred = $q.defer();

 var config = _.extend({
 method: 'GET',
 transformRequest: defaults.transformRequest
 }, requestConfig);
 config.headers = mergeHeaders(requestConfig);

 // ...
}

When you have default request transforms, they may need more information than just the request
body to do their job - perhaps some transforms should only be applied when certain HTTP content
type headers are present, for example. For this purpose, the transforms are also given the request

Request Transforms 23

616 Errata© Tero Parviainen 2016

headers as a second argument. They are wrapped in a function that takes header names and re-
turns their values:

test/http_spec.js
it('passes request headers getter to transforms', function() {
 $http.defaults.transformRequest = [function(data, headers) {
 if (headers('Content-Type') === 'text/emphasized') {
 return '*' + data + '*';
 } else {
 return data;
 }
 }];
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: 42,
 headers: {
 'content-type': 'text/emphasized'
 }
 });

 expect(requests[0].requestBody).toBe('*42*');
});

So we need to pass the request headers to transformData. Let’s do exactly that, but let’s also pass
them through our headersGetter function first, because it can make the kind of header getter
function we need. headersGetter does not yet know how to handle request headers, but we’ll fix
that in a moment.

src/http.js
var reqData = transformData(
 config.data,
 headersGetter(config.headers),
 config.transformRequest
);

In transformData we can now pass the headers to each of the individual request transforms:

src/http.js
function transformData(data, headers, transform) {
 if (_.isFunction(transform)) {
 return transform(data, headers);
 } else {
 return _.reduce(transform, function(data, fn) {
 return fn(data, headers);
 }, data);
 }
}

Response Transforms 23

617 Errata© Tero Parviainen 2016

To complete the picture, we need to teach headersGetter, or more precisely the parseHeaders
function it uses, what to do with the request headers we’re giving to it.

Earlier we implemented parseHeaders so that it takes a response headers string and parses it
into an object. With request headers we already have an object. The only thing we need to do is
to “normalize” the headers, so that they can be accessed case-insensitively and so that any extra
whitespace has been removed. This is what we’ll do in parseHeaders if its argument is already
an object:

src/http.js
function parseHeaders(headers) {
 if (_.isObject(headers)) {
 return _.transform(headers, function(result, v, k) {
 result[_.trim(k.toLowerCase())] = _.trim(v);
 }, {});
 } else {
 var lines = headers.split('\n');
 return _.transform(lines, function(result, line) {
 var separatorAt = line.indexOf(':');
 var name = _.trim(line.substr(0, separatorAt)).toLowerCase();
 var value = _.trim(line.substr(separatorAt + 1));
 if (name) {
 result[name] = value;
 }
 }, {});
 }
}

Response Transforms

Just like it is useful to transform requests before they’re sent to a server, it can be useful to trans-
form responses when they arrive from the server, before they are handed to application code. A
typical use case for this would be parsing data from some serialization format to live JavaScript
objects.

Response transforms work symmetrically with respect to request transforms. You can attach a
transformResponse attribute to your request config, and it’ll be invoked with the response body:

test/http_spec.js
it('allows transforming responses with functions', function() {
 var response;
 $http({
 url: 'http://teropa.info',
 transformResponse: function(data) {
 return '*' + data + '*';
 }
 }).then(function(r) {

Response Transforms 23

618 Errata© Tero Parviainen 2016

 response = r;
 });

 requests[0].respond(200, {'Content-Type': 'text/plain'}, 'Hello');

 expect(response.data).toEqual('*Hello*');
});

Just like request transforms, response transforms get access to headers as a second argument. This
time they are the response headers instead of the request headers though:

test/http_spec.js
it('passes response headers to transform functions', function() {
 var response;
 $http({
 url: 'http://teropa.info',
 transformResponse: function(data, headers) {
 if (headers('content-type') === 'text/decorated') {
 return '*' + data + '*';
 } else {
 return data;
 }
 }
 }).then(function(r) {
 response = r;
 });

 requests[0].respond(200, {'Content-Type': 'text/decorated'}, 'Hello');

 expect(response.data).toEqual('*Hello*');
});

Also, just like request transforms, response transforms can be set in the $http defaults so that you
don’t have to set them individually for all requests:

test/http_spec.js
it('allows setting default response transforms', function() {
 $http.defaults.transformResponse = [function(data) {
 return '*' + data + '*';
 }];
 var response;
 $http({
 url: 'http://teropa.info'
 }).then(function(r) {
 response = r;
 });

 requests[0].respond(200, {'Content-Type': 'text/plain'}, 'Hello');

 expect(response.data).toEqual('*Hello*');

Response Transforms 23

619 Errata© Tero Parviainen 2016

});

Before we start getting these tests to green, let’s take a moment to reorganize the code in $http
a little bit. The $http function itself has gotten pretty large, and we should split it into two steps:
Preparing the request and sending it. Let’s keep the code for preparing the request in the $http
function, but extract the code for sending it to a new function called sendReq:

src/http.js
function sendReq(config, reqData) {
 var deferred = $q.defer();

 function done(status, response, headersString, statusText) {
 status = Math.max(status, 0);
 deferred[isSuccess(status) ? 'resolve' : 'reject']({
 status: status,
 data: response,
 statusText: statusText,
 headers: headersGetter(headersString),
 config: config
 });
 if (!$rootScope.$$phase) {
 $rootScope.$apply();
 }
 }

 $httpBackend(
 config.method,
 config.url,
 reqData,
 done,
 config.headers,
 config.withCredentials
);

 return deferred.promise;
}

function $http(requestConfig) {
 var config = _.extend({
 method: 'GET',
 transformRequest: defaults.transformRequest
 }, requestConfig);
 config.headers = mergeHeaders(requestConfig);

 if (_.isUndefined(config.withCredentials) &&
 !_.isUndefined(defaults.withCredentials)) {
 config.withCredentials = defaults.withCredentials;
 }

 var reqData = transformData(
 config.data,

Response Transforms 23

620 Errata© Tero Parviainen 2016

 headersGetter(config.headers),
 config.transformRequest
);

 if (_.isUndefined(reqData)) {
 _.forEach(config.headers, function(v, k) {
 if (k.toLowerCase() === 'content-type') {
 delete config.headers[k];
 }
 });
 }

 return sendReq(config, reqData);
}

It is now a little bit easier to attach response transformation to this code, so let’s make a function
whose job it is to do just that, and attach it as a Promise callback to the return value of sendReq:

src/http.js
function $http(requestConfig) {
 var config = _.extend({
 method: 'GET',
 transformRequest: defaults.transformRequest,
 }, requestConfig);
 config.headers = mergeHeaders(requestConfig);

 if (_.isUndefined(config.withCredentials) &&
 !_.isUndefined(defaults.withCredentials)) {
 config.withCredentials = defaults.withCredentials;
 }

 var reqData = transformData(
 config.data,
 headersGetter(config.headers),
 config.transformRequest
);

 if (_.isUndefined(reqData)) {
 _.forEach(config.headers, function(v, k) {
 if (k.toLowerCase() === 'content-type') {
 delete config.headers[k];
 }
 });
 }

 function transformResponse(response) {
 }

 return sendReq(config, reqData)
 .then(transformResponse);
}

Response Transforms 23

621 Errata© Tero Parviainen 2016

This function takes a response and replaces its data attribute with the result of running response
transformers on it. We already have a function that can run transformers - transformData - and
we’ll reuse it here:

src/http.js
function transformResponse(response) {
 if (response.data) {
 response.data = transformData(response.data, response.headers,
 config.transformResponse);
 }
 return response;
}

We should also add the support for default response transforms, so that they get attached to con-
fig.transformResponse:

src/http.js
function $http(requestConfig) {
 var config = _.extend({
 method: 'GET',
 transformRequest: defaults.transformRequest,
 transformResponse: defaults.transformResponse
 }, requestConfig);

 // ...

}

We should be able to transform not only successful responses but also error responses, because
they may also have bodies that need transforming:

test/http_spec.js
it('transforms error responses also', function() {
 var response;
 $http({
 url: 'http://teropa.info',
 transformResponse: function(data) {
 return '*' + data + '*';
 }
 }).catch(function(r) {
 response = r;
 });

 requests[0].respond(401, {'Content-Type': 'text/plain'}, 'Fail');

 expect(response.data).toEqual('*Fail*');
});

Response Transforms 23

622 Errata© Tero Parviainen 2016

The transformResponse function is already perfectly capable of doing this, but since it is used as
a promise handler, it needs to be able to re-reject failed responses. Otherwise the failures would be
considered “caught” and application code would receive error responses in success handlers. Let’s
fix this:

src/http.js
function transformResponse(response) {
 if (response.data) {
 response.data = transformData(response.data, response.headers,
 config.transformResponse);
 }
 if (isSuccess(response.status)) {
 return response;
 } else {
 return $q.reject(response);
 }
}

return sendReq(config, reqData)
 .then(transformResponse, transformResponse);

The last aspect of response transformers is that they actually receive one additional argument that
request transformers don’t: The HTTP status code of the response. It is passed in as the third argu-
ment to each transformer.

test/http_spec.js
it('passes HTTP status to response transformers', function() {
 var response;
 $http({
 url: 'http://teropa.info',
 transformResponse: function(data, headers, status) {
 if (status === 401) {
 return 'unauthorized';
 } else {
 return data;
 }
 }
 }).catch(function(r) {
 response = r;
 });

 requests[0].respond(401, {'Content-Type': 'text/plain'}, 'Fail');

 expect(response.data).toEqual('unauthorized');
});

In transformResponse we can extract the status and pass it into transformData:

src/http.js

JSON Serialization And Parsing 23

623 Errata© Tero Parviainen 2016

function transformResponse(response) {
 if (response.data) {
 response.data = transformData(
 response.data,
 response.headers,
 response.status,
 config.transformResponse
);
 }
 if (isSuccess(response.status)) {
 return response;
 } else {
 return $q.reject(response);
 }
}

We’ve just added an additional argument to transformData, and that function is also called for
request transforms, so we need to update that code to provide an explicit undefined status - re-
quests don’t have statuses:

src/http.js
var reqData = transformData(
 config.data,
 headersGetter(config.headers),
 undefined,
 config.transformRequest
);

In transformData we can now receive this argument and pass it right on to the transform func-
tions:

src/http.js
function transformData(data, headers, status, transform) {
 if (_.isFunction(transform)) {
 return transform(data, headers, status);
 } else {
 return _.reduce(transform, function(data, fn) {
 return fn(data, headers, status);
 }, data);
 }
}

JSON Serialization And Parsing

For most Angular applications most of the time, both request and response data will be in JSON
format. Because of this, Angular does what it can to make working with JSON easy: If your
requests and responses are indeed in JSON, you never need to explicitly do any serialization or
parsing, and can rely on the framework doing it for you.

JSON Serialization And Parsing 23

624 Errata© Tero Parviainen 2016

For requests, this means that if you attach a JavaScript object as the request data, what goes into
the actual request is a JSON-serialized representation of that object:

test/http_spec.js
it('serializes object data to JSON for requests', function() {
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: {aKey: 42}
 });

 expect(requests[0].requestBody).toBe('{"aKey":42}');
});

The same is true of arrays: A JavaScript array attached to a request is serialized into JSON.

test/http_spec.js
it('serializes array data to JSON for requests', function() {
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: [1, 'two', 3]
 });

 expect(requests[0].requestBody).toBe('[1,"two",3]');
});

Angular does this using the request transform feature we just implemented in the previous section.
The default value for transformRequest holds a function that serializes the request data into
JSON, if it is an Object (which includes Arrays):

src/http.js
var defaults = this.defaults = {
 headers: {
 common: {
 Accept: 'application/json, text/plain, */*'
 },
 post: {
 'Content-Type': 'application/json;charset=utf-8'
 },
 put: {
 'Content-Type': 'application/json;charset=utf-8'
 },
 patch: {
 'Content-Type': 'application/json;charset=utf-8'
 }
 },
 transformRequest: [function(data) {

JSON Serialization And Parsing 23

625 Errata© Tero Parviainen 2016

 if (_.isObject(data)) {
 return JSON.stringify(data);
 } else {
 return data;
 }
 }]
};

There are a couple of very important exceptions to this rule though. If the response data is a Blob,
presumably containing some raw binary or textual data, we shouldn’t touch it, but send it out as-is
and let the XMLHttpRequest deal with it:

test/http_spec.js
it(‘does not serialize blobs for requests’, function() {
 var blob;
 if (window.Blob) {
 blob = new Blob([‘hello’]);
 } else {
 var BlobBuilder = window.BlobBuilder || window.WebKitBlobBuilder ||
 window.MozBlobBuilder || window.MSBlobBuilder;
 var bb = new BlobBuilder();
 bb.append(‘hello’);
 blob = bb.getBlob(‘text/plain’);
 }
 $http({
 method: ‘POST’,
 url: ‘http://teropa.info’,
 data: blob
 });
 $rootScope.$apply();

 expect(requests[0].requestBody).toBe(blob);
});

In this test we need to try a couple of different ways to construct the Blob, since the API standard
is not consistently implemented across browsers and we want our tests to work regardless of which
browser we run it in.

We should also skip JSON serialization for FormData objects. Like Blobs, FormData objects are
something XMLHttpRequest already knows how to handle, and we shouldn’t be trying to turn
them into JSON:

test/http_spec.js
it('does not serialize form data for requests', function() {
 var formData = new FormData();
 formData.append('aField', 'aValue');
 $http({
 method: 'POST',
 url: 'http://teropa.info',

https://developer.mozilla.org/en/docs/Web/API/Blob
https://developer.mozilla.org/en-US/docs/Web/API/FormData

JSON Serialization And Parsing 23

626 Errata© Tero Parviainen 2016

 data: formData
 });

 expect(requests[0].requestBody).toBe(formData);
});

In our transformer we should guard the serialization call with a check to see if it is one of these
objects. We also guard for a third type of object - File - though we don’t have a unit test for it be-
cause, to be frank, constructing one is more trouble than it’s worth:

src/http.js
transformRequest: [function(data) {
 if (_.isObject(data) && !isBlob(data) &&
 !isFile(data) && !isFormData(data)) {
 return JSON.stringify(data);
 } else {
 return data;
 }
}]

We are using three new helper function here, each of which looks at the String representation of
the object and checks if its type is the one we’re interested in:

src/http.js
function isBlob(object) {
 return object.toString() === '[object Blob]';
}
function isFile(object) {
 return object.toString() === '[object File]';
}
function isFormData(object) {
 return object.toString() === '[object FormData]';
}

This is all we need for JSON requests. The other half of $http’s JSON support is responses: If the
server indicates a JSON content type in the response, what you get as the response data is a JavaS-
cript data structure parsed from the response.

test/http_spec.js
it('parses JSON data for JSON responses', function() {
 var response;
 $http({
 method: 'GET',
 url: 'http://teropa.info'
 }).then(function(r) {
 response = r;
 });
 requests[0].respond(

https://developer.mozilla.org/en/docs/Web/API/File

JSON Serialization And Parsing 23

627 Errata© Tero Parviainen 2016

 200,
 {'Content-Type': 'application/json'},
 '{"message":"hello"}'
);

 expect(_.isObject(response.data)).toBe(true);
 expect(response.data.message).toBe('hello');
});

We now need LoDash in this test file as well:

test/http_spec.js
'use strict';

var _ = require('lodash');
var sinon = require('sinon');
var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

Just like the requests, this is also done with a transform. Let’s add a response transform function to
the defaults:

src/http.js
var defaults = this.defaults = {
 headers: {
 common: {
 Accept: 'application/json, text/plain, */*'
 },
 post: {
 'Content-Type': 'application/json;charset=utf-8'
 },
 put: {
 'Content-Type': 'application/json;charset=utf-8'
 },
 patch: {
 'Content-Type': 'application/json;charset=utf-8'
 }
 },
 transformRequest: [function(data) {
 if (_.isObject(data) && !isBlob(data) &&
 !isFile(data) && !isFormData(data)) {
 return JSON.stringify(data);
 } else {
 return data;
 }
 }],
 transformResponse: [defaultHttpResponseTransform]
};

This is a function that - like any response transform - takes the response data and headers as argu-

JSON Serialization And Parsing 23

628 Errata© Tero Parviainen 2016

ments:

src/http.js
function defaultHttpResponseTransform(data, headers) {

}

What the function does is check if the response data is a String, and if the indicated content type
is application/json. When those two conditions are true, the response data is parsed as JSON,
and otherwise returned as-is:

src/http.js
function defaultHttpResponseTransform(data, headers) {
 if (_.isString(data)) {
 var contentType = headers('Content-Type');
 if (contentType && contentType.indexOf('application/json') === 0) {
 return JSON.parse(data);
 }
 }
 return data;
}
Angular actually attempts to be a little bit more clever than this though: It will try to parse re-
sponses as JSON if they look like JSON, even when the server fails to indicate their content type
as JSON. So, for example, the following response data is parsed even though there is no Con-
tent-Type header in the response:

test/http_spec.js
it('parses a JSON object response without content type', function() {
 var response;
 $http({
 method: 'GET',
 url: 'http://teropa.info'
 }).then(function(r) {
 response = r;
 });
 requests[0].respond(200, {}, '{"message":"hello"}');

 expect(_.isObject(response.data)).toBe(true);
 expect(response.data.message).toBe('hello');
});

This also happens with arrays - a String representing a JSON array is parsed even without a con-
tent type:

test/http_spec.js
it('parses a JSON array response without content type', function() {
 var response;
 $http({

JSON Serialization And Parsing 23

629 Errata© Tero Parviainen 2016

 method: 'GET',
 url: 'http://teropa.info'
 }).then(function(r) {
 response = r;
 });
 requests[0].respond(200, {}, '[1, 2, 3]');

 expect(_.isArray(response.data)).toBe(true);
 expect(response.data).toEqual([1, 2, 3]);
});

So, in our JSON response transformer, we should not only be looking at the content type, but also
the data itself - does it look like JSON?

src/http.js
function defaultHttpResponseTransform(data, headers) {
 if (_.isString(data)) {
 var contentType = headers('Content-Type');
 if ((contentType && contentType.indexOf('application/json') === 0) ||
 isJsonLike(data)) {
 return JSON.parse(data);
 }
 }
 return data;
}

We could simply consider something that begins with a curly brace or a square bracket to be
JSON-like:

src/http.js
function isJsonLike(data) {
 return data.match(/^\{/) || data.match(/^\[/);
}

Angular tries to be a little bit more smart about this though. A response that looks almost like valid
JSON but isn’t because the start and end characters are not the same, should not result in an error:

test/http_spec.js
it('does not choke on response resembling JSON but not valid', function() {
 var response;
 $http({
 method: 'GET',
 url: 'http://teropa.info'
 }).then(function(r) {
 response = r;
 });
 requests[0].respond(200, {}, '{1, 2, 3]');

 expect(response.data).toEqual('{1, 2, 3]');

URL Parameters 23

630 Errata© Tero Parviainen 2016

});

Another case is a response string that begins with two curly braces - it kind of looks like JSON
but isn’t. The reason we take this special case into account is that $http is also used for loading
Angular templates, and it is not uncommon for those to begin with an {{interpolation ex-
pression}}:

test/http_spec.js
it('does not try to parse interpolation expr as JSON', function() {
 var response;
 $http({
 method: 'GET',
 url: 'http://teropa.info'
 }).then(function(r) {
 response = r;
 });
 requests[0].respond(200, {}, '{{expr}}');

 expect(response.data).toEqual('{{expr}}');
});

Here’s an updated test for JSON-likeness that takes these two cases into account. If the data begins
with a curly brace, it should also end with a curly brace, and the same is true for square brackets.
We also check that an opening curly brace is not immediately followed by another curly brace,
using a lookahead expression:

src/http.js
function isJsonLike(data) {
 if (data.match(/^\{(?!\{)/)) {
 return data.match(/\}$/);
 } else if (data.match(/^\[/)) {
 return data.match(/\]$/);
 }
}

URL Parameters

We’ve seen how we can use $http to send information to a server in three parts: The request URL,
the request headers, and the request body. The final way to attach information to an HTTP request
that we’ll look at is URL query parameters. That is, the key-value pairs that are attached to the URL
after a ? sign: ?a=1&b=2.

Granted, using query parameters is already possible with our current implementation, since you
can just attach them to the URL string you give to HTTP. But having to serialize your parameters
and keep track of the separator characters is a bit cumbersome, so you’d probably rather have An-
gular do this for you. It will do that if you use the params attribute in the request configuration:

URL Parameters 23

631 Errata© Tero Parviainen 2016

test/http_spec.js
it('adds params to URL', function() {
 $http({
 url: 'http://teropa.info',
 params: {
 a: 42
 }
 });

 expect(requests[0].url).toBe('http://teropa.info?a=42');
});

The implementation is smart enough to see if the URL string itself already had parameters, and
just appends the params to them if so:

test/http_spec.js
it('adds additional params to URL', function() {
 $http({
 url: 'http://teropa.info?a=42',
 params: {
 b: 42
 }
 });

 expect(requests[0].url).toBe('http://teropa.info?a=42&b=42');
});

In $http, before we give the request to the HTTP backend, we’ll now construct the request URL
using two helper functions called serializeParams and buildUrl. The first of these takes the
parameters of the request and serializes them into a string, and the second combines the request
URL and the serialized params:

src/http.js
var url = buildUrl(config.url, serializeParams(config.params));

$httpBackend(
 config.method,
 url,
 reqData,
 done,
 config.headers,
 config.withCredentials
);

Let’s go ahead and create these functions. The serializeParams function iterates over the
parameters object and forms a string for each parameter. The string contains the key and value
separated by an equals sign. When the function has gone over all the params, it joins up the parts

URL Parameters 23

632 Errata© Tero Parviainen 2016

with the & character:

src/http.js
function serializeParams(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 parts.push(key + '=' + value);
 });
 return parts.join('&');
}

The buildUrl function appends the serialized parameters into the given URL. It checks whether
it should use the ? or & delimiter based of what the URL string already contains:

src/http.js
function buildUrl(url, serializedParams) {
 if (serializedParams.length) {
 url += (url.indexOf('?') === -1) ? '?' : '&';
 url += serializedParams;
 }
 return url;
}

Some URL parameters will have characters in them that are not safe to append to a URL directly.
This includes characters like = and & because they would be confused by the parameter separators
themselves. For this reason, both the names and values of the parameters need to be escaped before
they’re appended:

test/http_spec.js
it('escapes url characters in params', function() {
 $http({
 url: 'http://teropa.info',
 params: {
 '==': '&&'
 }
 });

 expect(requests[0].url).toBe('http://teropa.info?%3D%3D=%26%26');
});

We can use JavaScript’s built-in encodeURIComponent function to do the escaping for us:

src/http.js
function serializeParams(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 parts.push(
 encodeURIComponent(key) + '=' + encodeURIComponent(value));

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent

URL Parameters 23

633 Errata© Tero Parviainen 2016

 });
 return parts.join('&');
}

The actual AngularJS implementation does not use encodeURIComponent directly, but instead an internal
utility called encodeUriQuery, which doesn’t escape quite as much. For example, it leaves characters like @
and : unescaped.

If there are any parameters included whose values are null or undefined, they are left out of the
resulting URL:

test/http_spec.js
it('does not attach null or undefined params', function() {
 $http({
 url: 'http://teropa.info',
 params: {
 a: null,
 b: undefined
 }
 });

 expect(requests[0].url).toBe('http://teropa.info');
});

We can just add a check for these two values into the loop, and skip a parameter when its value
matches:

src/http.js
function serializeParams(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 parts.push(
 encodeURIComponent(key) + '=' + encodeURIComponent(value));
 });
 return parts.join('&');
}

HTTP supports having multiple values for a given parameter name in query parameters. This is
done by just repeating the parameter name for each of the values. Angular also supports having
multiple values for a parameter, when you use an array as the parameter’s value:

test/http_spec.js
it('attaches multiple params from arrays', function() {
 $http({

https://github.com/angular/angular.js/blob/afd0807520133e1dc97222c714d3cab2992649f1/src/Angular.js#L1250-L1258

URL Parameters 23

634 Errata© Tero Parviainen 2016

 url: 'http://teropa.info',
 params: {
 a: [42, 43]
 }
 });

 expect(requests[0].url).toBe('http://teropa.info?a=42&a=43');
});

We should have an inner loop that iterates over each value inside our parameter loop. For simplic-
ity’s sake we’ll do this for all parameters, and just wrap any parameter values that aren’t already
arrays:

src/http.js
function serializeParams(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 if (!_.isArray(value)) {
 value = [value];
 }
 _.forEach(value, function(v) {
 parts.push(
 encodeURIComponent(key) + '=' + encodeURIComponent(v));
 });
 });
 return parts.join('&');
}

So arrays have a special meaning when used as parameter values. But what happens to objects?
There’s no “nested parameter” support in HTTP by default, so what happens is that objects are
just serialized into JSON (and then URL-escaped). So, it is in fact possible to transport some
JSON in query parameters, if the server is prepared to deserialize it as such:

test/http_spec.js
it('serializes objects to json', function() {
 $http({
 url: 'http://teropa.info',
 params: {
 a: {b: 42}
 }
 });

 expect(requests[0].url).toBe('http://teropa.info?a=%7B%22b%22%3A42%7D');
});

In our inner value loop, we should check if the value is an object and stringify it if so:

URL Parameters 23

635 Errata© Tero Parviainen 2016

src/http.js
function serializeParams(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 if (!_.isArray(value)) {
 value = [value];
 }
 _.forEach(value, function(v) {
 if (_.isObject(v)) {
 v = JSON.stringify(v);
 }
 parts.push(
 url += encodeURIComponent(key) + '=' + encodeURIComponent(v));
 });
 });
 return parts.join('&');
}

The JSON serialization support will also take care of Dates, because a JavaScript Date will turn
into its ISO 8601 string representation when given to JSON.stringify. To make sure that, we
can add the following test that should pass right away:

test/http_spec.js
it(‘serializes dates to ISO strings’, function() {
 $http({
 url: ‘http://teropa.info’,
 params: {
 a: new Date(2015, 0, 1, 12, 0, 0)
 }
 });
 $rootScope.$apply();

 expect(/\d{4}-\d{2}-\d{2}T\d{2}%3A\d{2}%3A\d{2}/
 .test(requests[0].url)).toBeTruthy();
});

This is how URL parameter serialization works by default. But as an application user you can
actually also substitute this approach with your own. You may attach a paramSerializer key to
the request configuration or the predefined $http defaults configuration. It should be a function
that takes a params object and returns the serialized params string. It essentially has the same con-
tract as our existing serializeParams function:

test/http_spec.js
it('allows substituting param serializer', function() {
 $http({

URL Parameters 23

636 Errata© Tero Parviainen 2016

 url: 'http://teropa.info',
 params: {
 a: 42,
 b: 43
 },
 paramSerializer: function(params) {
 return _.map(params, function(v, k) {
 return k + '=' + v + 'lol';
 }).join('&');
 }
 });

 expect(requests[0].url)
 .toEqual('http://teropa.info?a=42lol&b=43lol');
});

So, when building the URL we use the paramSerializer function of the request config instead
of invoking the serializeParams function directly:

src/http.js
var url = buildUrl(config.url,
 config.paramSerializer(config.params));

$httpBackend(
 config.method,
 url,
 reqData,
 done,
 config.headers,
 config.withCredentials
);

In the defaults we set the default serializeParams function we implemented earlier. That’s what
we want to use if nothing else is configured:

src/http.js
var defaults = this.defaults = {
 // ...
 paramSerializer: serializeParams
};

When forming each actual request config, we should also pull in the default param serializer:

src/http.js
function $http(requestConfig) {
 var config = _.extend({
 method: 'GET',
 transformRequest: defaults.transformRequest,
 transformResponse: defaults.transformResponse,

URL Parameters 23

637 Errata© Tero Parviainen 2016

 paramSerializer: defaults.paramSerializer
 }, requestConfig);
 // ...
}

There’s actually an even more convenient way to supply your own param serializer: You can make
one available in the dependency injector and then just refer to its name in the request configura-
tion. Here’s a custom serializer defined with a factory:

test/http_spec.js
it('allows substituting param serializer through DI', function() {
 var injector = createInjector(['ng', function($provide) {
 $provide.factory('mySpecialSerializer', function() {
 return function(params) {
 return _.map(params, function(v, k) {
 return k + '=' + v + 'lol';
 }).join('&');
 };
 });
 }]);
 injector.invoke(function($http) {
 $http({
 url: 'http://teropa.info',
 params: {
 a: 42,
 b: 43
 },
 paramSerializer: 'mySpecialSerializer'
 });

 expect(requests[0].url)
 .toEqual('http://teropa.info?a=42lol&b=43lol');
 });
});

We’re going to need the $injector in the $http service, so let’s inject it in:

src/http.js
this.$get = ['$httpBackend', '$q', '$rootScope', '$injector',
 function($httpBackend, $q, $rootScope, $injector) {
 // ...
}];

In the $http function we can then use the $injector to obtain the param serializer function if
what we have in the configuration is just a string:

src/http.js
function $http(requestConfig) {
 var config = _.extend({

URL Parameters 23

638 Errata© Tero Parviainen 2016

 method: 'GET',
 transformRequest: defaults.transformRequest,
 transformResponse: defaults.transformResponse,
 paramSerializer: defaults.paramSerializer
 }, requestConfig);
 config.headers = mergeHeaders(requestConfig);
 if (_.isString(config.paramSerializer)) {
 config.paramSerializer = $injector.get(config.paramSerializer);
 }
 // ...
}

In fact, the default param serializer itself is available in the dependency injector, by the name of
$httpParamSerializer. This means you can also use it for other purposes or decorate it:

test/angular_public_spec.js
it('makes default param serializer available through DI', function() {
 var injector = createInjector(['ng']);
 injector.invoke(function($httpParamSerializer) {
 var result = $httpParamSerializer({a: 42, b: 43});
 expect(result).toEqual('a=42&b=43');
 });
});

In http.js we can change the serializeParams function so that it is no longer a top level func-
tion, but the return value of a new provider instead:

src/http.js
function $HttpParamSerializerProvider() {
 this.$get = function() {
 return function serializeParams(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 if (!_.isArray(value)) {
 value = [value];
 }
 _.forEach(value, function(v) {
 if (_.isObject(v)) {
 v = JSON.stringify(v);
 }
 parts.push(
 encodeURIComponent(key) + '=' + encodeURIComponent(v));
 });
 });
 return parts.join('&');
 };
 };

URL Parameters 23

639 Errata© Tero Parviainen 2016

}

Let’s also change the exports of http.js so that not only the HTTP provider, but this new provid-
er too is exported:

src/http.js
module.exports = {
 $HttpProvider: $HttpProvider,
 $HttpParamSerializerProvider: $HttpParamSerializerProvider
};

We will then register this provider into the ng module:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
 ngModule.provider('$httpBackend', require('./http_backend'));
 ngModule.provider('$http', require('./http').$HttpProvider);
 ngModule.provider('$httpParamSerializer',
 require('./http').$HttpParamSerializerProvider);

}

In the $http config defaults, we now refer to the name of the default serializer since we no longer
have the standalone serializeParams function:

src/http.js
var defaults = this.defaults = {
 // ...
 paramSerializer: '$httpParamSerializer'
};

Angular ships with one alternative to the $httpParamSerializer by default: Instead of using
the default, you can enable jQuery compatible serialization by using the $httpParamSerial-
izerJQLike serializer. This may be useful if you have an existing backend that has been built to
consume jQuery-serialized forms, or if you just need to send nested data structures but can’t use
JSON.

As we’ll soon see, it serializes collections in a special way, but for primitives it behaves exactly like
the default serializer:

http://api.jquery.com/jquery.param/

URL Parameters 23

640 Errata© Tero Parviainen 2016

test/http_spec.js
describe('JQ-like param serialization', function() {

 it('is possible', function() {
 $http({
 url: 'http://teropa.info',
 params: {
 a: 42,
 b: 43
 },
 paramSerializer: '$httpParamSerializerJQLike'
 });

 expect(requests[0].url).toEqual('http://teropa.info?a=42&b=43');
 });

});

This serializer is defined by another provider in http.js:

src/http.js
function $HttpParamSerializerJQLikeProvider() {
 this.$get = function() {
 return function(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 parts.push(
 encodeURIComponent(key) + '=' + encodeURIComponent(value));
 });
 return parts.join('&');
 };
 };
}

This provider should be exported as well:

src/http.js
module.exports = {
 $HttpProvider: $HttpProvider,
 $HttpParamSerializerProvider: $HttpParamSerializerProvider,
 $HttpParamSerializerJQLikeProvider: $HttpParamSerializerJQLikeProvider
};

Then it should be registered into the ng module:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

URL Parameters 23

641 Errata© Tero Parviainen 2016

 var ngModule = angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
 ngModule.provider('$httpBackend', require('./http_backend'));
 ngModule.provider('$http', require('./http').$HttpProvider);
 ngModule.provider('$httpParamSerializer',
 require('./http').$HttpParamSerializerProvider);
 ngModule.provider('$httpParamSerializerJQLike',
 require('./http').$HttpParamSerializerJQLikeProvider);
}

The values null and undefined are also skipped by this serializer:

src/http.js
function $HttpParamSerializerJQLikeProvider() {
 this.$get = function() {
 return function(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 parts.push(
 encodeURIComponent(key) + '=' + encodeURIComponent(value));
 });
 return parts.join('&');
 };
 };
}

Where this serializer starts to differ from the default is when we look at how it deals with arrays. It
appends a square bracket suffix [] to the param names that originate from an array value:

test/http_spec.js
it('uses square brackets in arrays', function() {
 $http({
 url: 'http://teropa.info',
 params: {
 a: [42, 43]
 },
 paramSerializer: '$httpParamSerializerJQLike'
 });

 expect(requests[0].url).toEqual('http://teropa.info?a%5B%5D=42&a%5B%5D=43');
});

URL Parameters 23

642 Errata© Tero Parviainen 2016

The opening square bracket becomes %5B when URL-encoded, and the closing square bracket
becomes %5D.

Here’s how we can handle the array case:

src/http.js
function $HttpParamSerializerJQLikeProvider() {
 this.$get = function() {
 return function(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 if (_.isArray(value)) {
 _.forEach(value, function(v) {
 parts.push(
 encodeURIComponent(key + '[]') + '=' + encodeURIComponent(v));
 });
 } else {
 parts.push(
 encodeURIComponent(key) + '=' + encodeURIComponent(value));
 }
 });
 return parts.join('&');
 };
 };
}

When serializing objects, square brackets are also used. The difference to arrays is that here the
key the key used in the object is put in between the square brackets:

test/http_spec.js
it('uses square brackets in objects', function() {
 $http({
 url: 'http://teropa.info',
 params: {
 a: {b: 42, c: 43}
 },
 paramSerializer: '$httpParamSerializerJQLike'
 });

 expect(requests[0].url).toEqual('http://teropa.info?a%5Bb%5D=42&a%5Bc%5D=43');
});

We’ll handle object in its own else if branch. While Dates are also objects, we want to handle
them as primitives from the serialization point of view. For that reason we add a special check for
them:

URL Parameters 23

643 Errata© Tero Parviainen 2016

src/http.js
function $HttpParamSerializerJQLikeProvider() {
 this.$get = function() {
 return function(params) {
 var parts = [];
 _.forEach(params, function(value, key) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 if (_.isArray(value)) {
 _.forEach(value, function(v) {
 parts.push(
 encodeURIComponent(key + '[]') + '=' + encodeURIComponent(v));
 });
 } else if (_.isObject(value) && !_.isDate(value)) {
 _.forEach(value, function(v, k) {
 parts.push(
 encodeURIComponent(key + '[' + k + ']') + '=' +
 encodeURIComponent(v));
 });
 } else {
 parts.push(
 encodeURIComponent(key) + '=' + encodeURIComponent(value));
 }
 });
 return parts.join('&');
 };
 };
}

These square bracket prefixes also work recursively, so that when you have nested objects, the
square brackets are repeated for each one, so that {a: {b: {c: 42}}} becomes a[b][c]=42:

test/http_spec.js
it('supports nesting in objects', function() {
 $http({
 url: 'http://teropa.info',
 params: {
 a: {b: {c: 42}}
 },
 paramSerializer: '$httpParamSerializerJQLike'
 });

 expect(requests[0].url).toEqual('http://teropa.info?a%5Bb%5D%5Bc%5D=42');
});

We’re going to need to make our implementation recusive so that we can support arbitrary depths
of nesting. Let’s reorganize our implementation so that it uses an internal serialize function
that always takes a prefix to prepend to the key, and may recusively invoke itself to append more
information to the prefix. Nothing is actually added to the parts array until a leaf-level value (i.e.

URL Parameters 23

644 Errata© Tero Parviainen 2016

something that is not an array or an object) is reached:

src/http.js
function $HttpParamSerializerJQLikeProvider() {
 this.$get = function() {
 return function(params) {
 var parts = [];

 function serialize(value, prefix) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 if (_.isArray(value)) {
 _.forEach(value, function(v) {
 serialize(v, prefix + '[]');
 });
 } else if (_.isObject(value) && !_.isDate(value)) {
 _.forEach(value, function(v, k) {
 serialize(v, prefix + '[' + k + ']');
 });
 } else {
 parts.push(
 encodeURIComponent(prefix) + '=' + encodeURIComponent(value));
 }
 }

 _.forEach(params, function(value, key) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 if (_.isArray(value)) {
 _.forEach(value, function(v) {
 serialize(v, key + '[]');
 });
 } else if (_.isObject(value) && !_.isDate(value)) {
 _.forEach(value, function(v, k) {
 serialize(v, key + '[' + k + ']');
 });
 } else {
 parts.push(
 encodeURIComponent(key) + '=' +
 encodeURIComponent(value));
 }
 });
 return parts.join('&');
 };
 };
}

This works quite nicely, but we are now duplicating a lot of code here. We have almost the same
logic repeated once for the top-level params object and once for nested values. The only difference

URL Parameters 23

645 Errata© Tero Parviainen 2016

between the two cases is that the square bracket syntax is not used on the top level.

If we introduce a topLevel flag to serialize instead, we can get rid of the duplication. We
can just pass the top-level params object to serialize and set the flag to true. When the flag is
true, we don’t append the square brackets to object keys:

src/http.js
function $HttpParamSerializerJQLikeProvider() {
 this.$get = function() {
 return function(params) {
 var parts = [];

 function serialize(value, prefix, topLevel) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 if (_.isArray(value)) {
 _.forEach(value, function(v) {
 serialize(v, prefix + '[]');
 });
 } else if (_.isObject(value) && !_.isDate(value)) {
 _.forEach(value, function(v, k) {
 serialize(v, prefix +
 (topLevel ? '' : '[') +
 k +
 (topLevel ? '' : ']'));
 });
 } else {
 parts.push(
 encodeURIComponent(prefix) + '=' + encodeURIComponent(value));
 }
 }

 serialize(params, '', true);

 return parts.join('&');
 };
 };
}

Finally, if the items contained in an array are objects (or nested arrays) themselves, we emit the
array index between the square brackets, so that {a: [{b: 42}]} does not become a[][b]=42
but a[0][b]=42:

test/http_spec.js
it('appends array indexes when items are objects', function() {
 $http({
 url: 'http://teropa.info',
 params: {
 a: [{b: 42}]

Shorthand Methods 23

646 Errata© Tero Parviainen 2016

 },
 paramSerializer: '$httpParamSerializerJQLike'
 });

 expect(requests[0].url).toEqual('http://teropa.info?a%5B0%5D%5Bb%5D=42');
});

We can use the loop index to put between the square brackets in this case:

src/http.js
function $HttpParamSerializerJQLikeProvider() {
 this.$get = function() {
 return function(params) {
 var parts = [];

 function serialize(value, prefix, topLevel) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return;
 }
 if (_.isArray(value)) {
 _.forEach(value, function(v, i) {
 serialize(v, prefix +
 '[' +
 (_.isObject(v) ? i : '') +
 ']');
 });
 } else if (_.isObject(value)) {
 _.forEach(value, function(v, k) {
 serialize(v, prefix +
 (topLevel ? '' : '[') +
 k +
 (topLevel ? '' : ']'));
 });
 } else {
 parts.push(
 encodeURIComponent(prefix) + '=' + encodeURIComponent(value));
 }
 }

 serialize(params, '', true);

 return parts.join('&');
 };
 };
}

Shorthand Methods

We’ve pretty much covered everything about $http that affects how the actual HTTP responses
are made, and for the remainder of the chapter we’ll focus on a few things that relate to the API

Shorthand Methods 23

647 Errata© Tero Parviainen 2016

$http provides to your application, and the asynchronous Promise workflow that takes place with
requests.

One of the conveniences $http provides to applications comes in the form of a few shorthand
methods that enable making requests in a more streamlined way than using the raw $http func-
tion. For instance, there is a method called get that takes a request URL and an optional request
config, and issues a GET request:

test/http_spec.js
it('supports shorthand method for GET', function() {
 $http.get('http://teropa.info', {
 params: {q: 42}
 });

 expect(requests[0].url).toBe('http://teropa.info?q=42');
 expect(requests[0].method).toBe('GET');
});

The method calls the lower-level $http function, making sure that the configuration object has the
given URL and the GET method attached:

src/http.js
$http.defaults = defaults;
$http.get = function(url, config) {
 return $http(_.extend(config || {}, {
 method: 'GET',
 url: url
 }));
};
return $http;

The exact same kind of shorthand method is also provided for HEAD and DELETE requests:

test/http_spec.js
it('supports shorthand method for HEAD', function() {
 $http.head('http://teropa.info', {
 params: {q: 42}
 });

 expect(requests[0].url).toBe('http://teropa.info?q=42');
 expect(requests[0].method).toBe('HEAD');
});

it('supports shorthand method for DELETE', function() {
 $http.delete('http://teropa.info', {
 params: {q: 42}
 });

Shorthand Methods 23

648 Errata© Tero Parviainen 2016

 expect(requests[0].url).toBe('http://teropa.info?q=42');
 expect(requests[0].method).toBe('DELETE');
});

The implementations for these methods are also exactly the same as for GET - with the exception
of the method HTTP method that’s configured:

src/http.js
$http.head = function(url, config) {
 return $http(_.extend(config || {}, {
 method: 'HEAD',
 url: url
 }));
};
$http.delete = function(url, config) {
 return $http(_.extend(config || {}, {
 method: 'DELETE',
 url: url
 }));
};

In fact, the three methods are so similar that we might as well generate them in a loop, to avoid all
that repetition in the code:

src/http.js
$http.defaults = defaults;
_.forEach(['get', 'head', 'delete'], function(method) {
 $http[method] = function(url, config) {
 return $http(_.extend(config || {}, {
 method: method.toUpperCase(),
 url: url
 }));
 };
});
return $http;

There are three more HTTP methods for which a shorthand method is provided: POST, PUT, and
PATCH. The difference with these three to the previous three is that they support request bodies,
which is to say you can set the data attribute on the requests. So this time the shorthand methods
take three arguments: The URL, the (optional) request data, and the (optional) request configura-
tion object:

test/http_spec.js
it('supports shorthand method for POST with data', function() {
 $http.post('http://teropa.info', 'data', {
 params: {q: 42}
 });

Interceptors 23

649 Errata© Tero Parviainen 2016

 expect(requests[0].url).toBe('http://teropa.info?q=42');
 expect(requests[0].method).toBe('POST');
 expect(requests[0].requestBody).toBe('data');
});

it('supports shorthand method for PUT with data', function() {
 $http.put('http://teropa.info', 'data', {
 params: {q: 42}
 });

 expect(requests[0].url).toBe('http://teropa.info?q=42');
 expect(requests[0].method).toBe('PUT');
 expect(requests[0].requestBody).toBe('data');
});

it('supports shorthand method for PATCH with data', function() {
 $http.patch('http://teropa.info', 'data', {
 params: {q: 42}
 });

 expect(requests[0].url).toBe('http://teropa.info?q=42');
 expect(requests[0].method).toBe('PATCH');
 expect(requests[0].requestBody).toBe('data');
});

Let’s generate these methods in another loop just below the one we added for GET, HEAD, and
DELETE:

src/http.js
_.forEach(['post', 'put', 'patch'], function(method) {
 $http[method] = function(url, data, config) {
 return $http(_.extend(config || {}, {
 method: method.toUpperCase(),
 url: url,
 data: data
 }));
 };
});

Interceptors

Earlier in the chapter we discussed request and response transforms and how they allow modify-
ing request and response bodies, mostly for the purposes of serialization and deserialization. Now
we’ll turn our attention to another feature that allows similar, generic processing steps to be at-
tached to HTTP requests and responses: Interceptors.

Interceptors are a more high-level and fully-featured API than transforms, and really allow for any
arbitrary execution logic to be attached to HTTP request and response processing. With intercep-

Interceptors 23

650 Errata© Tero Parviainen 2016

tors you can freely modify or replace requests and responses. Since interceptors are Promise-based,
you can do asynchronous work in them - something you cannot do with transforms.

Interceptors are created by factory functions. To register an interceptor, you need to append its
factory function into the interceptors array held by $httpProvider. This means interceptor
registration must happen at configuration time. Once the $http service is created, all registered
interceptor factory functions are invoked:

test/http_spec.js
it('allows attaching interceptor factories', function() {
 var interceptorFactorySpy = jasmine.createSpy();
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.interceptors.push(interceptorFactorySpy);
 }]);
 $http = injector.get('$http');

 expect(interceptorFactorySpy).toHaveBeenCalled();
});

We’ll set up this array in the $HttpProvider constructor, and expose it through the interceptors
attribute:

src/http.js
function $HttpProvider() {

 var interceptorFactories = this.interceptors = [];

 // ...

}

Then, when $http itself is created (when $httpProvider.$get is invoked), we’ll call all regis-
tered factories, which gives us an array of all the interceptors:

src/http.js
this.$get = ['$httpBackend', '$q', '$rootScope', '$injector'
 function($httpBackend, $q, $rootScope, $injector) {

 var interceptors = _.map(interceptorFactories, function(fn) {
 return fn();
 });

 // ...

}];

Interceptor factories may also be integrated to the dependency injection system. If a factory func-
tion has arguments, those arguments are injected. The factory may also be wrapped in an ar-

Interceptors 23

651 Errata© Tero Parviainen 2016

ray-style dependency injection wrapper [‘a’, ‘b’, function(a, b) { }]. Here we have an
interceptor factory that has a dependency to $rootScope:

test/http_spec.js
it('uses DI to instantiate interceptors', function() {
 var interceptorFactorySpy = jasmine.createSpy();
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.interceptors.push(['$rootScope', interceptorFactorySpy]);
 }]);
 $http = injector.get('$http');
 var $rootScope = injector.get('$rootScope');
 expect(interceptorFactorySpy).toHaveBeenCalledWith($rootScope);
});

We’ll use the injector’s invoke method to instantiate all interceptors, instead of calling the facto-
ries directly:

src/http.js
this.$get = ['$httpBackend', '$q', '$rootScope', '$injector',
 function($httpBackend, $q, $rootScope, $injector) {

 var interceptors = _.map(interceptorFactories, function(fn) {
 return $injector.invoke(fn);
 });

 // ...

}];

So far we have been appending interceptor factories directly into the $httpProvider.intercep-
tors array, but there’s also another way to register an interceptor. You can first register a regular
Angular factory, and then push its name into $httpProvider.interceptors. This makes it
easier to treat interceptors as first-class Angular components - “it’s just a factory”:

test/http_spec.js
it('allows referencing existing interceptor factories', function() {
 var interceptorFactorySpy = jasmine.createSpy().and.returnValue({});
 var injector = createInjector(['ng', function($provide, $httpProvider) {
 $provide.factory('myInterceptor', interceptorFactorySpy);
 $httpProvider.interceptors.push('myInterceptor');
 }]);
 $http = injector.get('$http');

 expect(interceptorFactorySpy).toHaveBeenCalled();
});

Upon interceptor creation, we must now check whether an interceptor has been registered as a
string or as a function. If it’s a string, we can obtain the corresponding interceptor using $injec-

Interceptors 23

652 Errata© Tero Parviainen 2016

tor.get (which will invoke the factory), and if it’s a function we can just invoke it like before:

src/http.js
var interceptors = _.map(interceptorFactories, function(fn) {
 return _.isString(fn) ? $injector.get(fn) :
 $injector.invoke(fn);
});

Now that we know how interceptors are registered, we can start talking about what they actually
are and how they are integrated into the $http’s request processing.

Interceptors make heavy use of Promises. They are attached to $http’s processing logic as Prom-
ise handlers, and they may also return Promises. We already have Promise integration in $http
(because it returns a Promise), but before we can integrate interceptors to it, we need to reorganize
things a little bit.

First of all, some of the code we currently have in the $http function will need to run before any
interceptors, and some after. The part that runs after interceptors will eventually need to run in a
Promise callback, but let’s first just extract it to a new function, which we’ll call serverRequest.
No new behavior is added at this point - the code is just moved from one function to another.
Where we draw the division is just after the config object has been created and the headers at-
tached to it:

src/http.js
function serverRequest(config) {
 if (_.isUndefined(config.withCredentials) &&
 !_.isUndefined(defaults.withCredentials)) {
 config.withCredentials = defaults.withCredentials;
 }

 var reqData = transformData(
 config.data,
 headersGetter(config.headers),
 undefined,
 config.transformRequest
);

 if (_.isUndefined(reqData)) {
 _.forEach(config.headers, function(v, k) {
 if (k.toLowerCase() === 'content-type') {
 delete config.headers[k];
 }
 });
 }

 function transformResponse(response) {
 if (response.data) {
 response.data = transformData(

Interceptors 23

653 Errata© Tero Parviainen 2016

 response.data,
 response.headers,
 response.status,
 config.transformResponse
);
 }
 if (isSuccess(response.status)) {
 return response;
 } else {
 return $q.reject(response);
 }
 }

 return sendReq(config, reqData)
 .then(transformResponse, transformResponse);
}

function $http(requestConfig) {
 var config = _.extend({
 method: 'GET',
 transformRequest: defaults.transformRequest,
 transformResponse: defaults.transformResponse,
 paramSerializer: defaults.paramSerializer
 }, requestConfig);
 if (_.isString(config.paramSerializer)) {
 config.paramSerializer = $injector.get(config.paramSerializer);
 }
 config.headers = mergeHeaders(requestConfig);

 return serverRequest(config);
}

Next, let’s tweak the way we create the $http Promise. Previously we just let sendReq create the
Promise that’s eventually returned, but now we’ll create one from the config object right in the
$http function, and then invoke serverRequest as a Promise handler. This also does not yet alter
the behavior of $http, but will make it easier to attach interceptors, which we’ll be doing momen-
tarily:

src/http.js
function $http(requestConfig) {
 var config = _.extend({
 method: 'GET',
 transformRequest: defaults.transformRequest,
 transformResponse: defaults.transformResponse,
 paramSerializer: defaults.paramSerializer
 }, requestConfig);
 if (_.isString(config.paramSerializer)) {
 config.paramSerializer = $injector.get(config.paramSerializer);
 }
 config.headers = mergeHeaders(requestConfig);

Interceptors 23

654 Errata© Tero Parviainen 2016

 var promise = $q.when(config);
 return promise.then(serverRequest);
}

Though we haven’t really changed the behavior of $http yet, you may have noticed that this
change breaks a large number of tests. That’s because with the way we’re now executing the re-
quest, it isn’t actually sent until the next digest after $http is called. The reason is that serverRequest
is invoked in a Promise callback, and Promise callbacks are only executed during digests.

This is indeed exactly what happens in Angular, but it does mean we need to make changes to our
tests. Basically, in each existing $http test case, we need to invoke $rootScope.$apply() after
we’ve invoked $http() before we can make any assertions about the request.

In order to call $apply we first need to get a handle on $rootScope at test setup:

test/http_spec.js
var $http, $rootScope;
var xhr, requests;

beforeEach(function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 $http = injector.get('$http');
 $rootScope = injector.get('$rootScope');
});

Then we need to add a $rootScope.$apply() call after each $http call. Here’s an example of
the first test case where it’s needed:

test/http_spec.js
it('makes an XMLHttpRequest to given URL', function() {
 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: 'hello'
 });
 $rootScope.$apply();
 expect(requests.length).toBe(1);
 expect(requests[0].method).toBe('POST');
 expect(requests[0].url).toBe('http://teropa.info');
 expect(requests[0].async).toBe(true);
 expect(requests[0].requestBody).toBe('hello');
});

Go ahead and repeat this for each test case in http_spec.js. Note that some of the test cases use
their own injector, so for them we need to get the $rootScope from that injector as well. Other-
wise we would be calling an unrelated $rootScope:

Interceptors 23

655 Errata© Tero Parviainen 2016

test/http_spec.js
it('exposes default headers through provider', function() {
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.defaults.headers.post['Content-Type'] =
 'text/plain;charset=utf-8';
 }]);
 $http = injector.get('$http');
 $rootScope = injector.get('$rootScope');

 $http({
 method: 'POST',
 url: 'http://teropa.info',
 data: '42'
 });
 $rootScope.$apply();

 expect(requests.length).toBe(1);
 expect(requests[0].requestHeaders['Content-Type']).toBe(
 'text/plain;charset=utf-8');
});

// ...

it('allows substituting param serializer through DI', function() {
 var injector = createInjector(['ng', function($provide) {
 $provide.factory('mySpecialSerializer', function() {
 return function(params) {
 return _.map(params, function(v, k) {
 return k + '=' + v + 'lol';
 }).join('&');
 };
 });
 }]);
 injector.invoke(function($http, $rootScope) {
 $http({
 url: 'http://teropa.info',
 params: {
 a: 42,
 b: 43
 },
 paramSerializer: 'mySpecialSerializer'
 });
 $rootScope.$apply();

 expect(requests[0].url)
 .toEqual('http://teropa.info?a=42lol&b=43lol');
 });
});

And finally we are ready to go ahead with the interceptor implementation!

Interceptors are objects that have one or more of four keys: request, requestError, response,

Interceptors 23

656 Errata© Tero Parviainen 2016

and responseError. The values of those keys are functions that get called at different points
during the processing of an HTTP request.

The first key we’ll look at is request. If an interceptor defines a request method, it will get
called before a request is sent out, and is expected to return a modified request. That means it can basi-
cally transform or replace the request before it’s sent - similar to what transforms do:

test/http_spec.js
it('allows intercepting requests', function() {
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.interceptors.push(function() {
 return {
 request: function(config) {
 config.params.intercepted = true;
 return config;
 }
 };
 });
 }]);
 $http = injector.get('$http');
 $rootScope = injector.get('$rootScope');

 $http.get('http://teropa.info', {params: {}});
 $rootScope.$apply();
 expect(requests[0].url).toBe('http://teropa.info?intercepted=true');
});

The interceptor function may also return a Promise for a modified request, which means that what-
ever it does, it can also do asynchronously. This feature alone makes interceptors much more
powerful than transforms:

test/http_spec.js
it('allows returning promises from request intercepts', function() {
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.interceptors.push(function($q) {
 return {
 request: function(config) {
 config.params.intercepted = true;
 return $q.when(config);
 }
 };
 });
 }]);
 $http = injector.get('$http');
 $rootScope = injector.get('$rootScope');

 $http.get('http://teropa.info', {params: {}});
 $rootScope.$apply();
 expect(requests[0].url).toBe('http://teropa.info?intercepted=true');

Interceptors 23

657 Errata© Tero Parviainen 2016

});

With the way we’ve now set up things in $http, integrating request interceptors is actually quite
simple. Each one is just another link in the Promise handler chain, with the actual request sending
being the final link:

src/http.js
var promise = $q.when(config);
_.forEach(interceptors, function(interceptor) {
 promise = promise.then(interceptor.request);
});
return promise.then(serverRequest);

Response interceptors work similarly to request interceptors - their argument is just the response
instead of the request. They can modify or replace the response and their return value will be used
as the response for further interceptors (and finally for application code):

test/http_spec.js
it('allows intercepting responses', function() {
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.interceptors.push(_.constant({
 response: function(response) {
 response.intercepted = true;
 return response;
 }
 }));
 }]);
 $http = injector.get('$http');
 $rootScope = injector.get('$rootScope');

 var response;
 $http.get('http://teropa.info').then(function(r) {
 response = r;
 });
 $rootScope.$apply();

 requests[0].respond(200, {}, 'Hello');
 expect(response.intercepted).toBe(true);
});

We can add the response interceptors by continuing the promise chain after the serverRequest
callback has been attached. Another difference to request interceptors is that this time we iterate
the interceptors in reverse order, where interceptors that were registered last get invoked first. This
makes sense if you think about the request-response cycle: When we’re handling the response,
we’re coming back up the interceptor chain.

src/http.js
var promise = $q.when(config);

Interceptors 23

658 Errata© Tero Parviainen 2016

_.forEach(interceptors, function(interceptor) {
 promise = promise.then(interceptor.request);
});
promise = promise.then(serverRequest);
_.forEachRight(interceptors, function(interceptor) {
 promise = promise.then(interceptor.response);
});
return promise;

Interceptor 1

Interceptor 2

Interceptor 3

request response

request

request

response

response

serverRequest

The final two methods supported by interceptors have to do with error handling. The requestEr-
ror methods are invoked when something goes wrong before the request is actually sent out, which
is to say, there’s an error in one of the preceding interceptors:

test/http_spec.js
it('allows intercepting request errors', function() {
 var requestErrorSpy = jasmine.createSpy();
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.interceptors.push(_.constant({
 request: function(config) {
 throw 'fail';
 }
 }));
 $httpProvider.interceptors.push(_.constant({
 requestError: requestErrorSpy
 }));
 }]);

Interceptors 23

659 Errata© Tero Parviainen 2016

 $http = injector.get('$http');
 $rootScope = injector.get('$rootScope');

 $http.get('http://teropa.info');
 $rootScope.$apply();

 expect(requests.length).toBe(0);
 expect(requestErrorSpy).toHaveBeenCalledWith('fail');
});

We can integrate requestError interceptors at the same time as we are integrating request
interceptors. requestError functions are added as failure callbacks to the Promise chain:

src/http.js
var promise = $q.when(config);
_.forEach(interceptors, function(interceptor) {
 promise = promise.then(interceptor.request, interceptor.requestError);
});
promise = promise.then(serverRequest);
_.forEachRight(interceptors, function(interceptor) {
 promise = promise.then(interceptor.response);
});
return promise;

Response error interceptors will catch errors that happen after we have an HTTP response. Just
like response interceptors, they are invoked in reverse order, so they receive errors from either the
actual HTTP response, or from response interceptors registered before them:

test/http_spec.js
it('allows intercepting response errors', function() {
 var responseErrorSpy = jasmine.createSpy();
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.interceptors.push(_.constant({
 responseError: responseErrorSpy
 }));
 $httpProvider.interceptors.push(_.constant({
 response: function() {
 throw 'fail';
 }
 }));
 }]);
 $http = injector.get('$http');
 $rootScope = injector.get('$rootScope');

 $http.get('http://teropa.info');
 $rootScope.$apply();

 requests[0].respond(200, {}, 'Hello');
 $rootScope.$apply();

Promise Extensions 23

660 Errata© Tero Parviainen 2016

 expect(responseErrorSpy).toHaveBeenCalledWith('fail');
});

Registering responseError interceptors is completely symmetrical with registering requestEr-
ror interceptors: They’re added as failure callbacks at the same time when response interceptors
are registered:

src/http.js
var promise = $q.when(config);
_.forEach(interceptors, function(interceptor) {
 promise = promise.then(interceptor.request, interceptor.requestError);
});
promise = promise.then(serverRequest);
_.forEachRight(interceptors, function(interceptor) {
 promise = promise.then(interceptor.response, interceptor.responseError);
});
return promise;

There we have a complete implementation of interceptors. There’s a lot of power in them, but
using them effectively requires an understanding of how they integrate to the Promise chain used
by $http. We now have that understanding.

Promise Extensions

As a user of $http, you may have noticed that the Promises it returns have some methods on them that
we did not implement in the previous chapter. Those methods are success and error, and they are in
fact methods that only exist in Promises you get from $http.

The purpose of these extensions if to make it a little bit easier to work with HTTP responses. With
a normal then or catch handler, what you get as the argument is the full response object. What
success gives you instead is the response unpacked into four separate arguments: The response
data, the status code, the headers, and the original request configuration:

test/http_spec.js
it('allows attaching success handlers', function() {
 var data, status, headers, config;
 $http.get('http://teropa.info').success(function(d, s, h, c) {
 data = d;
 status = s;
 headers = h;
 config = c;
 });
 $rootScope.$apply();

 requests[0].respond(200, {'Cache-Control': 'no-cache'}, 'Hello');
 $rootScope.$apply();

Promise Extensions 23

661 Errata© Tero Parviainen 2016

 expect(data).toBe('Hello');
 expect(status).toBe(200);
 expect(headers('Cache-Control')).toBe('no-cache');
 expect(config.method).toBe('GET');
});

While this isn’t a hugely important feature, it can be convenient, especially if all you care about is the
response body - you can just declare a single-argument success handler and you don’t need to care
about the format of the response object.

A completely identical extension is also available for error responses. That’s the error handler:

test/http_spec.js
it('allows attaching error handlers', function() {
 var data, status, headers, config;
 $http.get('http://teropa.info').error(function(d, s, h, c) {
 data = d;
 status = s;
 headers = h;
 config = c;
 });
 $rootScope.$apply();

 requests[0].respond(401, {'Cache-Control': 'no-cache'}, 'Fail');
 $rootScope.$apply();

 expect(data).toBe('Fail');
 expect(status).toBe(401);
 expect(headers('Cache-Control')).toBe('no-cache');
 expect(config.method).toBe('GET');
});

These two extensions are attached to the final Promise object that we get after all the interceptors
have been applied. Each of them attaches a normal then or catch handler to the promise, and
includes a callback that unpacks the response into the separate arguments we saw in our test cases:

src/http.js
var promise = $q.when(config);
_.forEach(interceptors, function(interceptor) {
 promise = promise.then(interceptor.request, interceptor.requestError);
});
promise = promise.then(serverRequest);
_.forEachRight(interceptors, function(interceptor) {
 promise = promise.then(interceptor.response, interceptor.responseError);
});
promise.success = function(fn) {
 promise.then(function(response) {
 fn(response.data, response.status, response.headers, config);

Request Timeouts 23

662 Errata© Tero Parviainen 2016

 });
 return promise;
};
promise.error = function(fn) {
 promise.catch(function(response) {
 fn(response.data, response.status, response.headers, config);
 });
 return promise;
};
return promise;

Request Timeouts

With network requests, sometimes things just take too long: A server may take a very long time to
respond, or you may get into a situation where the server never responds because of some network
hiccup.

Browsers, servers, and proxies often have built-mechanisms for dealing with timeouts, but you may
also want to have some control in your application into how long you’re prepared to wait for a
response. Angular has some features that help with this.

Firstly, you can attach a timeout attribute on your request configuration object, and set a Promise
as the value of that attribute. Angular will then abort the request if the Promise resolves before a
response is received.

This is quite a powerful feature, since you can control when a request times out based on your
application logic: For example, the user might navigate to another route, or close a dialog, and you
can arrange things so that the application isn’t waiting for responses that will never be used.

test/http_spec.js
it('allows aborting a request with a Promise', function() {
 var timeout = $q.defer();
 $http.get('http://teropa.info', {
 timeout: timeout.promise
 });
 $rootScope.$apply();

 timeout.resolve();
 $rootScope.$apply();

 expect(requests[0].aborted).toBe(true);
});

For this test case we need to inject $q into the test suite:

test/http_spec.js
var $http, $rootScope, $q;

Request Timeouts 23

663 Errata© Tero Parviainen 2016

var xhr, requests;

beforeEach(function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 $http = injector.get('$http');
 $rootScope = injector.get('$rootScope');
 $q = injector.get('$q');
});

Timeout management is done in the HTTP backend. All we do in $http is pass in the timeout
attribute from the configuration:

src/http.js
$httpBackend(
 config.method,
 url,
 reqData,
 done,
 config.headers,
 config.timeout,
 config.withCredentials
);

In $httpBackend we receive that argument, and attach a Promise handler to it if one was given. That
handler simply aborts the ongoing XMLHttpRequest:

src/http_backend.js
return function(method, url, post, callback, headers, timeout, withCredentials) {
 var xhr = new window.XMLHttpRequest();
 xhr.open(method, url, true);
 _.forEach(headers, function(value, key) {
 xhr.setRequestHeader(key, value);
 });
 if (withCredentials) {
 xhr.withCredentials = true;
 }
 xhr.send(post || null);
 xhr.onload = function() {
 var response = ('response' in xhr) ? xhr.response :
 xhr.responseText;
 var statusText = xhr.statusText || '';
 callback(
 xhr.status,
 response,
 xhr.getAllResponseHeaders(),
 statusText
);
 };
 xhr.onerror = function() {

Request Timeouts 23

664 Errata© Tero Parviainen 2016

 callback(-1, null, '');
 };
 if (timeout) {
 timeout.then(function() {
 xhr.abort();
 });
 }
};

In addition to a Promise-based timeout, you can also simply supply a number as the value of the
timeout attribute. Angular will then abort the request after that amount of time (in milliseconds)
has passed.

We need the Jasmine clock feature that we also used in the previous chapter so that we can ma-
nipulate JavaScript’s internal clock. Add the following before and after callbacks to the $http test
suite:

test/http_spec.js
beforeEach(function() {
 jasmine.clock().install();
});
afterEach(function() {
 jasmine.clock().uninstall();
});

Now we can see that the request is aborted after the number of milliseconds specified in the re-
quest config has passed:

test/http_spec.js
it('allows aborting a request after a timeout', function() {
 $http.get('http://teropa.info', {
 timeout: 5000
 });
 $rootScope.$apply();

 jasmine.clock().tick(5001);

 expect(requests[0].aborted).toBe(true);
});

In $httpBackend, if we see a numeric timeout, as opposed to a Promise-like timeout, we’ll now
use a native setTimeout to abort the request:

src/http_backend.js
if (timeout && timeout.then) {
 timeout.then(function() {
 xhr.abort();
 });

Request Timeouts 23

665 Errata© Tero Parviainen 2016

} else if (timeout > 0) {
 setTimeout(function() {
 xhr.abort();
 }, timeout);
}

We should also make sure that we cancel that timeout if the request actually finishes before it fires.
We don’t want to call abort in the XMLHttpRequest when we shouldn’t be touching it anymore:

src/http_backend.js
return function(method, url, post, callback, headers, timeout, withCredentials) {
 var xhr = new window.XMLHttpRequest();
 var timeoutId;
 xhr.open(method, url, true);
 _.forEach(headers, function(value, key) {
 xhr.setRequestHeader(key, value);
 });
 if (withCredentials) {
 xhr.withCredentials = true;
 }
 xhr.send(post || null);
 xhr.onload = function() {
 if (!_.isUndefined(timeoutId)) {
 clearTimeout(timeoutId);
 }
 var response = ('response' in xhr) ? xhr.response :
 xhr.responseText;
 var statusText = xhr.statusText || '';
 callback(
 xhr.status,
 response,
 xhr.getAllResponseHeaders(),
 statusText
);
 };
 xhr.onerror = function() {
 if (!_.isUndefined(timeoutId)) {
 clearTimeout(timeoutId);
 }
 callback(-1, null, '');
 };
 if (timeout && timeout.then) {
 timeout.then(function() {
 xhr.abort();
 });
 } else if (timeout > 0) {
 timeoutId = setTimeout(function() {
 xhr.abort();
 }, timeout);
 }
};

Pending Requests 23

666 Errata© Tero Parviainen 2016

Pending Requests

Sometimes it is useful to inspect information about requests that are currently in flight. This is
mostly useful for debugging and tooling, but may have other use cases as well.

Such a feature could be implemented using interceptors, but there is also a built-in feature for it in
$http: Any ongoing requests are going to be in an array accessible via the attribute $http.pend-
ingRequests. A request is added there when it is sent, and removed when a response is received
- regardless of whether that’s a success or an error response:

test/http_spec.js
describe('pending requests', function() {

 it('are in the collection while pending', function() {
 $http.get('http://teropa.info');
 $rootScope.$apply();

 expect($http.pendingRequests).toBeDefined();
 expect($http.pendingRequests.length).toBe(1);
 expect($http.pendingRequests[0].url).toBe('http://teropa.info');

 requests[0].respond(200, {}, 'OK');
 $rootScope.$apply();

 expect($http.pendingRequests.length).toBe(0);
 });

 it('are also cleared on failure', function() {
 $http.get('http://teropa.info');
 $rootScope.$apply();

 requests[0].respond(404, {}, 'Not found');
 $rootScope.$apply();

 expect($http.pendingRequests.length).toBe(0);
 });

});

We’ll initialize this array into the $http object in $httpProvider.$get:

src/http.js
$http.defaults = defaults;
$http.pendingRequests = [];

Now we can add the addition and removal of requests to this array, which we’ll do in the sen-

Integrating $http and $applyAsync 23

667 Errata© Tero Parviainen 2016

dReq method. A request is pushed into the array when it’s sent, and removed when the Promise is
resolved or rejected:

src/http.js
function sendReq(config, reqData) {
 var deferred = $q.defer();
 $http.pendingRequests.push(config);
 deferred.promise.then(function() {
 _.remove($http.pendingRequests, config);
 }, function() {
 _.remove($http.pendingRequests, config);
 });

 // ...

}

Note that since we do this in sendReq and not in $http, a request is not considered “pending”
while it is in the interceptor pipeline. Only when it is actually in flight.

Integrating $http and $applyAsync

We’ll conclude the chapter by discussing a useful optimization that $http supports.

Back in Part 1 of the book, as we implemented Scopes, we discussed the $applyAsync feature
that shipped with Angular 1.3. It essentially allows scheduling a function to be run not immediate-
ly, but after “a little bit” of time has passed. The idea is that you can limit the number of digests
that happen in close succession, by postponing them and potentially combining them: If multi-
ple $applyAsync calls are made in the same few milliseconds, they’ll all be invoked in the same
digest.

The original motivation for $applyAsync was to use it together with $http. It is very common,
especially as an application starts up, to make several HTTP requests to the server at the same
time, to obtain different resources. If the server is fast, it is also likely that the responses for these
requests will arrive in quick succession. When this happens, Angular will kick off a new digest for
each of those responses, because that’s how $http works.

The optimization we can apply here is to kick off the digest that results from an HTTP response
using $applyAsync. Then, if several requests do arrive close to each other, the changes they
trigger will all happen in one digest. Depending on the app, this can result in very significant time
savings at critical points of the application lifecycle - particularly when it’s first loading.

The $applyAsync optimization is not enabled by default. You have to explicitly call useAp-
plyAsync(true) on the $httpProvider at configuration time to enable it. We’ll do that in a
beforeEach block for our test cases:

Integrating $http and $applyAsync 23

668 Errata© Tero Parviainen 2016

test/http_spec.js
describe('useApplyAsync', function() {

 beforeEach(function() {
 var injector = createInjector(['ng', function($httpProvider) {
 $httpProvider.useApplyAsync(true);
 }]);
 $http = injector.get('$http');
 $rootScope = injector.get('$rootScope');
 });

});

When this optimization is enabled, a response handler should not be invoked immediately when a
response arrives. This is in contrast to what we’ve seen earlier:

test/http_spec.js
it('does not resolve promise immediately when enabled', function() {
 var resolvedSpy = jasmine.createSpy();
 $http.get('http://teropa.info').then(resolvedSpy);
 $rootScope.$apply();

 requests[0].respond(200, {}, 'OK');
 expect(resolvedSpy).not.toHaveBeenCalled();
});

What’ll happen instead is that the response handler has been called after we let some time pass:

test/http_spec.js
it('resolves promise later when enabled', function() {
 var resolvedSpy = jasmine.createSpy();
 $http.get('http://teropa.info').then(resolvedSpy);
 $rootScope.$apply();

 requests[0].respond(200, {}, 'OK');
 jasmine.clock().tick(100);

 expect(resolvedSpy).toHaveBeenCalled();
});

In $httpProvider we’ll set up the useApplyAsync method and an internal useApplyAsync
boolean flag. The method can be invoked in two ways: When invoked with an argument it sets the flag,
and when invoked without an argument, it returns the current value of the flag:

src/http.js
function $HttpProvider() {

Summary 23

669 Errata© Tero Parviainen 2016

 var interceptorFactories = this.interceptors = [];

 var useApplyAsync = false;
 this.useApplyAsync = function(value) {
 if (_.isUndefined(value)) {
 return useApplyAsync;
 } else {
 useApplyAsync = !!value;
 return this;
 }
 };

 // ...

}

In our done handler we’ll now extract the code that actually resolves the Promise to a little help-
er function called resolvePromise. Based on the state of the useApplyAsync flag we’ll call
that function immediately (followed by $rootScope.$apply()) or call it later with $root-
Scope.$applyAsync():

src/http.js
function done(status, response, headersString, statusText) {
 status = Math.max(status, 0);

 function resolvePromise() {
 deferred[isSuccess(status) ? 'resolve' : 'reject']({
 status: status,
 data: response,
 statusText: statusText,
 headers: headersGetter(headersString),
 config: config
 });
 }

 if (useApplyAsync) {
 $rootScope.$applyAsync(resolvePromise);
 } else {
 resolvePromise();
 if (!$rootScope.$$phase) {
 $rootScope.$apply();
 }
 }
}

Summary

Angular’s $http service looks deceptively simple: It’s really just a function that executes HTTP
request using the browser’s built-in XMLHttpRequest support.

Summary 23

670 Errata© Tero Parviainen 2016

But as we’ve seen in this chapter, there’s more to $http than meets the eye. From error manage-
ment to Promise integration to the interceptor pipeline, $http really provides a lot for application
and library developers to base their networking code on.

In this chapter you have learned:

• That HTTP requests in Angular are handled by two collaborating services: $http and $http-
Backend. The backend may be overriden to provide an alternative transport or to mock it out
during testing.

• That $http is a function that takes a request configuration object and returns a Promise that
will later be resolved (or rejected) when a response arrives.

• That $http kicks off a digest on the $rootScope when the response arrives - unless useAp-
plyAsync is enabled, in which case it uses $rootScope.$applyAsync to do it later.

• That $http.defaults (and $httpProvider.defaults) allows setting some default config-
urations that’ll be used for all requests.

• How you can supply HTTP headers by providing a headers object in the request configura-
tion.

• That Angular has some default headers, such as Accept and Content-Type, but that you can
override them using $http.defaults.

• That default and request-specific headers are merged case-insensitively, since that’s how head-
ers work according to the HTTP standard.

• That request header values may also be functions that return the concrete header values when
called.

• That response headers are available through the headers function attached to the response
object, and how that function treats header names case-insensitively.

• That response headers are parsed lazily only when requested.
• How CORS authorization can be enabled by supplying the withCredentials flag in request

objects.
• That both request and response bodies can be transformed using transforms that are registered

with the transformRequest and transformResponse attributes, which may be either sup-
plied in $http.defaults or individual request objects

• That Angular uses request and response transforms to do JSON serialization and parsing by
default.

• How request data is serialized to JSON when it is an array or an object, unless it is a special
object like a Blob, File, or FormData.

• How response data is parsed as JSON when it’s either specified as such with a Content-Type
header, or when it merely looks like JSON.

• How single- and multi-value URL parameters can be supplied, and how they are escaped and
attached to the request URL.

• That objects are serialized into JSON when used as URL parameters.
• That Dates are serialized into their ISO 8601 representation when used as URL parameters.
• That you can customize the way URL parameters are serialized by providing your own serial-

izer.

Summary 23

671 Errata© Tero Parviainen 2016

• That there’s one built-in alternative URL parameter serializer that attempts to be compatible
with jQuery’s form serialization.

• That three short-hand methods are provided for HTTP methods without bodies: $http.get,
$http.head, and $http.delete.

• That three short-hand methods are provided for HTTP methods that do have bodies: $http.
post, $http.put, and $http.patch.

• How interceptor factories can be registered directly to the $httpProvider or as references to
existing factories.

• That interceptors are objects with one or more of the following methods: request, request-
Error, response, and responseError.

• How interceptors form a Promise-based pipeline for processing the HTTP request and re-
sponse.

• That response interceptors are invoked in reverse order compared to how they were registered.
• How $http extends Promise with two methods useful for dealing with HTTP responses: suc-

cess and error.
• How a request can be aborted with a Promise-based or a numeric timeout attribute.
• That all ongoing requests are made available through the array $http.pendingRequests.
• How $http can use the $applyAsync feature of Scope to skip unnecessary digests when sev-

eral HTTP responses arrive in quick succession.
• That the $applyAsync optimization is not enabled by default, and you have to call $http-

Provider.useApplyAsync(true) to enable it.

 24

672 Errata© Tero Parviainen 2016

Part 5

Directives

Dependency Injection

Scopes Expressions

Directives
(+ controllers)

$q

$http

 24

673 Errata© Tero Parviainen 2016

At this point of the book we’re ready to build what is considered by many to be the core feature of
AngularJS: The directive system.

Of the three distinguishing features of Angular - digests, dependency injection, and directives - this
is the one that is most directly involved with making applications for web browsers. Whereas di-
gests and DI are more or less general purpose features, directives are designed to work specifically
with the Document Object Model as browsers implement it. They are the most important building
block of Angular’s “view layer”.

The idea of directives is simple but powerful: An extensible DOM. In addition to the HTML
elements and attributes implemented by browsers and standardized by the W3C, we can make our
own HTML elements and attributes with special meaning and functionality. You could say that
with directives we can build Domain-Specific Languages (DSLs) on top of the standard DOM.
Those DSLs may be application-specific, or they may be something we share within our compa-
nies, or they may even be distributed as open source projects.

In many ways, the idea of an extensible DOM resembles the much older idea of extensible pro-
gramming languages. This idea has been most prevalent in the Lisp family of languages. In Lisps,
it is widespread practice to not just write your program in the programming language, but rather
extend the programming language to better fit your problem and then write the program in that new language.
Paul Graham, in his 1993 essay Programming Bottom-Up, put it like this:

Experienced Lisp programmers divide up their programs differently. As well as top-down design, they follow
a principle which could be called bottom-up design-- changing the language to suit the problem.

In Lisp, you don’t just write your program down toward the language, you also build the language up to-
ward your program. As you’re writing a program you may think “I wish Lisp had such-and-such an opera-
tor.” So you go and write it. Afterward you realize that using the new operator would simplify the design of
another part of the program, and so on.

Language and program evolve together. Like the border between two warring states, the boundary between
language and program is drawn and redrawn, until eventually it comes to rest along the mountains and
rivers, the natural frontiers of your problem. In the end your program will look as if the language had been
designed for it. And when language and program fit one another well, you end up with code which is clear,
small, and efficient.

If you’re used to writing Angular directives, this will probably sound familiar. This is exactly what
we do in Angular: We build the DOM up toward our application. We think: “I wish browsers had
such-and-such an element.” So we go and write it.

The idea of an extensible DOM does exist outside of Angular as well, in particular with the Web
Components standard currently being finalized and implemented. Web Components are in many
ways an evolution of Angular directives, and they go further in making things modular, by, for
example, scoping CSS rules at component boundaries. Angular 2 will, also make use of the Web

http://en.wikipedia.org/wiki/Lisp_(programming_language)
http://www.paulgraham.com/progbot.html
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components

 24

674 Errata© Tero Parviainen 2016

Components standard, but the 1.x versions do not do so.

The directive compiler is also the most complex part of the Angular codebase. To some extent,
this is due to the richness of features provided - the compiler does a lot, as we will see. Some of the
complexity comes from having to deal with the often verbose and complicated DOM standard.
But mostly the compiler is just showing its age. It is an implementation with several years of churn
behind it, with all sorts of additions and fixes applied over time. If you’re familiar with the direc-
tive API, you’ll probably have experienced the frustration of trying to figure it out.

This surface complexity makes it all the more important for us to understand what’s going on
inside. That is why we’ll spend the next several chapters going through the directive compiler
implentation in great detail. At the end of it we will surface with supercharged skills in authoring
effective directives.

 25

675 Errata© Tero Parviainen 2016

Chapter 16

DOM Compilation
and Basic Directives

Creating The $compile Provider 25

676 Errata© Tero Parviainen 2016

In this chapter we’ll make a very simple but fully functional directive compiler. With it, we’ll be
able to attach behavior to the DOM using special elements, attributes, classes, and comments.
We’ll also learn how to apply directives to DOM fragments that span several elements.

The process of applying directives to the DOM is called compilation, and there is a good reason for
that: Just like a programming language compiler takes source code as input and produces machine
code or bytecode as output, the DOM compiler takes DOM structures as input and produces
transformed DOM structures as output. The transformed DOM could be something completely
different from the input DOM. Or it could be identical to the input, but have completely new kind
of behavior. The compiler applies arbitrary JavaScript code to the DOM, so pretty much anything
is possible.

The directive compiler lives in a file called compile.js. That is where we’ll be spending most of
our time in this part of the book.

Download the code for the starting point of this chapter.

Creating The $compile Provider

Directive compilation happens using a function called $compile. Just like $rootScope , $parse,
$q, and $http, it is a built-in component provided by the injector. When we create an injector
with the ng module, we can expect $compile to be there:

test/angular_public_spec.js
it('sets up $compile', function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 expect(injector.has('$compile')).toBe(true);
});

$compile is defined as a provider in the new file compile.js:

src/compile.js
'use strict';

function $CompileProvider() {

 this.$get = function() {

 };

}

module.exports = $CompileProvider;

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter15-http

Registering Directives 25

677 Errata© Tero Parviainen 2016

We include $compile to the ng module in angular_public.js, just like we’ve done with the
other services we’ve introduced so far:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
 ngModule.provider('$httpBackend', require('./http_backend'));
 ngModule.provider('$http', require('./http').$HttpProvider);
 ngModule.provider('$httpParamSerializer',
 require('./http').$HttpParamSerializerProvider);
 ngModule.provider('$httpParamSerializerJQLike',
 require('./http').$HttpParamSerializerJQLikeProvider);
 ngModule.provider('$compile', require('./compile'));
}

Registering Directives

The main job of $compile will be to apply directives to the DOM. For that to work it will need to
have some directives to apply. That means we need a way to register directives.

Directive registration happens through modules, just like the registration of services, factories,
and other components. A directive is registered using the directive method of a module object.
Whenever a directive is registered, it automatically gets the Directive suffix, so that when we
register the directive abc, the injector will have a directive called abcDirective:

src/compile_spec.js
'use strict';

var _ = require('lodash');
var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('$compile', function() {

 beforeEach(function() {
 delete window.angular;
 publishExternalAPI();
 });

 it('allows creating directives', function() {
 var myModule = window.angular.module('myModule', []);

Registering Directives 25

678 Errata© Tero Parviainen 2016

 myModule.directive('testing', function() { });
 var injector = createInjector(['ng', 'myModule']);
 expect(injector.has('testingDirective')).toBe(true);
 });

});

The directive method for module objects is similar to the one we made for filters earlier. It
queues up a call to the directive method of the $compileProvider:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 factory: invokeLater('$provide', 'factory'),
 value: invokeLater('$provide', 'value'),
 service: invokeLater('$provide', 'service'),
 decorator: invokeLater('$provide', 'decorator'),
 filter: invokeLater('$filterProvider', 'register'),
 directive: invokeLater('$compileProvider', 'directive'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 run: function(fn) {
 moduleInstance._runBlocks.push(fn);
 return moduleInstance;
 },
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks
 _runBlocks: []
};

For now, all we need this new method to do is call back to $provide to register the directive facto-
ry. For this purpose, we need to inject $provide to $CompileProvider. We also add the $in-
ject attribute so that the injection will be minification-safe:

src/compile.js
function $CompileProvider($provide) {

 this.directive = function(name, directiveFactory) {
 $provide.factory(name + 'Directive', directiveFactory);
 };

 this.$get = function() {

 };

}
$CompileProvider.$inject = ['$provide'];

Registering Directives 25

679 Errata© Tero Parviainen 2016

So when we register a directive, what goes into the injector is just a factory. There is one special
aspect of directive factories that other kinds of factories don’t have though: There may be several
directives with the same name.

test/compile_spec.js
it('allows creating many directives with the same name', function() {
 var myModule = window.angular.module('myModule', []);
 myModule.directive('testing', _.constant({d: 'one'}));
 myModule.directive('testing', _.constant({d: 'two'}));
 var injector = createInjector(['ng', 'myModule']);

 var result = injector.get('testingDirective');
 expect(result.length).toBe(2);
 expect(result[0].d).toEqual('one');
 expect(result[1].d).toEqual('two');
});

In this test we register two directives called testing, and then see what we get back when we get
testingDirective from the injector. What we expect to have is an array of two directives.

The directive themselves don’t do anything at this point. They’re just dummy object literals.

So, unlike with other kinds of components, you cannot override a directive by just providing an-
other directive with the same name. To alter an existing directive you’ll need to use a decorator.

The reason for allowing multiple directives with the same name is that directive names are used for
matching them with DOM elements and attributes. If Angular enforced uniqueness of directive
names, you could not have two directives that both match the same element. This would be simi-
lar to a jQuery implemementation that didn’t allow the same selector to be used for two different
purposes. That would be severely restrictive indeed.

What we must do in $CompileProvider.directive is introduce an internal registry of direc-
tives, where each directive name points to an array of directive factories:

src/compile.js
function $CompileProvider($provide) {

 var hasDirectives = {};

 this.directive = function(name, directiveFactory) {
 if (!hasDirectives.hasOwnProperty(name)) {
 hasDirectives[name] = [];
 }
 hasDirectives[name].push(directiveFactory);
 };

 this.$get = function() {

Registering Directives 25

680 Errata© Tero Parviainen 2016

 };
}

What we then register to the $provider is a function that looks up the directive factories from
the internal registry and invokes each one using $injector. Whoever asked for the directive will
receive an array of the results of the invocations:

src/compile.js
this.directive = function(name, directiveFactory) {
 if (!hasDirectives.hasOwnProperty(name)) {
 hasDirectives[name] = [];
 $provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, $injector.invoke);
 }]);
 }
 hasDirectives[name].push(directiveFactory);
};

We need LoDash in compile.js now:

src/compile.js
'use strict';

var _ = require('lodash');

As application developers we rarely need to inject directives to our own code since the normal
approach for applying directives is through DOM compilation. But, if you do need to obtain a
directive by injecting it, it is possible. You’ll just always get it wrapped in an array because of how
the directive factory function is implemented.

One special case we still need to handle in this code is related to the use of the hasOwnProperty
method. Just like we’ve done in earlier chapters, we again need to prevent anyone from registering
a directive by that name because it would override the method in the hasDirectives object:

test/compile_spec.js
it('does not allow a directive called hasOwnProperty', function() {
 var myModule = window.angular.module('myModule', []);
 myModule.directive('hasOwnProperty', function() { });
 expect(function() {
 createInjector(['ng', 'myModule']);
 }).toThrow();
});

This restriction can be implemented as a straightforward string comparison in the directive
method:

Registering Directives 25

681 Errata© Tero Parviainen 2016

src/compile.js
this.directive = function(name, directiveFactory) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid directive name';
 }
 if (!hasDirectives.hasOwnProperty(name)) {
 hasDirectives[name] = [];
 $provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, $injector.invoke);
 }]);
 }
 hasDirectives[name].push(directiveFactory);
};

There’s one more special feature of directive registration we need to handle: A shorthand meth-
od for registering several directives at once. This can be done by giving the directive method a
single object as an argument. The object’s keys are interpreted as directive names and the values as
the factories:

test/compile_spec.js
it('allows creating directives with object notation', function() {
 var myModule = window.angular.module('myModule', []);
 myModule.directive({
 a: function() { },
 b: function() { },
 c: function() { }
 });
 var injector = createInjector(['ng', 'myModule']);

 expect(injector.has('aDirective')).toBe(true);
 expect(injector.has('bDirective')).toBe(true);
 expect(injector.has('cDirective')).toBe(true);
});

In the directive method we need to check which approach the caller is using:

src/compile.js
this.directive = function(name, directiveFactory) {
 if (_.isString(name)) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid directive name';
 }
 if (!hasDirectives.hasOwnProperty(name)) {
 hasDirectives[name] = [];
 $provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, $injector.invoke);
 }]);

Compiling The DOM with Element Directives 25

682 Errata© Tero Parviainen 2016

 }
 hasDirectives[name].push(directiveFactory);
 } else {

 }
};

In the case where we’ve been given an object, we iterate over that object’s members and recursively
call the registration function for each one:

src/compile.js
this.directive = function(name, directiveFactory) {
 if (_.isString(name)) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid directive name';
 }
 if (!hasDirectives.hasOwnProperty(name)) {
 hasDirectives[name] = [];
 $provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, $injector.invoke);
 }]);
 }
 hasDirectives[name].push(directiveFactory);
 } else {
 _.forEach(name, _.bind(function(directiveFactory, name) {
 this.directive(name, directiveFactory);
 }, this));
 }
};

Compiling The DOM with Element Directives

Now that we have the ability to register some directives, we can get into the business of applying
them. That process is called DOM compilation, and it is the primary responsibility of $compile.

Let’s say we have a directive called myDirective. We can implement this directive as a function
that returns an object:

myModule.directive('myDirective', function() {
 return {
 };
});

That object is the directive definition object. Its keys and values will configure the directive’s behavior.
One such key is called compile. With it, we can define the directive’s compilation function. It is a
function $compile will call while it is traversing the DOM. It will receive one argument, which is

Compiling The DOM with Element Directives 25

683 Errata© Tero Parviainen 2016

the element the directive is being applied to:

myModule.directive('myDirective', function() {
 return {
 compile: function(element) {

 }
 };
});

When we have a directive like this one, we can apply it to the DOM by adding an element that
matches the directive’s name:

<my-directive></my-directive>

Let’s codify all of this as a unit test. In the test we’ll need to create an injector with a directive in
it. We’re going to do a whole lot of that in this part of the book, so let’s go ahead and add a helper
function that makes it easier:

test/compile_spec.js
function makeInjectorWithDirectives() {
 var args = arguments;
 return createInjector(['ng', function($compileProvider) {
 $compileProvider.directive.apply($compileProvider, args);
 }]);
}

This function creates an injector with two modules: The ng module and a function module where-
in a directive is registered using the $compileProvider.

We can put this function to use right away in our new unit test:

test/compile_spec.js
it('compiles element directives from a single element', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<my-directive></my-directive>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 });
});

Compiling The DOM with Element Directives 25

684 Errata© Tero Parviainen 2016

This test does several things:

1. It creates a module with the myDirective directive and an injector for it.
2. It uses jQuery to parse a DOM fragment with the <my-directive> element
3. It gets the $compile function from the injector and invokes it with the jQuery object from step

two.

Inside the directive’s compilation function we just assign a data attribute to the element, giving us
a way to check at the end of the test that the directive has indeed been applied.

We now need to require jQuery into the test file:

test/compile_spec.js
'use strict';

var _ = require('lodash');
var $ = require('jquery');
var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

As discussed in the book’s introduction, we’ll be using jQuery in this book to provide low-level DOM
inspection and manipulation capabilities. AngularJS does not itself have a hard dependency on jQuery, but
ships with a minimal subset called jqLite instead. Since DOM esoterica is not the focus of this book, we
won’t delve into it and just use jQuery instead. That means that whereas AngularJS gives you jqLite objects
when you work with directives, this book’s implementation gives you jQuery objects.

The argument given to $compile is by no means limited to a single DOM element. It can, for
example, be a collection of several elements. Here we apply myDirective to two siblings and see
that the compile function is separately invoked for each of them:

test/compile_spec.js
it('compiles element directives found from several elements', function() {
 var idx = 1;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', idx++);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<my-directive></my-directive><my-directive></my-directive>');
 $compile(el);
 expect(el.eq(0).data('hasCompiled')).toBe(1);
 expect(el.eq(1).data('hasCompiled')).toBe(2);
 });
});

Compiling The DOM with Element Directives 25

685 Errata© Tero Parviainen 2016

To make this all work we’ll need to introduce several additions to our code. We’ll go over them
one by one, and at the end we’ll look at the full source code of the updated CompileProvider.

To begin with, the $get method of CompileProvider will need to return something. That some-
thing is the $compile function we’ve just invoked in our tests:

src/compile.js
this.$get = function() {

 function compile($compileNodes) {

 }

 return compile;
};

As we saw in the tests, the function receives the DOM node(s) to compile as its argument.

Within $compile the dollar prefix is often used in variable names to separate jQuery (jqLite) wrapped
DOM nodes from raw DOM nodes. This is a convention picked up from the jQuery world. Unfortunately,
since the dollar prefix is also used to denote framework-provided components in AngularJS, it is sometimes
difficult to make out which reason the dollar prefix is being used for. In the example above, $compileNo-
des denotes a jQuery wrapped DOM node or a collection thereof.

What we’ll do inside compile is invoke another local function called compileNodes. For now,
this seems like an unnecessary bit of indirection, but as we’ll soon see, we do need the distinction.

src/compile.js
this.$get = function() {

 function compile($compileNodes) {
 return compileNodes($compileNodes);
 }

 function compileNodes($compileNodes) {

 }

 return compile;
};

In compileNodes, we will iterate over the given jQuery object to handle every given node sepa-
rately. For each node, we’ll look up any and all directives that should be applied to that node using
a new function called collectDirectives:

src/compile.js

Compiling The DOM with Element Directives 25

686 Errata© Tero Parviainen 2016

function compileNodes($compileNodes) {
 _.forEach($compileNodes, function(node) {
 var directives = collectDirectives(node);
 });
}

function collectDirectives(node) {

}

The job of collectDirectives is to, given a DOM node, figure out what directives apply to it
and return them. For now, we’ll just use one strategy to do that, which is to find directives that
apply to the element’s name:

src/compile.js
function collectDirectives(node) {
 var directives = [];
 var normalizedNodeName = _.camelCase(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName);
 return directives;
}

This code uses two helper functions that don’t exist yet: nodeName and addDirective, so we’ll
introduce them now.

nodeName is a function defined on the top level of compile.js that returns the name of the given
DOM node, which may be a raw DOM node or a jQuery-wrapped one:

src/compile.js
function nodeName(element) {
 return element.nodeName ? element.nodeName : element[0].nodeName;
}

The addDirective function is implemented in compile.js, within the closure formed by the
$get method. It takes an array of directives, and the name of a directive. It checks if the local
hasDirectives array has directives with that name. If it does, the corresponding directive func-
tions are obtained from the injector and added to the array.

src/compile.js
function addDirective(directives, name) {
 if (hasDirectives.hasOwnProperty(name)) {
 directives.push.apply(directives, $injector.get(name + 'Directive'));
 }
}

Note the use of push.apply here. We expect $injector to give us an array of directives because
of the way we set things up earlier. By using apply we basically concatenate that array to direc-

Compiling The DOM with Element Directives 25

687 Errata© Tero Parviainen 2016

tives.

We’re using $injector in addDirective, but don’t currently have it injected to our code. We
need to inject it to the wrapping $get method:

src/compile.js
this.$get = ['$injector', function($injector) {

 // ...

}];

Back in compileNodes, once we have collected the directives for the node, we’ll apply them to it,
for which we’ll use another new function:

src/compile.js
function compileNodes($compileNodes) {
 _.forEach($compileNodes, function(node) {
 var directives = collectDirectives(node);
 applyDirectivesToNode(directives, node);
 });
}

function applyDirectivesToNode(directives, compileNode) {

}

This function iterates the directives, and calls the compile function from each one, giving it a jQuery-
wrapped element as an argument. This is where we invoke the compile function of the directive
definition object set up in the test case:

src/compile.js
function applyDirectivesToNode(directives, compileNode) {
 var $compileNode = $(compileNode);
 _.forEach(directives, function(directive) {
 if (directive.compile) {
 directive.compile($compileNode);
 }
 });
}

At this point compile.js also needs access to jQuery:

src/compile.js
'use strict';

var _ = require('lodash');

Compiling The DOM with Element Directives 25

688 Errata© Tero Parviainen 2016

var $ = require('jquery');

And now we’re successfully applying some directives to the DOM! The process basically iterates
over each node given and repeats two steps:

1. Find all the directives that apply to the node
2. Apply those directives to the node by invoking their compile functions.

Here’s the full code of compile.js at the end of the process:

src/compile.js
'use strict';

var _ = require('lodash');
var $ = require('jquery');

function nodeName(element) {
 return element.nodeName ? element.nodeName : element[0].nodeName;
}

function $CompileProvider($provide) {

 var hasDirectives = {};

 this.directive = function(name, directiveFactory) {
 if (_.isString(name)) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid directive name';
 }
 if (!hasDirectives.hasOwnProperty(name)) {
 hasDirectives[name] = [];
 $provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, $injector.invoke);
 }]);
 }
 hasDirectives[name].push(directiveFactory);
 } else {
 _.forEach(name, _.bind(function(directiveFactory, name) {
 this.directive(name, directiveFactory);
 }, this));
 }
 };

 this.$get = ['$injector', function($injector) {

 function compile($compileNodes) {
 return compileNodes($compileNodes);
 }

Recursing to Child Elements 25

689 Errata© Tero Parviainen 2016

 function compileNodes($compileNodes) {
 _.forEach($compileNodes, function(node) {
 var directives = collectDirectives(node);
 applyDirectivesToNode(directives, node);
 });
 }

 function collectDirectives(node) {
 var directives = [];
 var normalizedNodeName = _.camelCase(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName);
 return directives;
 }

 function addDirective(directives, name) {
 if (hasDirectives.hasOwnProperty(name)) {
 directives.push.apply(directives, $injector.get(name + 'Directive'));
 }
 }

 function applyDirectivesToNode(directives, compileNode) {
 var $compileNode = $(compileNode);
 _.forEach(directives, function(directive) {
 if (directive.compile) {
 directive.compile($compileNode);
 }
 });
 }

 return compile;
 }];

}
$CompileProvider.$inject = ['$provide'];

module.exports = $CompileProvider;

Recursing to Child Elements

Our simple directive implementation currently does nothing but iterate the top-level elements given to
it. It would be reasonable to expect it to be able to also compile any children of those top-level elements:

test/compile_spec.js
it('compiles element directives from child elements', function() {
 var idx = 1;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', idx++);

Recursing to Child Elements 25

690 Errata© Tero Parviainen 2016

 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div><my-directive></my-directive></div>');
 $compile(el);
 expect(el.data('hasCompiled')).toBeUndefined();
 expect(el.find('> my-directive').data('hasCompiled')).toBe(1);
 });
});

Here we check that the child <my-directive> has been compiled. As a sanity check, we also see
that the parent <div> has not been compiled.

Our compiler should also be able to compile several nested directive elements:

test/compile_spec.js
it('compiles nested directives', function() {
 var idx = 1;
 var injector = makeInjectorWithDirectives('myDir', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', idx++);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<my-dir><my-dir><my-dir></my-dir></my-dir></my-dir>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(1);
 expect(el.find('> my-dir').data('hasCompiled')).toBe(2);
 expect(el.find('> my-dir > my-dir').data('hasCompiled')).toBe(3);
 });
});

Satisfying this requirement ends up being quite simple. All we need to do is recurse to each node’s
child nodes from compileNodes:

src/compile.js
function compileNodes($compileNodes) {
 _.forEach($compileNodes, function(node) {
 var directives = collectDirectives(node);
 applyDirectivesToNode(directives, node);
 if (node.childNodes && node.childNodes.length) {
 compileNodes(node.childNodes);
 }
 });
}

Using Prefixes with Element Directives 25

691 Errata© Tero Parviainen 2016

The order in which things are done is significant here: We compile the parent first, then the chil-
dren.

Using Prefixes with Element Directives

We’ve seen how directives can be applied by simply matching their names to names of elements
in the DOM. In the next several sections of this chapter we’ll see some other ways of doing the
matching.

Firstly, when matching directives to element names, Angular lets you use the prefixes x and data
in the DOM:

<x-my-directive></x-my-directive>
<data-my-directive></data-my-directive>

Also, in addition to hyphens, you can use colons or underscores as the delimiter between the prefix
and the directive name:

<x:my-directive></x:my-directive>
<x_my-directive></x_my-directive>

Combining these two options, there are in all six alternative ways to add prefixes to elements. To
unit test them all, we’ll loop over them and generate a test block for each combination:

test/compile_spec.js
_.forEach(['x', 'data'], function(prefix) {
 .forEach([':', '-', ''], function(delim) {

 it('compiles element directives with '+prefix+delim+' prefix', function() {
 var injector = makeInjectorWithDirectives('myDir', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<'+prefix+delim+'my-dir></'+prefix+delim+'my-dir>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 });
 });

 });
});

We’ll introduce a new helper function on the top level of compile.js for handling the prefix

Applying Directives to Attributes 25

692 Errata© Tero Parviainen 2016

matching. It takes the name of a DOM element as an argument and returns a “normalized” direc-
tive name. That process entails both camel-casing the name and removing any prefixes:

src/compile.js
function directiveNormalize(name) {
 return _.camelCase(name.replace(PREFIX_REGEXP, ''));
}

The prefix regexp matches either the x or the data prefix case-insensitively, followed by one of the
three delimiter characters:

src/compile.js
var PREFIX_REGEXP = /(x[\:\-_]|data[\:\-_])/i;

In collectDirectives we’ll now replace the call to _.camelCase with a call to the new di-
rectiveNormalize:

src/compile.js
function collectDirectives(node) {
 var directives = [];
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName);
 return directives;
}

Applying Directives to Attributes

Matching element names to directive names is not the only way to couple directives with the
DOM. The second approach we’ll look up is matching by attribute names. This is perhaps the most
common way directives are applied in Angular applications:

test/compile_spec.js
it('compiles attribute directives', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive></div>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 });
});

Applying Directives to Attributes 25

693 Errata© Tero Parviainen 2016

The same prefix rules we just implemented for element names apply to attribute names as well.
For example, the x: prefix is allowed:

test/compile_spec.js
it('compiles attribute directives with prefixes', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div x:my-directive></div>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 });
});

It is naturally possible to apply several attribute directives to the same element:

test/compile_spec.js
it('compiles several attribute directives in an element', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 },
 mySecondDirective: function() {
 return {
 compile: function(element) {
 element.data('secondCompiled', true);
 }
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive my-second-directive></div>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 expect(el.data('secondCompiled')).toBe(true);
 });
});

We can also combine both element and attribute directives in the same element:

Applying Directives to Attributes 25

694 Errata© Tero Parviainen 2016

test/compile_spec.js
it('compiles both element and attributes directives in an element', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 },
 mySecondDirective: function() {
 return {
 compile: function(element) {
 element.data('secondCompiled', true);
 }
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<my-directive my-second-directive></my-directive>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 expect(el.data('secondCompiled')).toBe(true);
 });
});

The function responsible for going through the attributes is collectDirectives, where we’re
already doing matching of directives by element name. Here, we’ll iterate over the current node’s
attributes and add any directives that might match them - in a case-insensitive fashion:

src/compile.js
function collectDirectives(node) {
 var directives = [];
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName);
 _.forEach(node.attributes, function(attr) {
 var normalizedAttrName = directiveNormalize(attr.name.toLowerCase());
 addDirective(directives, normalizedAttrName);
 });
 return directives;
}

Angular also let’s us use a special ng-attr prefix when applying directives through attributes:

test/compile_spec.js
it('compiles attribute directives with ng-attr prefix', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);

Applying Directives to Attributes 25

695 Errata© Tero Parviainen 2016

 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div ng-attr-my-directive></div>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 });
});

The ng-attr prefix can also be combined with one of the other prefixes we saw earlier:

test/compile_spec.js
it('compiles attribute directives with data:ng-attr prefix', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div data:ng-attr-my-directive></div>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 });
});

We’ll handle this case by, after normalizing the directive name, checking whether it begins with
ngAttr followed by an uppercase character. If so, we remove that part and downcase the new first
character:

src/compile.js
function collectDirectives(node) {
 var directives = [];
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName);
 _.forEach(node.attributes, function(attr) {
 var normalizedAttrName = directiveNormalize(attr.name.toLowerCase());
 if (/^ngAttr[A-Z]/.test(normalizedAttrName)) {
 normalizedAttrName =
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7);
 }
 addDirective(directives, normalizedAttrName);
 });
 return directives;
}

Applying Directives to Classes 25

696 Errata© Tero Parviainen 2016

Applying Directives to Classes

The third method for applying directives to the DOM is by matching them to the CSS class names
of elements. We can simply use a class name that (when normalized) matches a directive name:

test/compile_spec.js
it('compiles class directives', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div class="my-directive"></div>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 });
});

Secondly, just as with attribute directives, several classes of the same element may be applied to
directives:

test/compile_spec.js
it('compiles several class directives in an element', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 },
 mySecondDirective: function() {
 return {
 compile: function(element) {
 element.data('secondCompiled', true);
 }
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div class="my-directive my-second-directive"></div>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 expect(el.data('secondCompiled')).toBe(true);
 });
});

Applying Directives to Comments 25

697 Errata© Tero Parviainen 2016

Thirdly, class names may have the same kinds of prefixes we have seen with elements and attri-
butes (though they may not use the ng-attr prefix):

test/compile_spec.js
it('compiles class directives with prefixes', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div class="x-my-directive"></div>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 });
});

To implement class-based matching, we’ll just iterate over each node’s classList attribute and
match directives to each normalized class name:

src/compile.js
function collectDirectives(node) {
 var directives = [];
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName);
 _.forEach(node.attributes, function(attr) {
 var normalizedAttrName = directiveNormalize(attr.name.toLowerCase());
 if (/^ngAttr[A-Z]/.test(normalizedAttrName)) {
 normalizedAttrName =
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7);
 }
 addDirective(directives, normalizedAttrName);
 });
 _.forEach(node.classList, function(cls) {
 var normalizedClassName = directiveNormalize(cls);
 addDirective(directives, normalizedClassName);
 });
 return directives;
}

AngularJS does not use classList because it’s a HTML5 feature not widely supported in older browsers.
Instead, it manually tokenizes the className attribute of the element.

Applying Directives to Comments

The final directive matching mechanism Angular has is perhaps the most esoteric one: Applying

Applying Directives to Comments 25

698 Errata© Tero Parviainen 2016

directives to HTML comments. This is possible by crafting a comment that begins with the text
directive:, followed by the directive’s name:

<!-- directive: my-directive -->

Here’s the same in a unit test:

test/compile_spec.js
it('compiles comment directives', function() {
 var hasCompiled;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 hasCompiled = true;
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<!-- directive: my-directive -->');
 $compile(el);
 expect(hasCompiled).toBe(true);
 });
});

Here we use a test variable \texttt{hasCompiled} instead of a data attribute on the node because of the
limitations of attaching jQuery data to comment nodes.

The object we have at hand when we enter the collectDirectives function is a DOM node. It
may be an element or it may be something else, such as a comment. What we need to do is exe-
cute different code based on the type of the node. The type can be determined by looking at the
nodeType attribute of the node.

We’ll wrap the code we’ve written thus far in an if branch for elements and introduce a new one
for comments:

src/compile.js
function collectDirectives(node) {
 var directives = [];
 if (node.nodeType === Node.ELEMENT_NODE) {
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName);
 _.forEach(node.attributes, function(attr) {
 var normalizedAttrName = directiveNormalize(attr.name.toLowerCase());
 if (/^ngAttr[A-Z]/.test(normalizedAttrName)) {
 normalizedAttrName =
 normalizedAttrName[6].toLowerCase() +

https://developer.mozilla.org/en-US/docs/Web/API/Node.nodeType

Applying Directives to Comments 25

699 Errata© Tero Parviainen 2016

 normalizedAttrName.substring(7);
 }
 addDirective(directives, normalizedAttrName);
 });
 _.forEach(node.classList, function(cls) {
 var normalizedClassName = directiveNormalize(cls);
 addDirective(directives, normalizedClassName);
 });
 } else if (node.nodeType === Node.COMMENT_NODE) {

 }
 return directives;
}

What we do in the node branch is match a regular expression with the comment’s text value, and
see if it begins with directive:. If it does, we take the directive name that follows, normalize it,
and find any directives that match it.

src/compile.js
function collectDirectives(node) {
 var directives = [];
 if (node.nodeType === Node.ELEMENT_NODE) {
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName);
 _.forEach(node.attributes, function(attr) {
 var normalizedAttrName = directiveNormalize(attr.name.toLowerCase());
 if (/^ngAttr[A-Z]/.test(normalizedAttrName)) {
 normalizedAttrName =
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7);
 }
 addDirective(directives, normalizedAttrName);
 });
 _.forEach(node.classList, function(cls) {
 var normalizedClassName = directiveNormalize(cls);
 addDirective(directives, normalizedClassName);
 });
 } else if (node.nodeType === Node.COMMENT_NODE) {
 var match = /^\s*directive\:\s*([\d\w\-_]+)/.exec(node.nodeValue);
 if (match) {
 addDirective(directives, directiveNormalize(match[1]));
 }
 }
 return directives;
}

Note that the regular expression allows whitespace at the beginning of the comment as well as
after the directive: prefix.

Restricting Directive Application 25

700 Errata© Tero Parviainen 2016

Restricting Directive Application

So there are four ways in which Angular matches directives with the DOM: By element name, by
attribute name, by class name, and by special comments.

This does not mean, however, that any given directive can be matched using whatever approach
the application developer chooses. Directive authors do have the possibility to restrict which of the
four matching modes the directive can be used with. This is useful because it would make little
sense to apply a directive that implements a custom element to a comment, for example. It just
wouldn’t work.

The restriction can be done by specifying a restrict attribute on the directive definition object.
That attribute carries a tiny domain-specific language consisting of single-character codes and
combinations thereof:

• E means “match with element names”
• A means “match with attribute names”
• C means “match with class names”
• M means “match with comments”
• EA means “match with element names and attribute names”
• MCA means “match with comments, class names, and attribute names”
• etc.

Let’s use some generative testing techniques so that we can cover a lot of ground without having to
write tens of test cases. We’ll set up a data structure with different combinations of restrict and
the expected outcomes of using the combination in each of the four modes. We’ll then loop over
that data structure and generate describe blocks:

test/compile_spec.js
_.forEach({
 E: {element: true, attribute: false, class: false, comment: false},
 A: {element: false, attribute: true, class: false, comment: false},
 C: {element: false, attribute: false, class: true, comment: false},
 M: {element: false, attribute: false, class: false, comment: true},
 EA: {element: true, attribute: true, class: false, comment: false},
 AC: {element: false, attribute: true, class: true, comment: false},
 EAM: {element: true, attribute: true, class: false, comment: true},
 EACM: {element: true, attribute: true, class: true, comment: true},
}, function(expected, restrict) {

 describe('restricted to '+restrict, function() {

 });

});

Restricting Directive Application 25

701 Errata© Tero Parviainen 2016

Inside this loop we can then add another loop that iterates over the four kinds of DOM structures
we can use:

test/compile_spec.js
_.forEach({
 E: {element: true, attribute: false, class: false, comment: false},
 A: {element: false, attribute: true, class: false, comment: false},
 C: {element: false, attribute: false, class: true, comment: false},
 M: {element: false, attribute: false, class: false, comment: true},
 EA: {element: true, attribute: true, class: false, comment: false},
 AC: {element: false, attribute: true, class: true, comment: false},
 EAM: {element: true, attribute: true, class: false, comment: true},
 EACM: {element: true, attribute: true, class: true, comment: true},
}, function(expected, restrict) {

 describe('restricted to '+restrict, function() {

 _.forEach({
 element: '<my-directive></my-directive>',
 attribute: '<div my-directive></div>',
 class: '<div class="my-directive"></div>',
 comment: '<!-- directive: my-directive -->'
 }, function(dom, type) {

 it((expected[type] ? 'matches' : 'does not match')+' on '+type, function() {
 var hasCompiled = false;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 restrict: restrict,
 compile: function(element) {
 hasCompiled = true;
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $(dom);
 $compile(el);
 expect(hasCompiled).toBe(expected[type]);
 });
 });

 });

 });

});

All in all these loops add 32 new test cases. If you want to add more combinations to the data
structure, that’s also easy to do.

The restriction of directives will happen in the addDirectives function. Before we go there,

Restricting Directive Application 25

702 Errata© Tero Parviainen 2016

however, we need to modify collectDirectives so that it lets addDirectives know which of
the four matching modes is currently being used:

src/compile.js
function collectDirectives(node) {
 var directives = [];
 if (node.nodeType === Node.ELEMENT_NODE) {
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName, 'E');
 _.forEach(node.attributes, function(attr) {
 var normalizedAttrName = directiveNormalize(attr.name.toLowerCase());
 if (/^ngAttr[A-Z]/.test(normalizedAttrName)) {
 normalizedAttrName =
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7);
 }
 addDirective(directives, normalizedAttrName, 'A');
 });
 _.forEach(node.classList, function(cls) {
 var normalizedClassName = directiveNormalize(cls);
 addDirective(directives, normalizedClassName, 'C');
 });
 } else if (node.nodeType === Node.COMMENT_NODE) {
 var match = /^\s*directive\:\s*([\d\w\-_]+)/.exec(node.nodeValue);
 if (match) {
 addDirective(directives, directiveNormalize(match[1]), 'M');
 }
 }
 return directives;
}

The addDirective function can now filter the array of matching directives to those whose re-
strict attribute has a character for the current mode:

src/compile.js
function addDirective(directives, name, mode) {
 if (hasDirectives.hasOwnProperty(name)) {
 var foundDirectives = $injector.get(name + 'Directive');
 var applicableDirectives = _.filter(foundDirectives, function(dir) {
 return dir.restrict.indexOf(mode) !== -1;
 });
 directives.push.apply(directives, applicableDirectives);
 }
}

After you make this change, you’ll notice an unfortunate effect: We have now broken most of our
existing directive test cases. This is because they don’t have the restrict attribute which we now
require. We need to add one. Beginning from the test case ’compiles element directives
from a single element’, add a restrict attribute with value ’EACM’ to each one until the

Restricting Directive Application 25

703 Errata© Tero Parviainen 2016

previous tests pass:

test/compile_spec.js
it('compiles element directives from a single element', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 restrict: 'EACM',
 compile: function(element) {
 element.data('hasCompiled', true);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<my-directive></my-directive>');
 $compile(el);
 expect(el.data('hasCompiled')).toBe(true);
 });
});

Finally, the restrict attribute does have a default value of EA. That is, if you do not define re-
strict, your directive is matched using element and attribute names only:

test/compile_spec.js
it('applies to attributes when no restrict given', function() {
 var hasCompiled = false;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 hasCompiled = true;
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive></div>');
 $compile(el);
 expect(hasCompiled).toBe(true);
 });
});

it('applies to elements when no restrict given', function() {
 var hasCompiled = false;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 hasCompiled = true;
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<my-directive></my-directive>');
 $compile(el);

Prioritizing Directives 25

704 Errata© Tero Parviainen 2016

 expect(hasCompiled).toBe(true);
 });
});

it('does not apply to classes when no restrict given', function() {
 var hasCompiled = false;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function(element) {
 hasCompiled = true;
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div class="my-directive"></div>');
 $compile(el);
 expect(hasCompiled).toBe(false);
 });
});

We’ll apply the default value back in the directive factory function, where we first obtain the direc-
tive function itself:

src/compile.js
this.directive = function(name, directiveFactory) {
 if (_.isString(name)) {
 if (name === 'hasOwnProperty') {
 throw 'hasOwnProperty is not a valid directive name';
 }
 if (!hasDirectives.hasOwnProperty(name)) {
 hasDirectives[name] = [];
 $provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, function(factory) {
 var directive = $injector.invoke(factory);
 directive.restrict = directive.restrict || 'EA';
 return directive;
 });
 }]);
 }
 hasDirectives[name].push(directiveFactory);
 } else {
 _.forEach(name, _.bind(function(directiveFactory, name) {
 this.directive(name, directiveFactory);
 }, this));
 }
};

Prioritizing Directives

Prioritizing Directives 25

705 Errata© Tero Parviainen 2016

When multiple directives are used on an element, the order in which they’re applied often makes a
big difference. One directive may depend on the effects of another to be already applied.

Instead of putting the responsibility of correct directive order on the application programmer’s
shoulders, Angular directives have an internal priority configuration that controls the order in
which they’re applied. Every directive definition object has a priority attribute, and for each
node all the matched directives are sorted by this attribute before they’re compiled. Priorities are
numeric, and a larger number means higher priority - i.e. for compilation, directives are sorted in
descending order by priority.

Expressed as test cases, what this means is that when there are two directives with specific priori-
ties on an element, they’re compiled in priority order:

test/compile_spec.js
it('applies in priority order', function() {
 var compilations = [];
 var injector = makeInjectorWithDirectives({
 lowerDirective: function() {
 return {
 priority: 1,
 compile: function(element) {
 compilations.push('lower');
 }
 };
 },
 higherDirective: function() {
 return {
 priority: 2,
 compile: function(element) {
 compilations.push('higher');
 }
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div lower-directive higher-directive></div>');
 $compile(el);
 expect(compilations).toEqual(['higher', 'lower']);
 });
});

When two directives have the same priority, the tie is broken by comparing by name, so that even
when priorities are the same, the application order is stable and predictable:

test/compile_spec.js
it('applies in name order when priorities are the same', function() {
 var compilations = [];
 var injector = makeInjectorWithDirectives({
 firstDirective: function() {

Prioritizing Directives 25

706 Errata© Tero Parviainen 2016

 return {
 priority: 1,
 compile: function(element) {
 compilations.push('first');
 }
 };
 },
 secondDirective: function() {
 return {
 priority: 1,
 compile: function(element) {
 compilations.push('second');
 }
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div second-directive first-directive></div>');
 $compile(el);
 expect(compilations).toEqual(['first', 'second']);
 });
});

When there are two directives for which both priorities and names are the same, they are applied
in the order in which they were registered:

test/compile_spec.js
it('applies in registration order when names are the same', function() {
 var compilations = [];
 var myModule = window.angular.module('myModule', []);
 myModule.directive('aDirective', function() {
 return {
 priority: 1,
 compile: function(element) {
 compilations.push('first');
 }
 };
 });
 myModule.directive('aDirective', function() {
 return {
 priority: 1,
 compile: function(element) {
 compilations.push('second');
 }
 };
 });
 var injector = createInjector(['ng', 'myModule']);
 injector.invoke(function($compile) {
 var el = $('<div a-directive></div>');
 $compile(el);
 expect(compilations).toEqual(['first', 'second']);

Prioritizing Directives 25

707 Errata© Tero Parviainen 2016

 });
});

This test case will pass immediately, but we include it for the sake of completeness.

Once we’ve collected all the directives for a given element in collectDirectives, we’re going
to sort the result just before returning it to the caller. We can use the built-in sort method of JavaS-
cript arrays, and provide a custom compare function that we’ll introduce momentarily:

src/compile.js
function collectDirectives(node) {
 var directives = [];

 // ...

 directives.sort(byPriority);
 return directives;
}

The compare function byPriority takes two directives:

src/compile.js
function byPriority(a, b) {

}

The function will primarily look at the priorities of the directives, and return a negative or positive
number depending on whether the first or the second of the priorities is larger (“higher”):

src/compile.js
function byPriority(a, b) {
 return b.priority - a.priority;
}

When the priorities are the same, the tie is broken by comparing by name. We use the < operator,
which compares strings lexicographically:

src/compile.js
function byPriority(a, b) {
 var diff = b.priority - a.priority;
 if (diff !== 0) {
 return diff;
 } else {
 return (a.name < b.name ? -1 : 1);
 }
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Prioritizing Directives 25

708 Errata© Tero Parviainen 2016

To get the directive name we’re referencing its name attribute, which is something we don’t actual-
ly have yet. We should set it during directive registration, in the $compileProvider.directive
method:

src/compile.js
$provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, function(factory) {
 var directive = $injector.invoke(factory);
 directive.restrict = directive.restrict || 'EA';
 directive.name = directive.name || name;
 return directive;
 });
}]);

As the final priority rule, to break ties consistently even if the names of the directives match, we
use the registration order:

src/compile.js
function byPriority(a, b) {
 var diff = b.priority - a.priority;
 if (diff !== 0) {
 return diff;
 } else {
 if (a.name !== b.name) {
 return (a.name < b.name ? -1 : 1);
 } else {
 return a.index - b.index;
 }
 }
}

The index attribute is also something we don’t have yet. We can add that too during directive
registration:

src/compile.js
$provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, function(factory, i) {
 var directive = $injector.invoke(factory);
 directive.restrict = directive.restrict || 'EA';
 directive.name = directive.name || name;
 directive.index = i;
 return directive;
 });
}]);

As a directive author you don’t necessarily need to specify a priority every time. If you do not give

Terminating Compilation 25

709 Errata© Tero Parviainen 2016

one, a default value of 0 is used:

test/compile_spec.js
it('uses default priority when one not given', function() {
 var compilations = [];
 var myModule = window.angular.module('myModule', []);
 myModule.directive('firstDirective', function() {
 return {
 priority: 1,
 compile: function(element) {
 compilations.push('first');
 }
 };
 });
 myModule.directive('secondDirective', function() {
 return {
 compile: function(element) {
 compilations.push('second');
 }
 };
 });
 var injector = createInjector(['ng', 'myModule']);
 injector.invoke(function($compile) {
 var el = $('<div second-directive first-directive></div>');
 $compile(el);
 expect(compilations).toEqual(['first', 'second']);
 });
});

This is also something we can set up during directive registration. We either use the defined priori-
ty or zero:

src/compile.js
$provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, function(factory, i) {
 var directive = $injector.invoke(factory);
 directive.restrict = directive.restrict || 'EA';
 directive.priority = directive.priority || 0;
 directive.name = directive.name || name;
 directive.index = i;
 return directive;
 });
}]);

Terminating Compilation

Usually when you give Angular some DOM element to compile, the whole DOM subtree starting
from that element gets compiled right away. That’s because of the recursive nature of the compila-

Terminating Compilation 25

710 Errata© Tero Parviainen 2016

tion we have implemented in this chapter. There are cases where not everything will get compiled,
however. One of them is when one of the directives used in the DOM is a terminal directive.

A directive can be marked as terminal, by setting the terminal key in its definition object to
true. What happens then is that when this directive is compiled, it terminates the compilation right
away, and any further directives on the element are not compiled.

The most common use case for terminal is directives that want to delay compilation. For exam-
ple, Angular’s built-in ng-if is a terminal directive, and using it stops compilation for that DOM
subtree. The directive then later launches another compilation for its contents when its conditional
expression becomes truthy. For that it uses the transclusion features we’ll implement in a later
chapter.

<div ng-if="condition">
 <!-- Contents compiled later when condition is true -->
 <div some-other-directive></div>
</div>

As discussed, when there’s a terminal directive on a node, other directives with lower priorities will
not get compiled:

test/compile_spec.js
it('stops compiling at a terminal directive', function() {
 var compilations = [];
 var myModule = window.angular.module('myModule', []);
 myModule.directive('firstDirective', function() {
 return {
 priority: 1,
 terminal: true,
 compile: function(element) {
 compilations.push('first');
 }
 };
 });
 myModule.directive('secondDirective', function() {
 return {
 priority: 0,
 compile: function(element) {
 compilations.push('second');
 }
 };
 });
 var injector = createInjector(['ng', 'myModule']);
 injector.invoke(function($compile) {
 var el = $('<div first-directive second-directive></div>');
 $compile(el);
 expect(compilations).toEqual(['first']);
 });
});

Terminating Compilation 25

711 Errata© Tero Parviainen 2016

However, if there are other directives with the same priority as the terminal directive’s priority, they
are still compiled:

test/compile_spec.js
it('still compiles directives with same priority after terminal', function() {
 var compilations = [];
 var myModule = window.angular.module('myModule', []);
 myModule.directive('firstDirective', function() {
 return {
 priority: 1,
 terminal: true,
 compile: function(element) {
 compilations.push('first');
 }
 };
 });
 myModule.directive('secondDirective', function() {
 return {
 priority: 1,
 compile: function(element) {
 compilations.push('second');
 }
 };
 });
 var injector = createInjector(['ng', 'myModule']);
 injector.invoke(function($compile) {
 var el = $('<div first-directive second-directive></div>');
 $compile(el);
 expect(compilations).toEqual(['first', 'second']);
 });
});

In applyDirectivesToNode, where we do the actual directive compilation, we should track the
priority of any terminal directives we may have seen. We initialize the “terminal priority” with the
lowest possible number in JavaScript and update it if we see a terminal directive:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 _.forEach(directives, function(directive) {
 if (directive.compile) {
 directive.compile($compileNode, attrs);
 }
 if (directive.terminal) {
 terminalPriority = directive.priority;
 }
 });
}

Terminating Compilation 25

712 Errata© Tero Parviainen 2016

If we then encounter a directive whose priority is lower than our terminal priority, we’ll exit the
directive loop early by returning false, effectively causing compilation for this node to end:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 _.forEach(directives, function(directive) {
 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.compile) {
 directive.compile($compileNode, attrs);
 }
 if (directive.terminal) {
 terminalPriority = directive.priority;
 }
 });
}
What should also happen when a terminal directive is encountered is that child nodes are not
compiled. We’re still currently compiling them even when compilation should terminate:

test/compile_spec.js
it('stops child compilation after a terminal directive', function() {
 var compilations = [];
 var myModule = window.angular.module('myModule', []);
 myModule.directive('parentDirective', function() {
 return {
 terminal: true,
 compile: function(element) {
 compilations.push('parent');
 }
 };
 });
 myModule.directive('childDirective', function() {
 return {
 compile: function(element) {
 compilations.push('child');
 }
 };
 });
 var injector = createInjector(['ng', 'myModule']);
 injector.invoke(function($compile) {
 var el = $('<div parent-directive><div child-directive></div></div>');
 $compile(el);
 expect(compilations).toEqual(['parent']);
 });
});

Applying Directives Across Multiple Nodes 25

713 Errata© Tero Parviainen 2016

For now, what we can do is return a “terminal” flag from applyDirectivesToNode, which will
be true when there was a terminal directive on the node:

src/compile.js
function applyDirectivesToNode(directives, compileNode) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 _.forEach(directives, function(directive) {
 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.compile) {
 directive.compile($compileNode);
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
 });
 return terminal;
}

This is a flag we can check at compileNodes. If it is set for some node, we skip the compilation
of its children:

src/compile.js
function compileNodes($compileNodes) {
 _.forEach($compileNodes, function(node) {
 var directives = collectDirectives(node);
 var terminal = applyDirectivesToNode(directives, node);
 if (!terminal && node.childNodes && node.childNodes.length) {
 compileNodes(node.childNodes);
 }
 });
}

We will later revisit the details of how this flag is managed, but in any case we have now imple-
mented the gist of this functionality.

Applying Directives Across Multiple Nodes

So far we’ve seen how directives can be matched to single elements with four different mecha-
nisms. There is one more mechanism to cover, which is matching a directive to a collection of
several sibling elements, by explicitly denoting the start and end elements of the directive:

Applying Directives Across Multiple Nodes 25

714 Errata© Tero Parviainen 2016

<div my-directive-start>
</div>
<some-other-html></some-other-html>
<div my-directive-end>
</div>

Not all directives can be applied this way. The directive author must explicitly set a multiElement
flag on the directive definition object to enable the behavior. Furthermore, this mechanism applies
to attribute matching only.

When you apply an attribute directive like this, what you get as an argument to the directive’s
compile function is a jQuery/jqLite object with both the start and end elements and all the elements in
between:

test/compile_spec.js
it('allows applying a directive to multiple elements', function() {
 var compileEl = false;
 var injector = makeInjectorWithDirectives('myDir', function() {
 return {
 multiElement: true,
 compile: function(element) {
 compileEl = element;
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div my-dir-start></div><div my-dir-end></div>');
 $compile(el);
 expect(compileEl.length).toBe(3);
 });
});

The handling of start/end attributes begins in collectDirectives, where we first iterate each
element’s attributes. What we should do here is see if we’re dealing with a multi-element directive.
This is done in three steps:

1. Form a version of the directive name that doesn’t have any Start or End suffixes
2. See if there’s a multi-element directive registered by that name, and
3. See if the current attribute name actually does end with Start.

If 2 and 3 are both true, we are dealing with a multi-element directive application:

src/compile.js
_.forEach(node.attributes, function(attr) {
 var normalizedAttrName = directiveNormalize(attr.name.toLowerCase());
 if (/^ngAttr[A-Z]/.test(normalizedAttrName)) {
 normalizedAttrName =
 normalizedAttrName[6].toLowerCase() +

Applying Directives Across Multiple Nodes 25

715 Errata© Tero Parviainen 2016

 normalizedAttrName.substring(7);
 }
 var directiveNName = normalizedAttrName.replace(/(Start|End)$/, '');
 if (directiveIsMultiElement(directiveNName)) {
 if (/Start$/.test(normalizedAttrName)) {
 }
 }
 addDirective(directives, normalizedAttrName, 'A');
});

The new helper function directiveIsMultiElement sees first whether there are directives reg-
istered with the given name. If there are, it gets them from the injector and checks if any of them
have the multiElement flag set to true:

src/compile.js
function directiveIsMultiElement(name) {
 if (hasDirectives.hasOwnProperty(name)) {
 var directives = $injector.get(name + 'Directive');
 return _.some(directives, {multiElement: true});
 }
 return false;
}

If this is indeed a multi-element directive application, we’re going to store the start and end attri-
bute names along with the directive, so that we can use them for matching elements later in the
compilation process. We’ll introduce variables for the start and end attribute names, populate them
if we’ve matched a start attribute, and pass them along to addDirective:

src/compile.js
_.forEach(node.attributes, function(attr) {
 var attrStartName, attrEndName;
 var normalizedAttrName = directiveNormalize(attr.name.toLowerCase());
 if (/^ngAttr[A-Z]/.test(normalizedAttrName)) {
 normalizedAttrName =
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7);
 }
 var directiveNName = normalizedAttrName.replace(/(Start|End)$/, '');
 if (directiveIsMultiElement(directiveNName)) {
 if (/Start$/.test(normalizedAttrName)) {
 attrStartName = normalizedAttrName;
 attrEndName =
 normalizedAttrName.substring(0, normalizedAttrName.length - 5) + 'End';
 normalizedAttrName =
 normalizedAttrName.substring(0, normalizedAttrName.length - 5);
 }
 }
 addDirective(directives, normalizedAttrName, 'A', attrStartName, attrEndName);
});

Applying Directives Across Multiple Nodes 25

716 Errata© Tero Parviainen 2016

Before we move on, there’s one problem we need to fix, though. What we are now passing to
addDirective are normalized, camel-cased attribute names that are no longer in the exact format
they were in the DOM. It is going to be difficult to match against them when looking at the DOM
later on.

What we need to do is use the original, non-normalized attribute names instead. What’s peculiar about
how Angular does this, however, is that if there is also an ng-attr- prefix applied to the start at-
tribute, that is not stored. So, basically, the ng-attr- prefix and the -start suffix cannot be used
at the same time.

What we’ll do is, after the possible removal of the ng-attr- prefix, “denormalize” the attribute
name again by hyphenizing it, and then use that to store the start and end attribute names:

src/compile.js
_.forEach(node.attributes, function(attr) {
 var attrStartName, attrEndName;
 var name = attr.name;
 var normalizedAttrName = directiveNormalize(name.toLowerCase());
 if (/^ngAttr[A-Z]/.test(normalizedAttrName)) {
 name = _.kebabCase(
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7)
);
 }
 var directiveNName = normalizedAttrName.replace(/(Start|End)$/, '');
 if (directiveIsMultiElement(directiveNName)) {
 if (/Start$/.test(normalizedAttrName)) {
 attrStartName = name;
 attrEndName = name.substring(0, name.length - 5) + 'end';
 name = name.substring(0, name.length - 6);
 }
 }
 normalizedAttrName = directiveNormalize(name.toLowerCase());
 addDirective(directives, normalizedAttrName, 'A', attrStartName, attrEndName);
});

Now that we have an acceptable implementation of collectDirectives, let’s look at addDi-
rective, which now has two new (optional) arguments: The start and end attributes used with
the directive.

What we’ll do here is, if the start and end attributes are given, attach that to the directive object
with the special keys $$start and $$end. We don’t want to contaminate the original directive
object with these keys though, so we’ll make an extended version for our own purposes. This is
important since a directive may be applied several times, sometimes with start/end tag separation
and sometimes without it:

Applying Directives Across Multiple Nodes 25

717 Errata© Tero Parviainen 2016

src/compile.js
function addDirective(directives, name, mode, attrStartName, attrEndName) {
 if (hasDirectives.hasOwnProperty(name)) {
 var foundDirectives = $injector.get(name + 'Directive');
 var applicableDirectives = _.filter(foundDirectives, function(dir) {
 return dir.restrict.indexOf(mode) !== -1;
 });
 _.forEach(applicableDirectives, function(directive) {
 if (attrStartName) {
 directive = _.create(directive, {
 $$start: attrStartName,
 $$end: attrEndName
 });
 }
 directives.push(directive);
 });
 }
}

The next step of the process is taken in applyDirectivesToNode, which is where we actually
call the compile method of the directive. Before we do that, we have to see if this directive appli-
cation had the start/end tag separation and if it did, replace the nodes passed to compile with
the start and end nodes and any siblings in between. We expect that set of elements to be available
using a function called groupScan

src/compile.js
function applyDirectivesToNode(directives, compileNode) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 _.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.compile) {
 directive.compile($compileNode);
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
 });
 return terminal;
}

This is a new function that takes three arguments: A node to begin the search from, and the start

Applying Directives Across Multiple Nodes 25

718 Errata© Tero Parviainen 2016

and end attribute names:

src/compile.js
function groupScan(node, startAttr, endAttr) {

}

The function checks if the initial node has the start attribute. If it does not, the function gives up
and just returns a result with the initial node

src/compile.js
function groupScan(node, startAttr, endAttr) {
 var nodes = [];
 if (startAttr && node && node.hasAttribute(startAttr)) {

 } else {
 nodes.push(node);
 }
 return $(nodes);
}

If the initial node has the start attribute, the function begins collecting the group. It does so with
the help of a depth variable, and terminates when the depth reaches zero:

src/compile.js
function groupScan(node, startAttr, endAttr) {
 var nodes = [];
 if (startAttr && node && node.hasAttribute(startAttr)) {
 var depth = 0;
 do {

 } while (depth > 0);
 } else {
 nodes.push(node);
 }
 return $(nodes);
}

Inside the loop, we walk through the node’s siblings and add each one to the nodes array. They become
members of the group.

rc/compile.js
function groupScan(node, startAttr, endAttr) {
 var nodes = [];
 if (startAttr && node && node.hasAttribute(startAttr)) {
 var depth = 0;
 do {

Applying Directives Across Multiple Nodes 25

719 Errata© Tero Parviainen 2016

 nodes.push(node);
 node = node.nextSibling;
 } while (depth > 0);
 } else {
 nodes.push(node);
 }
 return $(nodes);
}

This version collects all the nodes’s siblings, but we actually just want the ones until the one that
has the group end attribute. This is where the depth variable comes in. Whenever we see an ele-
ment that has the group start attribute, we increase the depth, and whenever we see one with the
group end attribute, we decrease it. This means that when we’ve seen as many end attributes as
we’ve seen start attributes, the loop terminates and we’re done.

src/compile.js
function groupScan(node, startAttr, endAttr) {
 var nodes = [];
 if (startAttr && node && node.hasAttribute(startAttr)) {
 var depth = 0;
 do {
 if (node.nodeType === Node.ELEMENT_NODE) {
 if (node.hasAttribute(startAttr)) {
 depth++;
 } else if (node.hasAttribute(endAttr)) {
 depth--;
 }
 }
 nodes.push(node);
 node = node.nextSibling;
 } while (depth > 0);
 } else {
 nodes.push(node);
 }
 return $(nodes);
}

Usually the depth only reaches 1, but it is important to maintain it so that we can support nested
groups. With the following DOM structure, when we’re collection the outer group we need to col-
lect everything up to the second my-dir-end. In between, the depth goes up to 2:

<div my-dir-start></div>
<div my-dir-start></div>
<div my-dir-end></div>
<div my-dir-end></div>

And finally we’re also able to apply directives to multi-element spans!

Summary 25

720 Errata© Tero Parviainen 2016

Summary

We now have a passable directive engine, with which we can define directives and then apply them
on DOM structures. This is already quite a useful thing, and can, for example, be used in many
contexts where you would traditionally use jQuery to selects elements from the DOM and attach
behavior to them.

When it comes to achieving the full power of Angular directives, however, we are just getting start-
ed.

In this chapter you have learned:

• How the $compile provider is constructed
• That directive registration happens outside of the core dependency injection mechanisms but

integrates with it.
• That directives are available from the injector though they’re usually applied via DOM compi-

lation.
• That an Angular application may have several directives with the same name.
• How several directives can be registered with one module.directive() invocation using the

shorthand object notation.
• How the DOM compilation happens: For each node in the compiled DOM, matching direc-

tives are collected and then applied to the node.
• How the compiler recurses into child nodes after their parents are compiled.
• How the directive name can be prefixed in different ways when specified in the DOM.
• How the different matching modes (element, attribute, class, comment) work.
• How directives can be restricted to only match certain modes, where the default is ’A’ for attri-

bute matching.
• How directives can be applied over a group of sibling nodes by having -start and -end attri-

butes in separate elements.

In the next chapter we’ll look at the Attributes object that provides several facilities for directive
authors to work with DOM attributes.

 26

721 Errata© Tero Parviainen 2016

Chapter 17

Directive Attributes

Passing Attributes to the compile Function 26

722 Errata© Tero Parviainen 2016

Dealing with DOM attributes is an important part of working with directives. This is true whether
we actually use attribute directives or not. Element and class directives often have a need to interact
with attributes as well. Even comment directives may have attributes associated with them, as we’ll
see in this chapter.

Attributes can be used to configure directives and to pass information to them. Directives also of-
ten manipulate the attributes of their elements to change how they look or behave in the browser.
In addition to this, attributes also provide a means for directive-to-directive communication, using
a mechanism called observing.

In this chapter we’ll implement the directive attribute system in full. At the end of it you’ll know
all the secrets of the attrs argument that the compile and link functions of your directives
receive.

Download the code for the starting point of this chapter.

Passing Attributes to the compile Function

Our directive implementation from the previous chapter supports DOM compilation, and the
directive compile function. We saw how that function receives the jQuery (jqLite) wrapped DOM
element as an argument. That element naturally also provides access to the element’s DOM at-
tributes. However, there’s an even easier way to get to those attributes, which is using a second
argument to the compile function. That second argument is an object whose properties are the
element’s DOM attributes, with their names camelCased:

test/compile_spec.js
describe('attributes', function() {

 it('passes the element attributes to the compile function', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 restrict: 'E',
 compile: function(element, attrs) {
 element.data('givenAttrs', attrs);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<my-directive my-attr="1" my-other-attr="two"></my-directive>');
 $compile(el);

 expect(el.data('givenAttrs').myAttr).toEqual('1');
 expect(el.data('givenAttrs').myOtherAttr).toEqual('two');
 });
 });

});

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter16-dom-compilation-and-basic-directives

Passing Attributes to the compile Function 26

723 Errata© Tero Parviainen 2016

In this test we expect the compile function to receive a second argument, which we attach to the
element as a data attribute. We then inspect it to see that it has attributes that correspond to what
was present in the DOM.

Apart from camelCasing the names, another thing that will have been done for us is whitespace
removal. Any whitespace the attribute values may have had will be gone:

test/compile_spec.js
it('trims attribute values', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 restrict: 'E',
 compile: function(element, attrs) {
 element.data('givenAttrs', attrs);
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $('<my-directive my-attr=" val "></my-directive>');
 $compile(el);

 expect(el.data('givenAttrs').myAttr).toEqual('val');
 });
});

Let’s build support for this to our DOM compiler. We’ll need to construct an attributes object
for each node we’re compiling. This happens inside the node loop in compileNodes. We make
an attributes object and then pass it first to collectDirectives and then to applyDirec-
tivesToNode:

src/compile.js
function compileNodes($compileNodes) {
 _.forEach($compileNodes, function(node) {
 var attrs = {};
 var directives = collectDirectives(node, attrs);
 var terminal = applyDirectivesToNode(directives, node, attrs);
 if (!terminal && node.childNodes && node.childNodes.length) {
 compileNodes(node.childNodes);
 }
 });
}

In applyDirectivesToNode the object goes straight to the directive’s compile function, which is
where our test cases will grab it:

src/compile.js

Passing Attributes to the compile Function 26

724 Errata© Tero Parviainen 2016

function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 _.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.compile) {
 directive.compile($compileNode, attrs);
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
 });
 return terminal;
}

The actual work of collecting the attributes and putting them to the object happens in collect-
Directives. Since we’re already iterating attributes in that function (for the purpose of matching
them to directives), we can just add all the attributes to the object during that same iteration:

src/compile.js
function collectDirectives(node, attrs) {
 var directives = [];
 if (node.nodeType === Node.ELEMENT_NODE) {
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName, 'E');
 _.forEach(node.attributes, function(attr) {
 var attrStartName, attrEndName;
 var name = attr.name;
 var normalizedAttrName = directiveNormalize(name.toLowerCase());
 if (/^ngAttr[A-Z]/.test(normalizedAttrName)) {
 name = _.kebabCase(
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7)
);
 }
 var directiveNName = normalizedAttrName.replace(/(Start|End)$/, '');
 if (directiveIsMultiElement(directiveNName)) {
 if (/Start$/.test(normalizedAttrName)) {
 attrStartName = name;
 attrEndName = name.substring(0, name.length - 5) + 'end';
 name = name.substring(0, name.length - 6);
 }

Introducing A Test Helper 26

725 Errata© Tero Parviainen 2016

 }
 normalizedAttrName = directiveNormalize(name.toLowerCase());
 addDirective(directives,
 normalizedAttrName, 'A', attrStartName, attrEndName);
 attrs[normalizedAttrName] = attr.value.trim();
 });
 _.forEach(node.classList, function(cls) {
 var normalizedClassName = directiveNormalize(cls);
 addDirective(directives, normalizedClassName, 'C');
 });
 } else if (node.nodeType === Node.COMMENT_NODE) {
 var match = /^\s*directive\:\s*([\d\w\-_]+)/.exec(node.nodeValue);
 if (match) {
 addDirective(directives, directiveNormalize(match[1]), 'M');
 }
 }
 directives.sort(byPriority);
 return directives;
}

Introducing A Test Helper

Before we go any further, there’s one thing we could do to make unit testing a lot less repetitive in
this chapter. The common pattern of unit tests here is:

1. Register a directive
2. Compile a DOM fragment
3. Grab the attributes object
4. Run some checks on it.

We can introduce a helper function in the describe block for attributes that does most of this
work:

test/compile_spec.js
function registerAndCompile(dirName, domString, callback) {
 var givenAttrs;
 var injector = makeInjectorWithDirectives(dirName, function() {
 return {
 restrict: 'EACM',
 compile: function(element, attrs) {
 givenAttrs = attrs;
 }
 };
 });
 injector.invoke(function($compile) {
 var el = $(domString);
 $compile(el);
 callback(el, givenAttrs);
 });

Handling Boolean Attributes 26

726 Errata© Tero Parviainen 2016

}

This function takes three arguments: A directive name to register, a DOM string to parse and
compile, and a callback to invoke when it’s all done. The callback will receive the element and the
attributes object as arguments.

Now we can change our first two unit tests to the following, much terser format:

test/compile_spec.js
it('passes the element attributes to the compile function', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive my-attr="1" my-other-attr="two"></my-directive>',
 function(element, attrs) {
 expect(attrs.myAttr).toEqual('1');
 expect(attrs.myOtherAttr).toEqual('two');
 }
);
});

it('trims attribute values', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive my-attr=" val "></my-directive>',
 function(element, attrs) {
 expect(attrs.myAttr).toEqual('val');
 }
);
});

Handling Boolean Attributes

Some attributes in HTML are so-called boolean attributes. An example of this is the disabled attribute
of input fields. Boolean attributes are special in that they don’t really have an explicit value. Their mere
presence in an element means they should be interpreted as “true”.

Since in JavaScript we have a notion of truthiness and falsiness, it would be convenient if we could
work with boolean attributes in a way that supports that notion. And in fact, we can do that. An-
gular coerces the values of boolean attributes, so that they are always true in the attributes object:

test/compile_spec.js
it('sets the value of boolean attributes to true', function() {
 registerAndCompile(
 'myDirective',
 '<input my-directive disabled>',
 function(element, attrs) {
 expect(attrs.disabled).toBe(true);

Handling Boolean Attributes 26

727 Errata© Tero Parviainen 2016

 }
);
});

Importantly though, this coercion doesn’t happen to any old attribute you add to an element. It
only applies to attributes that are defined as boolean in standard HTML. Others will get no special
treatment:

test/compile_spec.js
it('does not set the value of custom boolean attributes to true', function() {
 registerAndCompile(
 'myDirective',
 '<input my-directive whatever>',
 function(element, attrs) {
 expect(attrs.whatever).toEqual('');
 }
);
});

In collectDirectives, where we set the attribute value to the attributes object, we should just
use the value true if we deem this to be a boolean attribute:

src/compile.js
attrs[normalizedAttrName] = attr.value.trim();
if (isBooleanAttribute(node, normalizedAttrName)) {
 attrs[normalizedAttrName] = true;
}

The new isBooleanAttribute function checks two things: Whether this attribute name is one
of the standard boolean attribute names, and whether the element’s name is one where boolean
attributes are used:

src/compile.js
function isBooleanAttribute(node, attrName) {
 return BOOLEAN_ATTRS[attrName] && BOOLEAN_ELEMENTS[node.nodeName];
}

The BOOLEAN_ATTRS constant contains the (normalized) standard boolean attribute names:

src/compile.js
var BOOLEAN_ATTRS = {
 multiple: true,
 selected: true,
 checked: true,
 disabled: true,
 readOnly: true,
 required: true,

Overriding attributes with ng-attr 26

728 Errata© Tero Parviainen 2016

 open: true
};

The BOOLEAN_ELEMENTS constant contains the element names we want to match. The names are
in uppercase because that is how the DOM reports node names:

src/compile.js
var BOOLEAN_ELEMENTS = {
 INPUT: true,
 SELECT: true,
 OPTION: true,
 TEXTAREA: true,
 BUTTON: true,
 FORM: true,
 DETAILS: true
};

Overriding attributes with ng-attr

We’ve seen that you can prefix an attribute with ng-attr-, and the prefix will be stripped as the
attributes are collected. But what happens when an element has the same attribute declared both with
and without the ng-attr- prefix? With our current implementation it depends on which of them
happens to be declared first, but Angular actually has order-independent behavior for this: An ng-
attr- prefixed attribute will always override a non-prefixed one.

test/compile_spec.js
it('overrides attributes with ng-attr- versions', function() {
 registerAndCompile(
 'myDirective',
 '<input my-directive ng-attr-whatever="42" whatever="41">',
 function(element, attrs) {
 expect(attrs.whatever).toEqual('42');
 }
);
});

As we go through the attributes, we’ll set a flag if we’re looking at one that has the ng-attr- pre-
fix. Then, as we store the attribute, we first check that it hasn’t been stored already. That is, unless
it has the ng-attr- prefix, in which case it is stored anyway - and thus overrides any previous
value:

src/compile.js
function collectDirectives(node, attrs) {
 var directives = [];
 if (node.nodeType === Node.ELEMENT_NODE) {
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName, 'E');

Setting Attributes 26

729 Errata© Tero Parviainen 2016

 _.forEach(node.attributes, function(attr) {
 var attrStartName, attrEndName;
 var name = attr.name;
 var normalizedAttrName = directiveNormalize(name.toLowerCase());
 var isNgAttr = /^ngAttr[A-Z]/.test(normalizedAttrName);
 if (isNgAttr) {
 name = _.kebabCase(
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7)
);
 }
 var directiveNName = normalizedAttrName.replace(/(Start|End)$/, '');
 if (directiveIsMultiElement(directiveNName)) {
 if (/Start$/.test(normalizedAttrName)) {
 attrStartName = name;
 attrEndName = name.substring(0, name.length - 5) + 'end';
 name = name.substring(0, name.length - 6);
 }
 }
 normalizedAttrName = directiveNormalize(name.toLowerCase());
 addDirective(directives, normalizedAttrName, 'A',
 attrStartName, attrEndName);
 if (isNgAttr || !attrs.hasOwnProperty(normalizedAttrName)) {
 attrs[normalizedAttrName] = attr.value.trim();
 if (isBooleanAttribute(node, normalizedAttrName)) {
 attrs[normalizedAttrName] = true;
 }
 }
 });
 _.forEach(node.classList, function(cls) {
 var normalizedClassName = directiveNormalize(cls);
 addDirective(directives, normalizedClassName, 'C');
 });
 } else if (node.nodeType === Node.COMMENT_NODE) {
 var match = /^\s*directive\:\s*([\d\w\-_]+)/.exec(node.nodeValue);
 if (match) {
 addDirective(directives, directiveNormalize(match[1]), 'M');
 }
 }
 directives.sort(byPriority);
 return directives;
}

Setting Attributes

An object of normalized attributes is moderately useful in itself, but things become much more powerful
when we add an ability to not only read but also write attributes through that object. For that purpose,
there is a $set method on the object:

test/compile_spec.js

Setting Attributes 26

730 Errata© Tero Parviainen 2016

it('allows setting attributes', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive attr="true"></my-directive>',
 function(element, attrs) {
 attrs.$set('attr', 'false');
 expect(attrs.attr).toEqual('false');
 }
);
});

The attributes object now has a method, and it would make sense to define that method in its
prototype. That would suggest using a constructor. That is exactly what Angular does: There is
an Attributes constructor defined within the $get method of the compile provider. It takes an
element as its argument:

src/compile.js
this.$get = ['$injector', function($injector) {

 function Attributes(element) {
 this.$$element = element;
 }

 // ...

}];

We can now switch the attributes construction in compileNodes to use the new constructor in-
stead of using an ad-hoc object literal:

src/compile.js
function compileNodes($compileNodes) {
 _.forEach($compileNodes, function(node) {
 var attrs = new Attributes($(node));
 var directives = collectDirectives(node, attrs);
 var terminal = applyDirectivesToNode(directives, node, attrs);
 if (!terminal && node.childNodes && node.childNodes.length) {
 compileNodes(node.childNodes);
 }
 });
}

The one method we need for the time being is $set. To make our first test pass it can just set the
attribute’s new value on itself:

src/compile.js
function Attributes(element) {
 this.$$element = element;

Setting Attributes 26

731 Errata© Tero Parviainen 2016

}

Attributes.prototype.$set = function(key, value) {
 this[key] = value;
};

When you set an attribute, it is fair to expect that it should flush the corresponding attribute to the
DOM as well, and not just change it in the JavaScript object:

test/compile_spec.js
it('sets attributes to DOM', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive attr="true"></my-directive>',
 function(element, attrs) {
 attrs.$set('attr', 'false');
 expect(element.attr('attr')).toEqual('false');
 }
);
});

The $set method does do this, by using the element that was given to the Attributes construc-
tor:

src/compile.js
Attributes.prototype.$set = function(key, value) {
 this[key] = value;
 this.$$element.attr(key, value);
};

You can prevent this behavior though, by passing a third argument to $set with a value of false
(any falsy value will not do here - it needs to be exactly false):

test/compile_spec.js
it('does not set attributes to DOM when flag is false', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive attr="true"></my-directive>',
 function(element, attrs) {
 attrs.$set('attr', 'false', false);
 expect(element.attr('attr')).toEqual('true');
 }
);
});

In the implementation we should make a decision about flushing the value to the DOM by com-
paring the third argument to false:

Setting Attributes 26

732 Errata© Tero Parviainen 2016

src/compile.js
Attributes.prototype.$set = function(key, value, writeAttr) {
 this[key] = value;
 if (writeAttr !== false) {
 this.$$element.attr(key, value);
 }
};

And why would such a feature be useful? Why would you want to set an attribute on an element,
but not really change it in the DOM? Here we touch on the other main reason why the Attri-
butes object exists, apart from DOM manipulation: Directive-to-directive communication.

Because of the way we constructed the attributes object, the same exact object is shared by all the
directives of an element:

test/compile_spec.js
it('shares attributes between directives', function() {
 var attrs1, attrs2;
 var injector = makeInjectorWithDirectives({
 myDir: function() {
 return {
 compile: function(element, attrs) {
 attrs1 = attrs;
 }
 };
 },
 myOtherDir: function() {
 return {
 compile: function(element, attrs) {
 attrs2 = attrs;
 }
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-dir my-other-dir></div>');
 $compile(el);
 expect(attrs1).toBe(attrs2);
 });
});

Because they share the same attributes object, the directives can use that object to send informa-
tion to each other.

Since DOM access is generally much more expensive than pure JavaScript code, Angular provides
the optional third argument on $set for optimization purposes, for those cases where you don’t
actually care about the DOM but only want to let other directives know about the attribute change.

Setting Boolean Properties 26

733 Errata© Tero Parviainen 2016

Setting Boolean Properties

When you set an attribute, another thing Angular does is to set it as a property using jQuery’s prop
function, if it looks like a boolean attribute:

test/compile_spec.js
it('sets prop for boolean attributes', function() {
 registerAndCompile(
 'myDirective',
 '<input my-directive>',
 function(element, attrs) {
 attrs.$set('disabled', true);
 expect(element.prop('disabled')).toBe(true);
 }
);
});

Crucially, this also happens when we choose not to flush things to the DOM. This is useful when
we want to change DOM properties (such as disabled), but not necessarily DOM/HTML attributes:

test/compile_spec.js
it('sets prop for boolean attributes even when not flushing', function() {
 registerAndCompile(
 'myDirective',
 '<input my-directive>',
 function(element, attrs) {
 attrs.$set('disabled', true, false);
 expect(element.prop('disabled')).toBe(true);
 }
);
});

In the $set method we set the prop if the attribute looks like a boolean one. We do this regardless of the
writeAttr flag’s value:

src/compile.js
Attributes.prototype.$set = function(key, value, writeAttr) {
 this[key] = value;

 if (isBooleanAttribute(this.$$element[0], key)) {
 this.$$element.prop(key, value);
 }

 if (writeAttr !== false) {
 this.$$element.attr(key, value);
 }
};

http://api.jquery.com/prop
http://api.jquery.com/prop
https://developer.mozilla.org/en/docs/Web/API/HTMLInputElement

Denormalizing Attribute Names for The DOM 26

734 Errata© Tero Parviainen 2016

Another reason for using the prop function is that not all versions of jQuery have dealt with attrs and
props consistently. This does not really apply to our project because we control the version of jQuery, but it
is good to know this is happening in your Angular applications.

Denormalizing Attribute Names for The DOM

With the attributes object we are using normalized attribute names: The names are not exactly as
they are in the DOM, but instead they’re made more convenient for JavaScript consumption. Most
notably, instead of hyphenated-attribute-names we use camelCasedAttributeNames. Also, as we
saw in the previous chapter, several special prefixes that the attributes may have had will be gone.

When we set an attribute, this becomes a problem. We can’t set a normalized attribute name on the
DOM, because that’s unlikely to work as we expect (apart from simple names like ’attr’ that we
have been using so far). We need to denormalize the attribute name when we flush it to the DOM.

There are several ways to do this attribute name denormalization. The most straightforward of
these is to just supply a denormalized attribute name when we call $set. It can be given as the
fourth argument:

test/compile_spec.js
it('denormalizes attribute name when explicitly given', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive some-attribute="42"></my-directive>',
 function(element, attrs) {
 attrs.$set('someAttribute', 43, true, 'some-attribute');
 expect(element.attr('some-attribute')).toEqual('43');
 }
);
});

In $set we’ll use the fourth argument as the name when setting the DOM attribute. If a fourth
argument wasn’t given, we’ll use the first argument as before:

src/compile.js
Attributes.prototype.$set = function(key, value, writeAttr, attrName) {
 this[key] = value;

 if (isBooleanAttribute(this.$$element[0], key)) {
 this.$$element.prop(key, value);
 }

 if (!attrName) {
 attrName = key;
 }

 if (writeAttr !== false) {

http://ejohn.org/blog/jquery-16-and-attr/
http://ejohn.org/blog/jquery-16-and-attr/

Denormalizing Attribute Names for The DOM 26

735 Errata© Tero Parviainen 2016

 this.$$element.attr(attrName, value);
 }
};

This works, but it’s not a very user-friendly API. The caller of $set has to supply the two versions
of the attribute name each time, which is far from optimal.

Another way to denormalize the attribute name is to just snake-case it if not explicitly supplied:

test/compile_spec.js
it('denormalizes attribute by snake-casing', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive some-attribute="42"></my-directive>',
 function(element, attrs) {
 attrs.$set('someAttribute', 43);
 expect(element.attr('some-attribute')).toEqual('43');
 }
);
});

For this we can just use the _.kebabCase function provided by LoDash:

src/compile.js
Attributes.prototype.$set = function(key, value, writeAttr, attrName) {
 this[key] = value;

 if (isBooleanAttribute(this.$$element[0], key)) {
 this.$$element.prop(key, value);
 }

 if (!attrName) {
 attrName = _.kebabCase(key, '-');
 }

 if (writeAttr !== false) {
 this.$$element.attr(attrName, value);
 }
};

Even this is not quite optimal though: As we discussed, Angular supports various prefixes on
DOM attributes, which are stripped during normalization. It is likely that when you $set an
attribute, you want the DOM attribute with the original prefix to be updated. But _.kebabCase
knows nothing about any prefixes the attribute name may have had. We should be able to support
the original prefix:

test/compile_spec.js
it('denormalizes attribute by using original attribute name', function() {

Denormalizing Attribute Names for The DOM 26

736 Errata© Tero Parviainen 2016

 registerAndCompile(
 'myDirective',
 '<my-directive x-some-attribute="42"></my-directive>',
 function(element, attrs) {
 attrs.$set('someAttribute', '43');
 expect(element.attr('x-some-attribute')).toEqual('43');
 }
);
});

The one exception is the ng-attr- prefix, which is not retained when you $set an attribute:

test/compile_spec.js
it('does not use ng-attr- prefix in denormalized names', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive ng-attr-some-attribute="42"></my-directive>',
 function(element, attrs) {
 attrs.$set('someAttribute', 43);
 expect(element.attr('some-attribute')).toEqual('43');
 }
);
});

We’ll need to store a mapping of the normalized attribute names to their original names before
normalization. This mapping will be stored in a field called $attr in Attributes instances:

src/compile.js
function Attributes(element) {
 this.$$element = element;
 this.$attr = {};
}

In $set we’ll look up the attribute name from $attr if it wasn’t explicitly given to the function.
Only as a last resort will we use _.kebabCase, in which case we’ll also store the hyphenized ver-
sion to $attr for the benefit of future $set invocations:

src/compile.js
Attributes.prototype.$set = function(key, value, writeAttr, attrName) {
 this[key] = value;

 if (isBooleanAttribute(this.$$element[0], key)) {
 this.$$element.prop(key, value);
 }

 if (!attrName) {
 if (this.$attr[key]) {
 attrName = this.$attr[key];
 } else {

Denormalizing Attribute Names for The DOM 26

737 Errata© Tero Parviainen 2016

 attrName = this.$attr[key] = _.kebabCase(key);
 }
 }

 if (writeAttr !== false) {
 this.$$element.attr(attrName, value);
 }
};

The mapping object is populated inside collectDirectives. It has access to the attributes ob-
ject, and it’ll directly use its $attr property to set the normalized-to-denormalized mapping for
each of the element’s attributes. This is done in the _.forEach(node.attributes) loop after
processing the ng-attr- prefix:

src/compile.js
function collectDirectives(node, attrs) {
 var directives = [];
 if (node.nodeType === Node.ELEMENT_NODE) {
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName, 'E');
 _.forEach(node.attributes, function(attr) {
 var attrStartName, attrEndName;
 var name = attr.name;
 var normalizedAttrName = directiveNormalize(name.toLowerCase());
 var isNgAttr = /^ngAttr[A-Z]/.test(normalizedAttrName);
 if (isNgAttr) {
 name = _.kebabCase(
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7)
);
 normalizedAttrName = directiveNormalize(name.toLowerCase());
 }
 attrs.$attr[normalizedAttrName] = name;

 // ...

 });

 // ...

 } // ...
}

Finally, when you do supply an explicit argument name as the fourth argument to $set, what also
happens is the mapping to the denormalized attribute name will be overwritten with the argument
you gave. Any calls to $set after that will use the denormalized name you explicitly supplied, and
the original denormalized name is no longer used:

test/compile_spec.js

Observing Attributes 26

738 Errata© Tero Parviainen 2016

it('uses new attribute name after once given', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive x-some-attribute="42"></my-directive>',
 function(element, attrs) {
 attrs.$set('someAttribute', 43, true, 'some-attribute');
 attrs.$set('someAttribute', 44);

 expect(element.attr('some-attribute')).toEqual('44');
 expect(element.attr('x-some-attribute')).toEqual('42');
 }
);
});

So, if an attrName is supplied to $set, it also updates it into the $attr object:

src/compile.js
Attributes.prototype.$set = function(key, value, writeAttr, attrName) {
 this[key] = value;

 if (isBooleanAttribute(this.$$element[0], key)) {
 this.$$element.prop(key, value);
 }

 if (!attrName) {
 if (this.$attr[key]) {
 attrName = this.$attr[key];
 } else {
 attrName = this.$attr[key] = _.kebabCase(key);
 }
 } else {
 this.$attr[key] = attrName;
 }

 if (writeAttr !== false) {
 this.$$element.attr(attrName, value);
 }
};

Observing Attributes

As we’ve discussed, the Attributes object provides a means of communication between the
directives of a single element. Attribute changes made by one directive can be seen by another.

It would also be useful for one directive to get notified of an attribute change made by another di-
rective, so that when a change happens we would know right away. This could be done by $watch-
ing an attribute value, but there is also a dedicated mechanism Angular provides this purpose,
which is a possibility to $observe an attribute value:

Observing Attributes 26

739 Errata© Tero Parviainen 2016

test/compile_spec.js
it('calls observer immediately when attribute is $set', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive some-attribute="42"></my-directive>',
 function(element, attrs) {

 var gotValue;
 attrs.$observe('someAttribute', function(value) {
 gotValue = value;
 });

 attrs.$set('someAttribute', '43');

 expect(gotValue).toEqual('43');
 }
);
});

With $observe you can attach a function to Attributes, that will be called immediately when-
ever someone $sets that attribute, as we see here.

The Attributes object maintains a registry object of observers, where the keys are attribute
names and the values are arrays of observer functions for that attribute:

src/compile.js
Attributes.prototype.$observe = function(key, fn) {
 this.$$observers = this.$$observers || Object.create(null);
 this.$$observers[key] = this.$$observers[key] || [];
 this.$$observers[key].push(fn);
};

We use Object.create with a null prototype instead of a simple object literal, to avoid clashes with
attribute names that exist on the built-in Object prototype, such as toString and constructor.

At the end of $set we invoke all observers that have been registered for the given attribute:

src/compile.js
Attributes.prototype.$set = function(key, value, writeAttr, attrName) {
 this[key] = value;

 if (isBooleanAttribute(this.$$element[0], key)) {
 this.$$element.prop(key, value);
 }

 if (!attrName) {
 if (this.$attr[key]) {
 attrName = this.$attr[key];
 } else {
 attrName = this.$attr[key] = _.kebabCase(key);

Observing Attributes 26

740 Errata© Tero Parviainen 2016

 }
 } else {
 this.$attr[key] = attrName;
 }

 if (writeAttr !== false) {
 this.$$element.attr(attrName, value);
 }

 if (this.$$observers) {
 _.forEach(this.$$observers[key], function(observer) {
 try {
 observer(value);
 } catch (e) {
 console.log(e);
 }
 });
 }
};

Note that we wrap the observer call in a try..catch block. We do this for the same reason we
did with $watches and event listeners in Part 1 of the book: If one observer throws an exception,
that should not cause other observers to be skipped.

Attribute observing is a traditional application of the Observer Pattern. While the same goals
could be achieved by using $watches, what’s nice about $observers is that they do not put any
pressure on the $digest. Whereas a $watch function needs to be executed on every digest, an
$observer only ever executes when the attribute it is observing is set. For the rest of the time it
does not cost us any CPU cycles.

Note that $observers do not react to attribute changes that happen outside of the Attributes
object. If you set an attribute to the underlying element using jQuery or raw DOM access, no
$observers will fire. Attribute observing is tied to the $set function. That’s the cost of the per-
formance gain of not using a $watch.

So $observers run whenever the corresponding attribute is $set, but they are also guaranteed to
run once after initially registered. This happens on the first $digest that happens after registra-
tion:

test/compile_spec.js
it('calls observer on next $digest after registration', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive some-attribute="42"></my-directive>',
 function(element, attrs, $rootScope) {

 var gotValue;
 attrs.$observe('someAttribute', function(value) {

http://en.wikipedia.org/wiki/Observer_pattern

Observing Attributes 26

741 Errata© Tero Parviainen 2016

 gotValue = value;
 });

 $rootScope.$digest();

 expect(gotValue).toEqual('42');
 }
);
});

The third argument, $rootScope, to the test callback function is a new one. We need to pass it
from registerAndCompile:

src/compile.js
function registerAndCompile(dirName, domString, callback) {
 var givenAttrs;
 var injector = makeInjectorWithDirectives(dirName, function() {
 return {
 restrict: 'EACM',
 compile: function(element, attrs) {
 givenAttrs = attrs;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $(domString);
 $compile(el);
 callback(el, givenAttrs, $rootScope);
 });
}

In order to tap into the $digest from Attributes, we need access to a Scope there as well. We
can just inject $rootScope to the $get method of the CompileProvider and use that:

src/compile.js
this.$get = ['$injector', '$rootScope', function($injector, $rootScope) {

 // ...

}];

Now we can add a callback for the next $digest with $evalAsync. In the callback we just call
the observer function with the current value of the attribute:

src/compile.js
Attributes.prototype.$observe = function(key, fn) {
 var self = this;
 this.$$observers = this.$$observers || Object.create(null);
 this.$$observers[key] = this.$$observers[key] || [];

Observing Attributes 26

742 Errata© Tero Parviainen 2016

 this.$$observers[key].push(fn);
 $rootScope.$evalAsync(function() {
 fn(self[key]);
 });
};

Even though observers generally have nothing to do with the digest, they still use it for the initial
invocation. Scope.$evalAsync just provides a convenient way to do the initial invocation asyn-
chronously. The same could also have been achieved with a timeout, but this is how Angular does
it.

Finally, an observer can be removed in the same way a watcher or an event listener can: By invok-
ing a deregistration function that you get as the return value from $observe.

test/compile_spec.js
it('lets observers be deregistered', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive some-attribute="42"></my-directive>',
 function(element, attrs) {

 var gotValue;
 var remove = attrs.$observe('someAttribute', function(value) {
 gotValue = value;
 });

 attrs.$set('someAttribute', '43');
 expect(gotValue).toEqual('43');

 remove();
 attrs.$set('someAttribute', '44');
 expect(gotValue).toEqual('43');
 }
);
});

The implementation of this function follows the same pattern that we’ve seen before: Find the
index of the function in the observers, and then remove it by splicing the observers at that index:

src/compile.js
Attributes.prototype.$observe = function(key, fn) {
 var self = this;
 this.$$observers = this.$$observers || Object.create(null);
 this.$$observers[key] = this.$$observers[key] || [];
 this.$$observers[key].push(fn);
 $rootScope.$evalAsync(function() {
 fn(self[key]);
 });
 return function() {

Providing Class Directives As Attributes 26

743 Errata© Tero Parviainen 2016

 var index = self.$$observers[key].indexOf(fn);
 if (index >= 0) {
 self.$$observers[key].splice(index, 1);
 }
 };
};

Providing Class Directives As Attributes

We have now covered how Angular makes an element’s attributes available through the Attri-
butes object. That is not the only content the Attributes object may have, though. There are a
few special cases related to class and comment directives that cause attributes to be populated.

Firstly, when there is a class directive, that directive’s name will be present in attributes:

test/compile_spec.js
it('adds an attribute from a class directive', function() {
 registerAndCompile(
 'myDirective',
 '<div class="my-directive"></div>',
 function(element, attrs) {
 expect(attrs.hasOwnProperty('myDirective')).toBe(true);
 }
);
});

In collectDirectives we’ll put the directive name into the attributes:

src/compile.js
_.forEach(node.classList, function(cls) {
 var normalizedClassName = directiveNormalize(cls);
 addDirective(directives, normalizedClassName, 'C');
 attrs[normalizedClassName] = undefined;
});

The value of this attribute will be undefined but it is still present in the attributes object, so the ha-
sOwnProperty check returns true.

The class should not always be put in the attributes though. It should only happen for classes that
actually match directives, but our current implementation adds all classes:

test/compile_spec.js
it('does not add attribute from class without a directive', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive class="some-class"></my-directive>',
 function(element, attrs) {

Providing Class Directives As Attributes 26

744 Errata© Tero Parviainen 2016

 expect(attrs.hasOwnProperty('someClass')).toBe(false);
 }
);
});

As we add the attribute for the class, we’ll need to first check whether a directive was actually
matched on it. We can expect the addDirective function to return information about this:

src/compile.js
_.forEach(node.classList, function(cls) {
 var normalizedClassName = directiveNormalize(cls);
 if (addDirective(directives, normalizedClassName, 'C')) {
 attrs[normalizedClassName] = undefined;
 }
});

So in addDirective we’ll need to return a value, telling the caller whether a directive was added
or not:

src/compile.js
function addDirective(directives, name, mode, attrStartName, attrEndName) {
 var match;
 if (hasDirectives.hasOwnProperty(name)) {
 var foundDirectives = $injector.get(name + 'Directive');
 var applicableDirectives = _.filter(foundDirectives, function(dir) {
 return dir.restrict.indexOf(mode) !== -1;
 });
 _.forEach(applicableDirectives, function(directive) {
 if (attrStartName) {
 directive = _.create(directive, {$$start: attrStartName, $$end:
attrEndName});
 }
 directives.push(directive);
 match = directive;
 });
 }
 return match;
}

The concrete value the function returns will be either undefined or one of the matched directive
definition objects, although in this use case we only check if the value is truthy or not.

So the class attribute value is undefined by default, but it doesn’t necessarily have to be. You can
also provide a value for the attribute by adding a colon after the class name. The value may even
have whitespace in it:

test/compile_spec.js
it('supports values for class directive attributes', function() {

Providing Class Directives As Attributes 26

745 Errata© Tero Parviainen 2016

 registerAndCompile(
 'myDirective',
 '<div class="my-directive: my attribute value"></div>',
 function(element, attrs) {
 expect(attrs.myDirective).toEqual('my attribute value');
 }
);
});

The attribute value by default consumes the rest of the class attribute, but it can also be terminat-
ed using a semicolon. After the semicolon you can add other CSS classes, which may or may not
be related to directives:

test/compile_spec.js
it('terminates class directive attribute value at semicolon', function() {
 registerAndCompile(
 'myDirective',
 '<div class="my-directive: my attribute value; some-other-class"></div>',
 function(element, attrs) {
 expect(attrs.myDirective).toEqual('my attribute value');
 }
);
});

What we now have in the element’s CSS class attribute isn’t straightforwardly consumable with
the classList array, which is what we used in the previous chapter. We need to switch to regex
matching the className string in order to support the attribute value syntax.

First, let’s reorganize collectDirectives just slightly to set things up. We’re going to need a
local variable for holding regex matches. For that we’ll use one called match. Such a variable is
already used in comment processing, so we’ll pull the variable declaration up to the top-level of
the function. Then we’ll replace the classList forEach loop with a placeholder for where we’ll
do the class parsing - we only do so if the element in fact has a non-empty className property:

src/compile.js
function collectDirectives(node, attrs) {
 var directives = [];
 var match;
 if (node.nodeType === Node.ELEMENT_NODE) {
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName, 'E');
 _.forEach(node.attributes, function(attr) {
 var attrStartName, attrEndName;
 var name = attr.name;
 var normalizedAttrName = directiveNormalize(name.toLowerCase());
 var isNgAttr = /^ngAttr[A-Z]/.test(normalizedAttrName);
 if (isNgAttr) {
 name = _.kebabCase(
 normalizedAttrName[6].toLowerCase() +

Providing Class Directives As Attributes 26

746 Errata© Tero Parviainen 2016

 normalizedAttrName.substring(7)
);
 normalizedAttrName = directiveNormalize(name.toLowerCase());
 }

 attrs.$attr[normalizedAttrName] = name;

 var directiveNName = normalizedAttrName.replace(/(Start|End)$/, '');
 if (directiveIsMultiElement(directiveNName)) {
 if (/Start$/.test(normalizedAttrName)) {
 attrStartName = name;
 attrEndName = name.substring(0, name.length - 5) + 'end';
 name = name.substring(0, name.length - 6);
 }
 }
 normalizedAttrName = directiveNormalize(name.toLowerCase());
 addDirective(
 directives, normalizedAttrName, 'A', attrStartName, attrEndName);
 if (isNgAttr || !attrs.hasOwnProperty(normalizedAttrName)) {
 attrs[normalizedAttrName] = attr.value.trim();
 if (isBooleanAttribute(node, normalizedAttrName)) {
 attrs[normalizedAttrName] = true;
 }
 }

 });
 var className = node.className;
 if (_.isString(className) && !_.isEmpty(className)) {

 }
 } else if (node.nodeType === Node.COMMENT_NODE) {
 match = /^\s*directive\:\s*([\d\w\-_]+)/.exec(node.nodeValue);
 if (match) {
 addDirective(directives, directiveNormalize(match[1]), 'M');
 }
 }
 directives.sort(byPriority);
 return directives;
}

You may have guessed that just like function argument parsing in $injector, this is a task that
calls for some fairly involved regular expression work. We need to craft a regex that:

• Matches class names - several of them separated with whitespace
• Optionally matches a value for each class name if there is a colon following it. The value may

contain whitespace.
• Terminates the (optional) value at semicolon and matches the next class name(s).

Without further ado, here is the regex we’ll be using:

/([\d\w\-_]+)(?:\:([^;]+))?;?/

Adding Comment Directives As Attributes 26

747 Errata© Tero Parviainen 2016

• ([\d\w\-_]+) matches one or more digits, word characters, hyphens, or underscores and
captures them in a group. This matches a class name.

• (?: begins a non-capturing group for the value of the attribute. At the end of the expression)?
closes the non-capturing group and marks it as optional, and ;? adds an optional semi-colon at
the end.

• Inside the non-capturing group, \: matches a colon character and ([^;]+) matches one or
more characters other than semicolon, and captures them in another group. This is the value of
the attribute.

If we apply this regular expression to the class name in a loop, we can consume the class name,
each iteration either consuming just a class name or a class name with followed by a value:

src/compile.js
className = node.className;
if (_.isString(className) && !_.isEmpty(className)) {
 while ((match = /([\d\w\-_]+)(?:\:([^;]+))?;?/.exec(className))) {
 className = className.substr(match.index + match[0].length);
 }
}

In order to not create an infinite loop, at each iteration we need to replace the value of className
with the remainder that follows whatever was just matched. We do that by taking a substring of
className that begins from the end of the match.

To pull things together, we can now find the directive, as well as the attribute and its value inside
the loop:

src/compile.js
className = node.className;
if (isString(className) && className !== '') {
 while ((match = /([\d\w\-_]+)(?:\:([^;]+))?;?/.exec(className))) {
 var normalizedClassName = directiveNormalize(match[1]);
 if (addDirective(directives, normalizedClassName, 'C')) {
 attrs[normalizedClassName] = match[2] ? match[2].trim() : undefined;
 }
 className = className.substr(match.index + match[0].length);
 }
}

The directive name will be in the second item of the match array (because it is matched by the first
capturing group). The attribute value, should there be any, will be in the third item.

With this, both our old and new test cases for class directives are passing!

Adding Comment Directives As Attributes

Manipulating Classes 26

748 Errata© Tero Parviainen 2016

Just like class directives end up in the attributes object, so do comment directives. And just like the class
directive attributes may be associated with a value, so may comment directives be:

test/compile_spec.js
it('adds an attribute with a value from a comment directive', function() {
 registerAndCompile(
 'myDirective',
 '<!-- directive: my-directive and the attribute value -->',
 function(element, attrs) {
 expect(attrs.hasOwnProperty('myDirective')).toBe(true);
 expect(attrs.myDirective).toEqual('and the attribute value');
 }
);
});

Comment directives are easier to process than class directives because there may only be one direc-
tive per comment node. Still, just like with class directives, we need to handle this with a regular
expression. We already have one for parsing comment directive and we just need to change it a bit.
After matching the directive name, we’ll allow some whitespace, and then we’ll capture the rest of
the comment into a group that’ll become the attribute’s value:

src/compile.js
} else if (node.nodeType === Node.COMMENT_NODE) {
 match = /^\s*directive\:\s*([\d\w\-_]+)\s*(.*)$/.exec(node.nodeValue);
 if (match) {
 var normalizedName = directiveNormalize(match[1]);
 if (addDirective(directives, normalizedName, 'M')) {
 attrs[normalizedName] = match[2] ? match[2].trim() : undefined;
 }
 }
}

The pattern here is the same as with classes: If a matching directive is found for the comment, the
normalized directive name is added to attributes.

Manipulating Classes

Apart from making attributes available and observable, the Attributes object also provides some
helper methods for manipulating the element’s CSS classes: Adding them, removing them, and
updating them. These features are not related to class directives in any way - their purpose is just
to help with updating the class attribute of the DOM element.

The class manipulation in Attributes also integrates tightly with the Angular animation system, but that
integration is not covered in this book.

Manipulating Classes 26

749 Errata© Tero Parviainen 2016

You can add a CSS class to the element with the $addClass method on Attributes and remove
one with the $removeClass method:

test/compile_spec.js
it('allows adding classes', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive></my-directive>',
 function(element, attrs) {
 attrs.$addClass('some-class');
 expect(element.hasClass('some-class')).toBe(true);
 }
);
});

it('allows removing classes', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive class="some-class"></my-directive>',
 function(element, attrs) {
 attrs.$removeClass('some-class');
 expect(element.hasClass('some-class')).toBe(false);
 }
);
});

You could, of course, just as well add classes using the jQuery/jqLite element. This is actually all
that our new methods need to do:

src/compile.js
Attributes.prototype.$addClass = function(classVal) {
 this.$$element.addClass(classVal);
};

Attributes.prototype.$removeClass = function(classVal) {
 this.$$element.removeClass(classVal);
};

The third and final class manipulation method provided by Attributes is more interesting. It
takes two arguments: A set of new classes for an element, and a set of old classes. It then diffs
those two sets and adds all classes that are in the first set but not the second, and removes all class-
es that are in the second but not the first:

test/compile_spec.js
it('allows updating classes', function() {
 registerAndCompile(
 'myDirective',
 '<my-directive class="one three four"></my-directive>',
 function(element, attrs) {

Summary 26

750 Errata© Tero Parviainen 2016

 attrs.$updateClass('one two three', 'one three four');
 expect(element.hasClass('one')).toBe(true);
 expect(element.hasClass('two')).toBe(true);
 expect(element.hasClass('three')).toBe(true);
 expect(element.hasClass('four')).toBe(false);
 }
);
});

So the new function takes the new classes and old classes as arguments, both of them as strings.
The first thing we do is split those strings at whitespace to get arrays of individual class names:

src/compile.js
Attributes.prototype.$updateClass = function(newClassVal, oldClassVal) {
 var newClasses = newClassVal.split(/\s+/);
 var oldClasses = oldClassVal.split(/\s+/);

};

Then we take the set difference of those arrays in both directions, and finally apply the differences
to the element accordingly:

src/compile.js
Attributes.prototype.$updateClass = function(newClassVal, oldClassVal) {
 var newClasses = newClassVal.split(/\s+/);
 var oldClasses = oldClassVal.split(/\s+/);
 var addedClasses = _.difference(newClasses, oldClasses);
 var removedClasses = _.difference(oldClasses, newClasses);
 if (addedClasses.length) {
 this.$addClass(addedClasses.join(' '));
 }
 if (removedClasses.length) {
 this.$removeClass(removedClasses.join(' '));
 }
};

Summary

That second argument to compile (and the third argument to link) looks innocent but packs a
punch: It makes the attributes of the current element conveniently available in a normalized man-
ner. It also allows setting those attributes using the normalized names, which facilitates communi-
cation between directives and also provides a nice API for setting attributes on the DOM. It allows
observing changes on those attributes, so that you can know immediately when some other direc-
tive changes an attribute. Finally, it has some convenience methods for manipulating the element’s
CSS classes.

In this chapter you have learned:

Summary 26

751 Errata© Tero Parviainen 2016

• How an element’s attribute values are made available to directives using the Attributes ob-
ject

• That boolean attribute values are always true when present on an element, but only for the
standard HTML boolean attributes.

• That the same Attributes object is shared by all the directives of an element.
• How attributes can be $set, and how the caller can decide whether to also change the DOM

or only the corresponding JavaScript property.
• What the attribute name denormalization rules are when $settting an attribute on the DOM.
• How attribute changes can be observed, and how that only applies to attributes set using $set

and not to attributes changed by other means.
• That class directives also become attributes and may optionally have values attached to them.
• That comment directives also become attributes and may optionally have values attached to

them.
• How the Attributes object provides some convenience methods for adding, removing, and

updating the CSS classes of the element.

In the next chapter we will begin exploring how Scopes and Directives are tied together using a
process called linking.

 27

752 Errata© Tero Parviainen 2016

Chapter 18

Directive Linking
and Scopes

The Public Link Function 27

753 Errata© Tero Parviainen 2016

A couple of chapters ago we built up DOM compilation, which is the first piece of the puzzle in
Angular’s directive system. It consisted of walking over the DOM tree and finding directives to
apply to certain elements. But that is not the whole picture. As you may know, there is actually a
second central part to Angular’s directive system, in addition to compilation: Linking. That is the
topic of this chapter.

Linking is the process of combining the compiled DOM tree with scope objects. By association,
this combines the DOM tree with all the application data and functions attached to those scope
objects, as well as the watch-based dirty checking system, which we created in Part 1 of the book,
and which is a crucial part of Angular’s data binding implementation.

So, in this chapter we will bring directives and scopes together. We’ll see how new scopes can be
requested by directives and how the resulting scope hierarchy typically follows the structure of the
DOM hierarchy. We’ll also see how isolate scopes work, and how they provide a fine-grained and
flexible mechanism for passing information around. Let’s get to it.

Download the code for the starting point of this chapter.

The Public Link Function

In general, applying Angular directives to a DOM tree is a two-step process:

1. Compile the DOM tree
2. Link the compiled DOM tree to Scopes

The first step we have already covered, so we can focus our attention to the second step.

We have a service called $compile for compilation, so one might expect that there is a similar
service called $link for linking. But this is not the case. There are no top-level facilities for the
directive linking process in Angular. Instead, it is all built into compile.js.

While both compilation and linking are implemented in the same file, they are still separated
from each other. When you call $compile, no linking occurs. Instead, when you call $compile,
it returns you a function that you can call later to initiate linking. This function is called the public link
function:

test/compile_spec.js
it('returns a public link function from compile', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {compile: _.noop};
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive></div>');
 var linkFn = $compile(el);
 expect(linkFn).toBeDefined();

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter17-directive-attributes

The Public Link Function 27

754 Errata© Tero Parviainen 2016

 expect(_.isFunction(linkFn)).toBe(true);
 });
});

So, we need to return such a function from the public compile function of $compile:

src/compile.js
function compile($compileNodes) {
 compileNodes($compileNodes);

 return function publicLinkFn() {

 };
}

And what does this function do? It does many things, as we will see, but the very first thing it does
is to attach some debug information to the DOM. Specifically, the function takes a scope object as an
argument and attaches it to the DOM node(s) as jQuery/jqLite data.

Let’s create a new describe block for this and all the following test cases that deal with linking:

test/compile_spec.js
describe('linking', function() {

 it('takes a scope and attaches it to elements', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {compile: _.noop};
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(el.data('$scope')).toBe($rootScope);
 });
 });

});

In this case we give the $rootScope to the public link function and verify that it becomes the
$scope data attribute of the (top-level) elements given to $compile.

Passing this test is easy enough. We can simply attach the data to the elements originally given to
compile:

src/compile.js
function compile($compileNodes) {
 compileNodes($compileNodes);

 return function publicLinkFn(scope) {

Directive Link Functions 27

755 Errata© Tero Parviainen 2016

 $compileNodes.data('$scope', scope);
 };
}

The attachment of various data attributes and CSS classes to nodes is something you can actually turn off
in AngularJS, by calling the debugInfoEnabled function of the $compileProvider. Angular lets
you do this because such information is not always needed in production builds and disabling it gets you
some extra performance. Such optimization is not really relevant to our discussion and we will skip it in this
book.

Directive Link Functions

If all the public link function did was attach the $scope data attribute to the element, it wouldn’t
be very interesting. But that is certainly not all that it does. The main job of the public link function
is to initiate the actual linking of directives to the DOM. This is where directive link functions come
in.

Every directive may include its own link function. If you have ever authored Angular directives,
you’ll know that this is the case, and you’ll also know that this is actually the part of the directive
API most often used.

The directive link function is similar to the directive compile function, with two important differ-
ences:

1. The two functions get called at different points in time. Directive compilation functions get
called during compilation, and linking functions get called during linking. The difference is
mostly relevant in terms of what other directives do during these two steps. For example, in the
presence of DOM-altering directives like ngRepeat, your directive will get compiled once but
linked separately for each repetition introduced by ngRepeat.

2. The compile function has access to the DOM element and the Attributes object, as we have
seen. The link function has access to not only these, but also the Scope object being linked to.
This is often where application data and functionality gets attached to the directive.

There are several ways to define directive linking functions. The most straightforward for us to be-
gin with is the most low-level one: When a directive has a compile function, it is expected to return
the link function as its return value. Let’s make a test that does this and checks the arguments that the
link function should receive:

test/compile_spec.js
it('calls directive link function with scope', function() {
 var givenScope, givenElement, givenAttrs;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 compile: function() {
 return function link(scope, element, attrs) {

Directive Link Functions 27

756 Errata© Tero Parviainen 2016

 givenScope = scope;
 givenElement = element;
 givenAttrs = attrs;
 };
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(givenScope).toBe($rootScope);
 expect(givenElement[0]).toBe(el[0]);
 expect(givenAttrs).toBeDefined();
 expect(givenAttrs.myDirective).toBeDefined();
 });
});

The link function takes three arguments:

1. A scope, which we expect to be the same scope that we gave to the public link function.
2. An element, which we expect to be the exact element the directive was applied to
3. An Arguments object for the arguments of that element.

The directive API is often criticized for its complexity - and often rightly so - but there is a nice bit
of symmetry here: Just like the public compile function returns the public link function, an indi-
vidual directive’s compile function returns its link function. This is a pattern repeated on all levels
of the compilation and linking process.

Let’s make this test pass by connecting the public link function and the directive link functions
together. There will be a couple of intermediate steps between the two that we need to take care of.

Our public compile function calls the compileNodes function, which compiles a collection of
nodes. Here’s the first of the intermediate steps: The compileNodes function should return anoth-
er linking function for us. We’ll call this the composite link function, because it will be a composite of
individual node linking functions. The composite link function is called by the public link func-
tion:

src/compile.js
function compile($compileNodes) {
 var compositeLinkFn = compileNodes($compileNodes);

 return function publicLinkFn(scope) {
 $compileNodes.data('$scope', scope);
 compositeLinkFn(scope, $compileNodes);
 };
}

Directive Link Functions 27

757 Errata© Tero Parviainen 2016

The composite link function receives two arguments: The scope to link, and the DOM elements
to link. The latter is currently exactly the same as the elements that we compiled, but this will not
always be the case, as we’ll see later.

So, in compileNodes we should introduce the composite link function and return it:

src/compile.js
function compileNodes($compileNodes) {
 _.forEach($compileNodes, function(node) {
 var attrs = new Attributes($(node));
 var directives = collectDirectives(node, attrs);
 var terminal = applyDirectivesToNode(directives, node, attrs);
 if (!terminal && node.childNodes && node.childNodes.length) {
 compileNodes(node.childNodes);
 }
 });

 function compositeLinkFn(scope, linkNodes) {

 }

 return compositeLinkFn;
}

The composite link function’s job is to link all the individual nodes. For each of them, there is yet
another level of link functions needed: Each node will have a node link function, which is returned
by the applyDirectivesToNode function.

Note that this means applyDirectivesToNode will no longer return the terminal flag. Instead,
the terminal flag will be an attribute of the node link function:

src/compile.js
function compileNodes($compileNodes) {
 _.forEach($compileNodes, function(node) {
 var attrs = new Attributes($(node));
 var directives = collectDirectives(node, attrs);
 var nodeLinkFn;
 if (directives.length) {
 nodeLinkFn = applyDirectivesToNode(directives, node, attrs);
 }
 if ((!nodeLinkFn || !nodeLinkFn.terminal) &&
 node.childNodes && node.childNodes.length) {
 compileNodes(node.childNodes);
 }
 });

 function compositeLinkFn(scope, linkNodes) {

 }

Directive Link Functions 27

758 Errata© Tero Parviainen 2016

 return compositeLinkFn;
}

Let’s collect those node link functions to an array while compiling, along with the index to where
we currently are in the node collection:

src/compile.js
function compileNodes($compileNodes) {
 var linkFns = [];
 _.forEach($compileNodes, function(node, i) {
 var attrs = new Attributes($(node));
 var directives = collectDirectives(node, attrs);
 var nodeLinkFn;
 if (directives.length) {
 nodeLinkFn = applyDirectivesToNode(directives, node, attrs);
 }
 if ((!nodeLinkFn || !nodeLinkFn.terminal) &&
 node.childNodes && node.childNodes.length) {
 compileNodes(node.childNodes);
 }
 if (nodeLinkFn) {
 linkFns.push({
 nodeLinkFn: nodeLinkFn,
 idx: i
 });
 }
 });

 function compositeLinkFn(scope, linkNodes) {

 }

 return compositeLinkFn;
}

What we have at the end of that loop is a collection of objects that store node link functions and
indexes. We only collect them for nodes for which there are directives.

In the composite link function we can now invoke all the node link functions that we collected:

src/compile.js
function compileNodes($compileNodes) {
 var linkFns = [];
 _.forEach($compileNodes, function(node, i) {
 var attrs = new Attributes($(node));
 var directives = collectDirectives(node, attrs);
 var nodeLinkFn;
 if (directives.length) {
 nodeLinkFn = applyDirectivesToNode(directives, node, attrs);

Directive Link Functions 27

759 Errata© Tero Parviainen 2016

 }
 if ((!nodeLinkFn || !nodeLinkFn.terminal) &&
 node.childNodes && node.childNodes.length) {
 compileNodes(node.childNodes);
 }
 if (nodeLinkFn) {
 linkFns.push({
 nodeLinkFn: nodeLinkFn,
 idx: i
 });
 }
 });

 function compositeLinkFn(scope, linkNodes) {
 _.forEach(linkFns, function(linkFn) {
 linkFn.nodeLinkFn(scope, linkNodes[linkFn.idx]);
 });
 }

 return compositeLinkFn;
}

We’re expecting a 1-to-1 correspondence with compile nodes and link nodes here, because we ex-
pect the indexes to match. This is an assumption that won’t hold forever, but it’ll do for now.

Finally, as we get to the level of the individual node link functions, we reach the point where we
can link the directives themselves. We’ll need to collect the directive link functions - which are the
results of calling each directive’s compile function:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var linkFns = [];
 _.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 if (linkFn) {
 linkFns.push(linkFn);
 }
 }
 if (directive.terminal) {

Directive Link Functions 27

760 Errata© Tero Parviainen 2016

 terminal = true;
 terminalPriority = directive.priority;
 }
 });
 return terminal;
}

We can now construct the node link function and return it. The function invokes the directive link
functions. We also set the terminal flag on it as an attribute, so that compileNodes is able to
check its value:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var linkFns = [];
 _.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 if (linkFn) {
 linkFns.push(linkFn);
 }
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
 });

 function nodeLinkFn(scope, linkNode) {
 _.forEach(linkFns, function(linkFn) {
 var $element = $(linkNode);
 linkFn(scope, $element, attrs);
 });
 }
 nodeLinkFn.terminal = terminal;
 return nodeLinkFn;
}

Our test case finally passes, and we’re successfully doing some linking! As we’ve seen, there are

Directive Link Functions 27

761 Errata© Tero Parviainen 2016

several steps involved but each one has a specific purpose:

• The public link function is used to link the whole DOM tree that we’re compiling
• The composite link function links a collection of nodes
• The node link function links all the directives of a single node
• The directive link function links a single directive.

The first and last of these link functions are the ones that we come into touch with as application
developers. The two in the middle are part of the internal machinery of compile.js.

Plain Directive Link Functions 27

762 Errata© Tero Parviainen 2016

Plain Directive Link Functions

It is quite common to have a directive that does nothing in the compile function but instead defers
all of its work to the link function. There’s an API shortcut for this in the directive definition
object, where you can just introduce the link attribute with the link function directly, skipping
compile:

test/compile_spec.js
it('supports link function in directive definition object', function() {
 var givenScope, givenElement, givenAttrs;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 link: function(scope, element, attrs) {
 givenScope = scope;
 givenElement = element;
 givenAttrs = attrs;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(givenScope).toBe($rootScope);
 expect(givenElement[0]).toBe(el[0]);
 expect(givenAttrs).toBeDefined();
 expect(givenAttrs.myDirective).toBeDefined();
 });
});

We can handle this while we’re registering the directive factories. If a directive definition object
has no compile attribute, but does have a link attribute, we’ll substitute the compile function
with a dummy function that just returns the link function. The directive compiler will never know
the difference:

src/compile.js
$provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, function(factory, i) {
 var directive = $injector.invoke(factory);
 directive.restrict = directive.restrict || 'EA';
 directive.priority = directive.priority || 0;
 if (directive.link && !directive.compile) {
 directive.compile = _.constant(directive.link);
 }
 directive.name = directive.name || name;
 directive.index = i;
 return directive;
 });
}]);

Linking Child Nodes 27

763 Errata© Tero Parviainen 2016

Linking Child Nodes

So far we have been focusing on the linking of nodes on a single level of the DOM hierarchy.
Linking should really happen for the whole DOM tree that is being compiled, including all the de-
scendants, so let’s get that taken care of as well.

When you have a DOM tree with directives on several levels, the directives on lower levels will
actually get linked first:

test/compile_spec.js
it('links directive on child elements first', function() {
 var givenElements = [];
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 link: function(scope, element, attrs) {
 givenElements.push(element);
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive><div my-directive></div></div>');
 $compile(el)($rootScope);
 expect(givenElements.length).toBe(2);
 expect(givenElements[0][0]).toBe(el[0].firstChild);
 expect(givenElements[1][0]).toBe(el[0]);
 });
});

In this test we collect all the elements linked to instances of myDirective. We apply the directive
to two elements: A parent and a child. We then see that the child element was linked before the
parent element.

During compilation we handle child nodes by having a recursive call inside compileNodes for
each node’s childNodes. Since compileNodes now returns a composite link function, we need
to grab hold of the recursive call’s return value in order to link the child nodes. So for each node,
we need to collect potentially two link functions: The node link function and the composite link
function of its children. If either is present, we’ll add an element to the linkFns array:

src/compile.js
function compileNodes($compileNodes) {
 var linkFns = [];
 _.forEach($compileNodes, function(node, idx) {
 var attrs = new Attributes($(node));
 var directives = collectDirectives(node, attrs);
 var nodeLinkFn;
 if (directives.length) {

Linking Child Nodes 27

764 Errata© Tero Parviainen 2016

 nodeLinkFn = applyDirectivesToNode(directives, node, attrs);
 }
 var childLinkFn;
 if ((!nodeLinkFn || !nodeLinkFn.terminal) &&
 node.childNodes && node.childNodes.length) {
 childLinkFn = compileNodes(node.childNodes);
 }
 if (nodeLinkFn || childLinkFn) {
 linkFns.push({
 nodeLinkFn: nodeLinkFn,
 childLinkFn: childLinkFn,
 idx: i
 });
 }
 });

 // ...

}

Now, in the composite link function, where we call the node link functions, we’ll add an addition-
al argument: The child link function. We expect the node link function to handle linking of the
node’s children using it.

src/compile.js
function compositeLinkFn(scope, linkNodes) {
 _.forEach(linkFns, function(linkFn) {
 linkFn.nodeLinkFn(
 linkFn.childLinkFn,
 scope,
 linkNodes[linkFn.idx]
);
 });
}

The child link function is actually the first argument to the node link function, which changes the
contract of the node link function and thus breaks some of our existing test cases. Let’s fix this by
updating nodeLinkFn to take the new argument and call it before the node itself is linked:

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {
 if (childLinkFn) {
 childLinkFn(scope, linkNode.childNodes);
 }
 _.forEach(linkFns, function(linkFn) {
 var $element = $(linkNode);
 linkFn(scope, $element, attrs);
 });
}

Linking Child Nodes 27

765 Errata© Tero Parviainen 2016

Now we’ve made the test pass, and we’re linking children. When a node is linked, its child nodes
are linked too.

The problem with this approach is that when a node does not have any directives applied to it, it
will not be linked, and neither will its children even if they do have directives applied. If we add a
test case for this, it will fail:

test/compile_spec.js
it('links children when parent has no directives', function() {
 var givenElements = [];
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 link: function(scope, element, attrs) {
 givenElements.push(element);
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div><div my-directive></div></div>');
 $compile(el)($rootScope);
 expect(givenElements.length).toBe(1);
 expect(givenElements[0][0]).toBe(el[0].firstChild);
 });
});

In the test we expect the child element to get linked, but that isn’t happening. In fact, the test is
throwing an error because we’re trying to invoke a non-existing node link function from the com-
posite link function.

We can fix that by adding a check for whether there is a node link function or not. If there is, we
do what we did before: Invoke it and expect it to link the children. But if there isn’t, we’re going to
call the child link function directly from the composite link function.

src/compile.js
function compositeLinkFn(scope, linkNodes) {
 _.forEach(linkFns, function(linkFn) {
 if (linkFn.nodeLinkFn) {
 linkFn.nodeLinkFn(
 linkFn.childLinkFn,
 scope,
 linkNodes[linkFn.idx]
);
 } else {
 linkFn.childLinkFn(
 scope,
 linkNodes[linkFn.idx].childNodes
);
 }
 });

Pre- And Post-Linking 27

766 Errata© Tero Parviainen 2016

}

Recall that childLinkFn is the composite link function of the children, and thus takes two argu-
ments: The scope and the nodes to link.

Pre- And Post-Linking

It may seem peculiar that an element’s children get linked before the element itself. There is a
good explanation for this, which is that there are actually two different kinds of link functions, and
we’ve only been looking at one of them so far: There are both prelink functions and postlink func-
tions. The difference between the two is the order in which they get invoked. Prelink functions are
called before child nodes get linked, and postlink functions are called after that.

What we’ve been calling link functions so far are actually postlink functions, as that is the default
when you don’t specify one or the other. Another, more explicit way to express what we’ve done so
far is to have a nested post key in the directive definition object:

test/compile_spec.js
it('supports link function objects', function() {
 var linked;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 link: {
 post: function(scope, element, attrs) {
 linked = true;
 }
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div><div my-directive></div></div>');
 $compile(el)($rootScope);
 expect(linked).toBe(true);
 });
});

As we compile a node, we’ll need to see if we have a direct link function, or an object of link func-
tions, in which case we’ll access the post key of the object to find the function itself:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var linkFns = [];
 _.forEach(directives, function(directive) {
 if (directive.$$start) {

Pre- And Post-Linking 27

767 Errata© Tero Parviainen 2016

 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 if (_.isFunction(linkFn)) {
 linkFns.push(linkFn);
 } else if (linkFn) {
 linkFns.push(linkFn.post);
 }
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
 });

 // ...

}

The real reason for having this object notation for link functions is that now we can support both
pre- and postlink functions. Let’s construct a test case with two levels of nodes and check the order
in which linkings get invoked:

test/compile_spec.js
it('supports prelinking and postlinking', function() {
 var linkings = [];
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 link: {
 pre: function(scope, element) {
 linkings.push(['pre', element[0]]);
 },
 post: function(scope, element) {
 linkings.push(['post', element[0]]);
 }
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive><div my-directive></div></div>');
 $compile(el)($rootScope);
 expect(linkings.length).toBe(4);
 expect(linkings[0]).toEqual(['pre', el[0]]);
 expect(linkings[1]).toEqual(['pre', el[0].firstChild]);
 expect(linkings[2]).toEqual(['post', el[0].firstChild]);

Pre- And Post-Linking 27

768 Errata© Tero Parviainen 2016

 expect(linkings[3]).toEqual(['post', el[0]]);
 });
});

Here we are making sure that the order of the link function invocations is:

1. Parent prelink
2. Child prelink
3. Child postlink
4. Parent postlink

At the moment, the test fails as the prelink functions are not getting invoked at all.

Let’s change applyDirectivesToNode so that it collects link functions to two separate arrays:
preLinkFns and postLinkFns:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = [], postLinkFns = [];
 _.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 if (_.isFunction(linkFn)) {
 postLinkFns.push(linkFn);
 } else if (linkFn) {
 if (linkFn.pre) {
 preLinkFns.push(linkFn.pre);
 }
 if (linkFn.post) {
 postLinkFns.push(linkFn.post);
 }
 }
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
 });

Pre- And Post-Linking 27

769 Errata© Tero Parviainen 2016

 // ..

Then let’s change the node link function to support the order of invocations we want: First invoke
the prelink functions, then invoke the child link functions, and finally invoke the postlink func-
tions:

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {
 var $element = $(linkNode);

 _.forEach(preLinkFns, function(linkFn) {
 linkFn(scope, $element, attrs);
 });
 if (childLinkFn) {
 childLinkFn(scope, linkNode.childNodes);
 }
 _.forEach(postLinkFns, function(linkFn) {
 linkFn(scope, $element, attrs);
 });
}

In the previous section we passed the child link function to the node link function instead of just
calling it there. Now we see the main reason why: This gives the node link function a chance to
call its own prelink functions before invoking the child link function.

1

<div my-directive>

</div>

<div my-directive>

 post

pre

pre postpre

post

2 3 4 5

6

There’s one more difference between pre- and postlink functions, which has to do with the order in
which they’re called within one element: Prelink functions are called in the directive priority order,
but postlink functions should actually be called in reverse directive priority order. This is a general rule
about postlink functions, both between elements and within a single element: They are invoked in
reverse order compared to compilation.

Our current implementation still calls both kinds of link functions in priority order, since we’re just
calling them in the order in which we collected them during compilation. The following test will
not yet pass:

Pre- And Post-Linking 27

770 Errata© Tero Parviainen 2016

test/compile_spec.js
it('reverses priority for postlink functions', function() {
 var linkings = [];
 var injector = makeInjectorWithDirectives({
 firstDirective: function() {
 return {
 priority: 2,
 link: {
 pre: function(scope, element) {
 linkings.push('first-pre');
 },
 post: function(scope, element) {
 linkings.push('first-post');
 }
 }
 };
 },
 secondDirective: function() {
 return {
 priority: 1,
 link: {
 pre: function(scope, element) {
 linkings.push('second-pre');
 },
 post: function(scope, element) {
 linkings.push('second-post');
 }
 }
 };
 },
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div first-directive second-directive></div>');
 $compile(el)($rootScope);
 expect(linkings).toEqual([
 'first-pre',
 'second-pre',
 'second-post',
 'first-post'
]);
 });
});

We can fix this by changing the iterator function we use for postlink functions, so that they’re iter-
ated from right to left:

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {
 var $element = $(linkNode);

Keeping The Node List Stable for Linking 27

771 Errata© Tero Parviainen 2016

 _.forEach(preLinkFns, function(linkFn) {
 linkFn(scope, $element, attrs);
 });
 if (childLinkFn) {
 childLinkFn(scope, linkNode.childNodes);
 }
 _.forEachRight(postLinkFns, function(linkFn) {
 linkFn(scope, $element, attrs);
 });
}

Keeping The Node List Stable for Linking

As we already touched on earlier, the way we have set up the composite link function requires a
one-to-one correspondence between compile nodes and link nodes and isn’t very robust when it
comes to changes in the underlying DOM. Since DOM manipulation is often exactly what direc-
tives are used for, this can be a problem. For example, the linking process breaks if we have a direc-
tive that inserts new siblings to the elements being linked:

test/compile_spec.js
it('stabilizes node list during linking', function() {
 var givenElements = [];
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 link: function(scope, element, attrs) {
 givenElements.push(element[0]);
 element.after('<div></div>');
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div><div my-directive></div><div my-directive></div></div>');
 var el1 = el[0].childNodes[0], el2 = el[0].childNodes[1];
 $compile(el)($rootScope);
 expect(givenElements.length).toBe(2);
 expect(givenElements[0]).toBe(el1);
 expect(givenElements[1]).toBe(el2);
 });
});

In this test we have a directive that inserts a new element after the current element during linking.
We apply the element to two siblings, and expect both to be linked. What happens instead is one
of the inserted elements gets linked, and for the second application of the directive, the element
used for compilation is different from the element used for linking. This is definitely not what we
want.

We can fix this by making our own copy of the node collection before we start running the node
link functions. Unlike the raw DOM node collection, this collection will be protected from ele-

Linking Directives Across Multiple Nodes 27

772 Errata© Tero Parviainen 2016

ments shifting around during linking. We can create the collection by iterating over the indexes in
the linkFns array:

src/compile.js
function compositeLinkFn(scope, linkNodes) {
 var stableNodeList = [];
 _.forEach(linkFns, function(linkFn) {
 var nodeIdx = linkFn.idx;
 stableNodeList[nodeIdx] = linkNodes[nodeIdx];
 });

 _.forEach(linkFns, function(linkFn) {
 if (linkFn.nodeLinkFn) {
 linkFn.nodeLinkFn(
 linkFn.childLinkFn,
 scope,
 stableNodeList[linkFn.idx]
);
 } else {
 linkFn.childLinkFn(
 scope,
 stableNodeList[linkFn.idx].childNodes
);
 }
 });
}

Linking Directives Across Multiple Nodes

A couple of chapters ago we saw how directives can be configured as multiElement directives
and then applied with the -start and -end suffixes in the DOM. These cases need a bit of spe-
cial attention while linking, because you would expect the link function of those directives to
receive a collection of elements from the start to the end element, and currently it’s just receiving
the start element:

test/compile_spec.js
it('invokes multi-element directive link functions with whole group', function() {
 var givenElements;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 multiElement: true,
 link: function(scope, element, attrs) {
 givenElements = element;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $(
 '<div my-directive-start></div>'+

Linking Directives Across Multiple Nodes 27

773 Errata© Tero Parviainen 2016

 '<p></p>'+
 '<div my-directive-end></div>'
);
 $compile(el)($rootScope);
 expect(givenElements.length).toBe(3);
 });
});

What we’re going to do is add some logic to applyDirectivesToNode that knows what to do
with multi-element directive applications. But first let’s do a tiny bit of refactoring, by introducing
a helper function that collects the link functions of a node, so that the directive _.forEach loop
doesn’t grow too large:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = [], postLinkFns = [];

 function addLinkFns(preLinkFn, postLinkFn) {
 if (preLinkFn) {
 preLinkFns.push(preLinkFn);
 }
 if (postLinkFn) {
 postLinkFns.push(postLinkFn);
 }
 }

 _.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 if (_.isFunction(linkFn)) {
 addLinkFns(null, linkFn);
 } else if (linkFn) {
 addLinkFns(linkFn.pre, linkFn.post);
 }
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
 });

Linking Directives Across Multiple Nodes 27

774 Errata© Tero Parviainen 2016

 // ...

}

The new addLinkFns function will know some tricks about multi-element directives but first we
have to let it know when we’re actually dealing with one. We already have the $$start and $$end
attributes that we are attaching to the directive object in these cases (which we do in addDirec-
tive). These attributes hold the attribute names that were used in the DOM to mark the begin-
ning and end of the directive application. Let’s pass them along to addLinkFns:

src/compile.js
_.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }
 if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 var attrStart = directive.$$start;
 var attrEnd = directive.$$end;
 if (_.isFunction(linkFn)) {
 addLinkFns(null, linkFn, attrStart, attrEnd);
 } else if (linkFn) {
 addLinkFns(linkFn.pre, linkFn.post, attrStart, attrEnd);
 }
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
});

In addLinkFns we are going to check if these arguments actually have defined values. If they do,
we are going to wrap the link functions with special wrappers that know how to resolve the start
and end to the collection of elements:

src/compile.js
function addLinkFns(preLinkFn, postLinkFn, attrStart, attrEnd) {
 if (preLinkFn) {
 if (attrStart) {
 preLinkFn = groupElementsLinkFnWrapper(preLinkFn, attrStart, attrEnd);
 }
 preLinkFns.push(preLinkFn);
 }
 if (postLinkFn) {
 if (attrStart) {
 postLinkFn = groupElementsLinkFnWrapper(postLinkFn, attrStart, attrEnd);
 }
 postLinkFns.push(postLinkFn);

Linking And Scope Inheritance 27

775 Errata© Tero Parviainen 2016

 }
}

The new groupElementsLinkFnWrapper returns a wrapped link function, that replaces the el-
ement given to the original link function with the full group of elements. For collecting that group
we already have the function we need: The groupScan function that we are using for doing the
same thing in the compilation phase:

src/compile.js
function groupScan(node, startAttr, endAttr) {
 // ..
}

function groupElementsLinkFnWrapper(linkFn, attrStart, attrEnd) {
 return function(scope, element, attrs) {
 var group = groupScan(element[0], attrStart, attrEnd);
 return linkFn(scope, group, attrs);
 };
}

So, what we have for multi-element directives is one additional level of indirection between the
public link function and the directive link function: A wrapper that knows how to resolve the ele-
ment group, given the start element and the start and end attribute names.

Linking And Scope Inheritance

Having gotten the basics of the linking process in order, we arrive at the other crucial theme of this
chapter: The ways in which new scopes are created during the directive linking process.

Our code so far takes a Scope as an argument to the public link function, and gives that exact same
scope to all the directive link functions. A single scope is shared by all directives in the DOM tree.
While this may occur in actual Angular applications too, it is far more common to have directives
that request their own scope, using the inheritance mechanisms introduced back in Chapter 2. Let’s
look at how this happens.

A directive may ask for an inherited scope, by introducing a scope attribute on the directive defini-
tion object, and setting its value to true:

test/compile_spec.js
it('makes new scope for element when directive asks for it', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: true,
 link: function(scope) {
 givenScope = scope;

Linking And Scope Inheritance 27

776 Errata© Tero Parviainen 2016

 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(givenScope.$parent).toBe($rootScope);
 });
});

A false value for scope is considered equivalent to undefined, i.e. the directive should just receive the
scope from its environment, which is what we’ve been doing so far.

When there is at least one directive on an element that requests an inherited scope, all directives on
that element will receive that inherited scope:

test/compile_spec.js
it('gives inherited scope to all directives on element', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: true
 };
 },
 myOtherDirective: function() {
 return {
 link: function(scope) {
 givenScope = scope;
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 $compile(el)($rootScope);
 expect(givenScope.$parent).toBe($rootScope);
 });
});

Here we apply two directives on the same element, one of which requests an inherited scope. We
check that even the directive that didn’t ask for an inherited scope now gets one.

When there is scope inheritance involved with an element, two things are attached to the element:

• An ng-scope CSS class
• The new Scope object as jQuery/jqLite data

Linking And Scope Inheritance 27

777 Errata© Tero Parviainen 2016

test/compile_spec.js
it('adds scope class and data for element with new scope', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: true,
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(el.hasClass('ng-scope')).toBe(true);
 expect(el.data('$scope')).toBe(givenScope);
 });
});

Let’s make these test cases pass. The first thing that needs to happen is the detection of directives
that request a new scope. We can do this in applyDirectivesToNode, where, if we encounter at
least one directive with its scope attribute set to true, we will set a similar scope attribute on the
node link function:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = [], postLinkFns = [];
 var newScopeDirective;

 function addLinkFns(preLinkFn, postLinkFn, attrStart, attrEnd) {
 // ...
 }

 _.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.scope) {
 newScopeDirective = newScopeDirective || directive;
 }
 if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 var attrStart = directive.$$start;

Linking And Scope Inheritance 27

778 Errata© Tero Parviainen 2016

 var attrEnd = directive.$$end;
 if (_.isFunction(linkFn)) {
 addLinkFns(null, linkFn, attrStart, attrEnd);
 } else if (linkFn) {
 addLinkFns(linkFn.pre, linkFn.post, attrStart, attrEnd);
 }
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
 });

 function nodeLinkFn(childLinkFn, scope, linkNode) {
 // ...
 }
 nodeLinkFn.terminal = terminal;
 nodeLinkFn.scope = newScopeDirective && newScopeDirective.scope;

 return nodeLinkFn;
}

In the composite link function we will now make a new scope if the node link function is marked
as one that requests it - i.e. the node had at least one directive that wanted an inherited scope:

src/compile.js
_.forEach(linkFns, function(linkFn) {
 if (linkFn.nodeLinkFn) {
 if (linkFn.nodeLinkFn.scope) {
 scope = scope.$new();
 }
 linkFn.nodeLinkFn(
 linkFn.childLinkFn,
 scope,
 stableNodeList[linkFn.idx]
);
 } else {
 linkFn.childLinkFn(
 scope,
 stableNodeList[linkFn.idx].childNodes
);
 }
});

We should also set the CSS class and data accordingly if there is an inherited scope. The CSS class
is added already during compilation - not during linking:

src/compile.js
_.forEach($compileNodes, function(node, i) {
 var attrs = new Attributes($(node));

Linking And Scope Inheritance 27

779 Errata© Tero Parviainen 2016

 var directives = collectDirectives(node, attrs);
 var nodeLinkFn;
 if (directives.length) {
 nodeLinkFn = applyDirectivesToNode(directives, node, attrs);
 }
 var childLinkFn;
 if ((!nodeLinkFn || !nodeLinkFn.terminal) &&
 node.childNodes && node.childNodes.length) {
 childLinkFn = compileNodes(node.childNodes);
 }
 if (nodeLinkFn && nodeLinkFn.scope) {
 attrs.$$element.addClass('ng-scope');
 }
 if (nodeLinkFn || childLinkFn) {
 linkFns.push({
 nodeLinkFn: nodeLinkFn,
 childLinkFn: childLinkFn,
 idx: i
 });
 }
});

The $scope jQuery data is added during linking - since we don’t have the scope object until then:

src/compile.js
_.forEach(linkFns, function(linkFn) {
 var node = stableNodeList[linkFn.idx];
 if (linkFn.nodeLinkFn) {
 if (linkFn.nodeLinkFn.scope) {
 scope = scope.$new();
 $(node).data('$scope', scope);
 }
 linkFn.nodeLinkFn(
 linkFn.childLinkFn,
 scope,
 node
);
 } else {
 linkFn.childLinkFn(
 scope,
 node.childNodes
);
 }
});

And that’s it!

In Part 1 of the book we discussed that scope inheritance often follows the structure of the DOM
tree. Now we see how that actually happens: Directives may ask new scopes to be created, in
which case the elements where the directives are applied - as well as all of their children - get the inher-

Isolate Scopes 27

780 Errata© Tero Parviainen 2016

ited scope.

Isolate Scopes

Back in Chapter 2 we saw the two alternative ways in which you can do Scope inheritance: Proto-
typal inheritance, and non-prototypal, isolated inheritance. We’ve already seen how the first ap-
proach ties into directives. The remainder of the chapter will focus on the second approach.

As we’ve learned, isolate scopes are scopes that participate in the scope hierarchy but do not inher-
it the attributes of their parents. They participate in event propagation and digest cycles along with
other scopes, but you cannot use them to share arbitrary data from parents to descendants. When
you use an isolate scope with a directive, it is easier to make the directive more modular, as you can
make sure that your directive is more or less isolated from its surrounding environment.

Isolated scopes are not completely isolated from their context, however. The directive system allows
you to tie attributes from the surrounding environment to isolate scopes, by using isolate scope bind-
ings. The main difference between this and normal scope inheritance is that everything you pass
into an isolate scope must be explicitly defined as an isolate binding, whereas with normal inher-
itance all the parent attributes come through the JavaScript object prototype, whether you want
them or not.

Before we get into the bindings however, let’s get the basics out of the way. An isolate scope is re-
quested by using an object as the value of a directive’s scope attribute. The scope of that directive
will be a child of the scope from the surrounding context, but it will not prototypally inherit from
it:

test/compile_spec.js
it('creates an isolate scope when requested', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {},
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(givenScope.$parent).toBe($rootScope);
 expect(Object.getPrototypeOf(givenScope)).not.toBe($rootScope);
 });
});

An important point about isolate scope directives, which makes them different from plain inher-

Isolate Scopes 27

781 Errata© Tero Parviainen 2016

ited scope directives, is that if one directive uses an isolate scope, that scope is not given to other
directives on the same element. The scope is isolated for the directive, not for the whole element:

test/compile_spec.js
it('does not share isolate scope with other directives', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: {}
 };
 },
 myOtherDirective: function() {
 return {
 link: function(scope) {
 givenScope = scope;
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 $compile(el)($rootScope);
 expect(givenScope).toBe($rootScope);
 });
});

As we see here, when there are two directives on an element and one of them uses an isolate
scope, the second one is still using the scope from the surrounding context.

The same rule also applies to the children of the element. The children are not given the isolate
scope:

test/compile_spec.js
it('does not use isolate scope on child elements', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: {}
 };
 },
 myOtherDirective: function() {
 return {
 link: function(scope) {
 givenScope = scope;
 }
 };
 }
 });

Isolate Scopes 27

782 Errata© Tero Parviainen 2016

 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive><div my-other-directive></div></div>');
 $compile(el)($rootScope);
 expect(givenScope).toBe($rootScope);
 });
});

There are exceptions to this final rule: Sometimes the children of an element do share the isolate scope.
This happens when the children are created by the isolated directive’s own template - something we’ll look
at in later chapters.

Armed with our basic isolate scope test suite, let’s start building up the things that we need.

In applyDirectivesToNode we’re going to detect when a directive requests an isolate scope, and
pass that information to addLinkFns:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = [], postLinkFns = [];
 var newScopeDirective, newIsolateScopeDirective;

 function addLinkFns(preLinkFn, postLinkFn, attrStart, attrEnd, isolateScope) {
 // ...
 }

 _.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.scope) {
 if (_.isObject(directive.scope)) {
 newIsolateScopeDirective = directive;
 } else {
 newScopeDirective = newScopeDirective || directive;
 }
 }
 if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 var isolateScope = (directive === newIsolateScopeDirective);
 var attrStart = directive.$$start;
 var attrEnd = directive.$$end;

Isolate Scopes 27

783 Errata© Tero Parviainen 2016

 if (_.isFunction(linkFn)) {
 addLinkFns(null, linkFn, attrStart, attrEnd, isolateScope);
 } else if (linkFn) {
 addLinkFns(linkFn.pre, linkFn.post, attrStart, attrEnd, isolateScope);
 }
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
 });

 // ...
}

In addLinkFns we’ll just attach the isolateScope flag to the pre and post link functions:

src/compile.js
function addLinkFns(preLinkFn, postLinkFn, attrStart, attrEnd, isolateScope) {
 if (preLinkFn) {
 if (attrStart) {
 preLinkFn = groupElementsLinkFnWrapper(preLinkFn, attrStart, attrEnd);
 }
 preLinkFn.isolateScope = isolateScope;
 preLinkFns.push(preLinkFn);
 }
 if (postLinkFn) {
 if (attrStart) {
 postLinkFn = groupElementsLinkFnWrapper(postLinkFn, attrStart, attrEnd);
 }
 postLinkFn.isolateScope = isolateScope;
 postLinkFns.push(postLinkFn);
 }
}

Then, in the node link function, we’re going to do the actual creation of the isolate scope, which
we do if any directive requested it for the element:

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {
 var $element = $(linkNode);

 var isolateScope;
 if (newIsolateScopeDirective) {
 isolateScope = scope.$new(true);
 }

 _.forEach(preLinkFns, function(linkFn) {
 linkFn(scope, $element, attrs);
 });

Isolate Scopes 27

784 Errata© Tero Parviainen 2016

 if (childLinkFn) {
 childLinkFn(scope, linkNode.childNodes);
 }
 _.forEachRight(postLinkFns, function(linkFn) {
 linkFn(scope, $element, attrs);
 });
}

Then we’ll pass that isolate scope to any link functions that have the isolateScope flag. This
means that the link function(s) of the isolate scope directive receive the isolate scope, but others
receive the surrounding scope. Also, the child link function never receives the isolate scope:

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {
 var $element = $(linkNode);

 var isolateScope;
 if (newIsolateScopeDirective) {
 isolateScope = scope.$new(true);
 }

 _.forEach(preLinkFns, function(linkFn) {
 linkFn(linkFn.isolateScope ? isolateScope : scope, $element, attrs);
 });
 if (childLinkFn) {
 childLinkFn(scope, linkNode.childNodes);
 }
 _.forEachRight(postLinkFns, function(linkFn) {
 linkFn(linkFn.isolateScope ? isolateScope : scope, $element, attrs);
 });
}

As we saw, the isolate scope is not shared with other directives on the same element or child
elements. Furthermore, only one directive on an element is allowed to make an isolate scope for
itself. Trying to use more than that will throw during compilation:

test/compile_spec.js
it('does not allow two isolate scope directives on an element', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: {}
 };
 },
 myOtherDirective: function() {
 return {
 scope: {}
 };
 }
 });

Isolate Scopes 27

785 Errata© Tero Parviainen 2016

 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 expect(function() {
 $compile(el);
 }).toThrow();
 });
});

Actually, if there is a directive with an isolate scope on an element, other directives are not allowed
to have even non-isolated, inherited scopes:

test/compile_spec.js
it('does not allow both isolate and inherited scopes on an element', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: {}
 };
 },
 myOtherDirective: function() {
 return {
 scope: true
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 expect(function() {
 $compile(el);
 }).toThrow();
 });
});

We are going to check these conditions in applyDirectivesToNode, where we have two ways in
which the rules could be broken:

1. We’re encountering an isolate scope directive and have already encountered another isolate
scope or inherited scope directive earlier.

2. We’re encountering an inherited scope directive and have already encoutered an isolate scope
directive earlier.

In both cases, we’ll throw with a message many Angular application developers have seen before:

src/compile.js
_.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

Isolate Scopes 27

786 Errata© Tero Parviainen 2016

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.scope) {
 if (_.isObject(directive.scope)) {
 if (newIsolateScopeDirective || newScopeDirective) {
 throw 'Multiple directives asking for new/inherited scope';
 }
 newIsolateScopeDirective = directive;
 } else {
 if (newIsolateScopeDirective) {
 throw 'Multiple directives asking for new/inherited scope';
 }
 newScopeDirective = newScopeDirective || directive;
 }
 }

 // ...

});

Finally, applying an isolate scope directive causes the element to receive the ng-isolate-scope
CSS class (whereas it will not receive the ng-scope class) and the scope object itself as jQuery
data with the $isolateScope key:

test/compile_spec.js
it('adds class and data for element with isolated scope', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {},
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(el.hasClass('ng-isolate-scope')).toBe(true);
 expect(el.hasClass('ng-scope')).toBe(false);
 expect(el.data('$isolateScope')).toBe(givenScope);
 });
});

Both of these are done in the node link function right when the isolate scope object is created:

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {

Isolate Attribute Bindings 27

787 Errata© Tero Parviainen 2016

 var $element = $(linkNode);

 var isolateScope;
 if (newIsolateScopeDirective) {
 isolateScope = scope.$new(true);
 $element.addClass('ng-isolate-scope');
 $element.data('$isolateScope', isolateScope);
 }

 // ...

}

Isolate Attribute Bindings

We now have isolate scopes, but they are all totally blank. That limits their usefulness quite a bit,
and as we discussed earlier, there are a few ways you can actually tie data onto them.

One of those ways - the first that we are going to implement - is to have scope attributes that are
bound to values in the element’s attributes. These scope attributes will be observed using the attribute
observer mechanism we built in the previous chapter, so that whenever the element’s attribute is
$set, the scope attribute gets updated.

Attribute bindings can bse useful in a couple of ways: You can get easy access to attributes defined
on the underlying DOM/HTML element, and you can communicate from other directives to the
isolated one by setting attributes that it has bound in this way. This is because all the directives of
an element, isolated or not, share the same Attributes object.

Attribute bindings are defined on the directive definition’s scope object. The key defines the name
of the attribute, and the value is the character @, which is short for “attribute binding”. Once we
have added that, and we $set the attribute, it pops onto the isolate scope:

test/compile_spec.js
it('allows observing attribute to the isolate scope', function() {
 var givenScope, givenAttrs;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 anAttr: '@'
 },
 link: function(scope, element, attrs) {
 givenScope = scope;
 givenAttrs = attrs;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {

Isolate Attribute Bindings 27

788 Errata© Tero Parviainen 2016

 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);

 givenAttrs.$set('anAttr', '42');
 expect(givenScope.anAttr).toEqual('42');
 });
});

Let’s go ahead and implement this. The first part of processing isolate bindings happens during
directive registration. If the directive has an isolate scope definition, we are going to parse its con-
tents for further processing later:

src/compile.js
$provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, function(factory, i) {
 var directive = $injector.invoke(factory);
 directive.restrict = directive.restrict || 'EA';
 directive.priority = directive.priority || 0;
 if (directive.link && !directive.compile) {
 directive.compile = _.constant(directive.link);
 }
 if (_.isObject(directive.scope)) {
 directive.$$isolateBindings = parseIsolateBindings(directive.scope);
 }
 directive.name = directive.name || name;
 directive.index = i;
 return directive;
 });
}]);

parseIsolateBindings is a new function which we can add to the top level of compile.js. It
takes the scope definition object and returns an object of the parsed binding rules from that object.
For now, we’ll just take the definition almost as-is. The function takes a scope definition like

{
 anAttr: '@'
}

And returns the following:

{
 anAttr: {
 mode: '@'
 }
}

Isolate Attribute Bindings 27

789 Errata© Tero Parviainen 2016

We’ll build up more features later, but here’s the implementation we need for now:

src/compile.js
function parseIsolateBindings(scope) {
 var bindings = {};
 _.forEach(scope, function(definition, scopeName) {
 bindings[scopeName] = {
 mode: definition
 };
 });
 return bindings;
}

The second part of processing isolate bindings is to actually do the binding when the directive is
linked. This happens in the node link function, where we iterate over the $$isolateBindings
object created earlier:

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {
 var $element = $(linkNode);

 var isolateScope;
 if (newIsolateScopeDirective) {
 isolateScope = scope.$new(true);
 $element.addClass('ng-isolate-scope');
 $element.data('$isolateScope', isolateScope);
 _.forEach(
 newIsolateScopeDirective.$$isolateBindings,
 function(definition, scopeName) {

 });
 }

 // ...

}

At this point, we check if the mode of the binding is @ for attribute binding, and if so, add an
observer on the element’s attributes for the corresponding attribute. The observer puts the attribute
value on the scope.

src/compile.js
_.forEach(
 newIsolateScopeDirective.$$isolateBindings,
 function(definition, scopeName) {
 switch (definition.mode) {
 case '@':
 attrs.$observe(scopeName, function(newAttrValue) {
 isolateScope[scopeName] = newAttrValue;

Isolate Attribute Bindings 27

790 Errata© Tero Parviainen 2016

 });
 break;
 }
});

Since $observe is called only the next time the attribute changes, and we stilll want to have the
value on the scope if it never actually does, we’ll want to put the initial value of the attribute on
the scope immediately, so that it is already there when the link function is run:

test/compile_spec.js
it('sets initial value of observed attr to the isolate scope', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 anAttr: '@'
 },
 link: function(scope, element, attrs) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive an-attr="42"></div>');
 $compile(el)($rootScope);
 expect(givenScope.anAttr).toEqual('42');
 });
});

We can do this at the time when we register the observer:

src/compile.js
_.forEach(
 newIsolateScopeDirective.$$isolateBindings,
 function(definition, scopeName) {
 switch (definition.mode) {
 case '@':
 attrs.$observe(scopeName, function(newAttrValue) {
 isolateScope[scopeName] = newAttrValue;
 });
 if (attrs[scopeName]) {
 isolateScope[scopeName] = attrs[scopeName];
 }
 break;
 }
});

At this point we always have a one-to-one correspondence between the name of the attribute on
the element and the name of the attribute on the isolate scope. But you can also specify a different

Isolate Attribute Bindings 27

791 Errata© Tero Parviainen 2016

name for the scope attribute. This happens by using the scope attribute name as the key in the scope
definition, and specifying the element attribute name as a suffix of the @ character in the value:

test/compile_spec.js
it('allows aliasing observed attribute', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 aScopeAttr: '@anAttr'
 },
 link: function(scope, element, attrs) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive an-attr="42"></div>');
 $compile(el)($rootScope);
 expect(givenScope.aScopeAttr).toEqual('42');
 });
});

We need to do some parsing of the scope definition values to grab the scope aliases. As with de-
pendency injection, a regex will come in handy here. We can use the following, which matches an
@ character, and then zero or more word characters, which it captures into a group. It also supports
whitespace around and between all the characters that we’re interested in:

/\s*@\s*(\w*)\s*/

Using this regex, we’ll set an attrName key on the binding. Since the alias is optional, the attr-
Name can also just be the scope name - which is the use case we were looking at earlier:

src/compile.js
function parseIsolateBindings(scope) {
 var bindings = {};
 _.forEach(scope, function(definition, scopeName) {
 var match = definition.match(/\s*@\s*(\w*)\s*/);
 bindings[scopeName] = {
 mode: '@',
 attrName: match[1] || scopeName
 };
 });
 return bindings;
}

Now we must use the attrName when accessing the element attribute while setting up the isolate

One-Way Data Binding 27

792 Errata© Tero Parviainen 2016

binding:

src/compile.js
_.forEach(
 newIsolateScopeDirective.$$isolateBindings,
 function(definition, scopeName) {
 var attrName = definition.attrName;
 switch (definition.mode) {
 case '@':
 attrs.$observe(attrName, function(newAttrValue) {
 isolateScope[scopeName] = newAttrValue;
 });
 if (attrs[attrName]) {
 isolateScope[scopeName] = attrs[attrName];
 }
 break;
 }
});

One-Way Data Binding

While attribute binding can often be useful, probably the most widely used isolate scope binding
mode is data binding: Connecting scope attributes on the isolate scope to expressions evaluated on
the parent scope.

Data binding allows for some of the same kind of data sharing between parent and child scopes as
non-isolated inherited scopes do, but there are a couple of crucial differences:

Scope Inheritance Isolate Scopes with Data Binding
Everything is shared from the parent to the child. Only attributes explicitly mentioned in

expressions are shared.
One-to-one correspondence between parent and
child attributes.

Child attributes may not have matching parent
attributes, but can be any expressions instead.

There are two kinds of data binding available in Angular: One-way data binding allows passing in
the value of an expression into an isolate scope. Two-way data binding does the same but adds to
that a capability to pass changes to the value back up to the parent scope.

Of these two, one-way data binding is what application developers need most of the time. Passing
data down to directives or components is a universally useful use case. The need for two-way bind-
ings is much more rare, but it is there when needed.

In most real-world apps, two-way bindings are actually much more widely used than one-way bindings.
This is because of historical reasons: One-way bindings were not added until Angular 1.5, whereas two-way

One-Way Data Binding 27

793 Errata© Tero Parviainen 2016

bindings have been around much longer. However, in most cases it is likely that only the downward direc-
tion of a two-way binding is used and it could be defined as a one-way binding instead.

Let’s start exploring how this works. The simplest one-way data binding configuration you can
make is to use the plain ’<’ character in the scope definition object. What this says is: “Evaluate
this attribute as an expression on the parent scope”. The expression itself is not defined in the
scope definition object, but in the DOM attribute when the directive is applied. Here’s an exam-
ple where anAttr is bound this way, and applied to the expression ’42’, which evaluates to the
number 42:

test/compile_spec.js
it('allows binding expression to isolate scope', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 anAttr: '<'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive an-attr="42"></div>');
 $compile(el)($rootScope);

 expect(givenScope.anAttr).toBe(42);
 });
});

We expect the corresponding scope attribute to be present after we have linked the directive.

As with attribute binding, you can alias the data binding expression, so that the scope attribute
doesn’t have to be called the same as the DOM element attribute. The aliasing syntax is similar to
what we did with attribute binding:

test/compile_spec.js
it('allows aliasing expression attribute on isolate scope', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '<theAttr'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };

One-Way Data Binding 27

794 Errata© Tero Parviainen 2016

 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive the-attr="42"></div>');
 $compile(el)($rootScope);

 expect(givenScope.myAttr).toBe(42);
 });
});

The expressions used in data binding are certainly not limited to constant literals like 42. Where
this mechanism really becomes useful is when you reference some attributes of the parent scope
in the expressions. This is how you can pass data from a parent scope to an isolated scope - either
directly or by deriving a new value in the expression, as we do here:

test/compile_spec.js
it('evaluates isolate scope expression on parent scope', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '<'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 $rootScope.parentAttr = 41;
 var el = $('<div my-directive my-attr="parentAttr + 1"></div>');
 $compile(el)($rootScope);

 expect(givenScope.myAttr).toBe(42);
 });
});

Let’s see how we can make these test cases pass. Before anything else, we need to teach our isolate
binding parser some new tricks: It needs to be able to parse either attribute bindings (@) or one-way
data bindings (<). The following regular expression will get the job done:

/\s*([@<])\s*(\w*)\s*/

This extends our previous regex by accepting either @ or < as the first character and capturing it
into a group so we can grab it later.

If we apply this regex in parseIsolateBindings, we can set the mode attribute of each binding
to this character for later reference:

One-Way Data Binding 27

795 Errata© Tero Parviainen 2016

src/compile.js
function parseIsolateBindings(scope) {
 var bindings = {};
 _.forEach(scope, function(definition, scopeName) {
 var match = definition.match(/\s*([@<])\s*(\w*)\s*/);
 bindings[scopeName] = {
 mode: match[1],
 attrName: match[2] || scopeName
 };
 });
 return bindings;
}

Notice that the group index of the attribute name shifts as we added a new group before it.

Now we need to handle the new < mode bindings as we link the node and create the isolate scope.
What we’ll do is:

1. Get the expression string applied for this binding in the DOM
2. Parse that string as an Angular expression
3. Evaluate the parsed expression in the context of the parent scope
4. Set the result of the evaluation as an attribute on the isolate scope

Here are those four steps in code:

src/compile.js
_.forEach(
 newIsolateScopeDirective.$$isolateBindings,
 function(definition, scopeName) {
 var attrName = definition.attrName;
 switch (definition.mode) {
 case '@':
 attrs.$observe(attrName, function(newAttrValue) {
 isolateScope[scopeName] = newAttrValue;
 });
 if (attrs[attrName]) {
 isolateScope[scopeName] = attrs[attrName];
 }
 break;
 case '<':
 var parentGet = $parse(attrs[attrName]);
 isolateScope[scopeName] = parentGet(scope);
 break;
 }
});

We’re using the $parse service implemented earlier to parse the expression, but in order to use it
we need to inject it to the $get function of CompileProvider. Let’s do that too:

One-Way Data Binding 27

796 Errata© Tero Parviainen 2016

src/compile.js
this.$get = ['$injector', '$parse', '$rootScope',
 function($injector, $parse, $rootScope) {

 // ...

};

With our first set of unit tests for one-way data binding now passing, let’s start extending it to cov-
er more ground. One very important aspect of data binding is that it does not only bind the data
once as our current implementation does, but watches the expression and potentially updates the
isolate scope attribute to a new value on every digest.

test/compile_spec.js
it('watches isolated scope expressions', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '<'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-attr="parentAttr + 1"></div>');
 $compile(el)($rootScope);

 $rootScope.parentAttr = 41;
 $rootScope.$digest();
 expect(givenScope.myAttr).toBe(42);
 });
});

As we set a parent scope attribute and trigger a digest, we expect the binding expression to be eval-
uated and and the resulting value updated on isolate scope. This is exactly what watchers are for,
so let’s add one for the expression we have parsed:

src/compile.js
case '<':
 var parentGet = $parse(attrs[attrName]);
 isolateScope[scopeName] = parentGet(scope);
 scope.$watch(parentGet, function(newValue) {
 isolateScope[scopeName] = newValue;
 });
 break;

One-Way Data Binding 27

797 Errata© Tero Parviainen 2016

You can also make data bindings optional, which means that if the attribute referenced by the
binding does not exist on the DOM element, no watcher will be created. This is done by using the
binding syntax <? instead of just <:

test/compile_spec.js
it('does not watch optional missing isolate scope expressions', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '<?'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect($rootScope.$$watchers.length).toBe(0);
 });
});

Here we are testing that $rootScope has no watchers set up after the directive is linked. Our
current implementation creates a watcher for the expression undefined, which is certainly not a
catastrophy, but still adds a bit of unnecessary overhead to the application.

An extension to the binding syntax regexp is called for. It should optionally support a question
mark character after the binding specifier:

/\s*([@<])(\??)\s*(\w*)\s*/

The ? suffix is also syntactically supported in attribute bindings, but observers will still be added for them
even if the attributes don’t exist during linking.

Applying this regex, we’ll set an optional flag on the binding object. Note that the attribute name
now switches to index 3 in the match result:

src/compile.js
function parseIsolateBindings(scope) {
 var bindings = {};
 _.forEach(scope, function(definition, scopeName) {
 var match = definition.match(/\s*([@<])(\??)\s*(\w*)\s*/);
 bindings[scopeName] = {
 mode: match[1],
 optional: match[2],

Two-Way Data Binding 27

798 Errata© Tero Parviainen 2016

 attrName: match[3] || scopeName
 };
 });
 return bindings;
}

Now, if the attribute is undefined during linking and the binding is optional, we will skip the cre-
ation of the watcher:

src/compile.js
case '<':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 // ...

The last aspect of one-way data binding we’ll look at is cleaning up after ourselves. Since we have
set up a watcher, we’ll need to make sure that we also deregister that watcher when the isolate
scope is destroyed. Otherwise we would be introducing a memory leak, because the watcher is on
the parent scope, which may not be destroyed when the isolate scope is.

src/compile.js
case '<':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 var parentGet = $parse(attrs[attrName]);
 isolateScope[scopeName] = parentGet(scope);
 var unwatch = scope.$watch(parentGet, function(newValue) {
 isolateScope[scopeName] = newValue;
 });
 isolateScope.$on('$destroy', unwatch);
 break;

And there we have one-way data binding!

Two-Way Data Binding

Two-way data bindings are very similar to one-way data bindings. There are a couple of important
differences which we’ll discuss soon, but let’s first flesh out the same basic functionality we already
have for one-way bindings.

The simplest two-way data binding configuration you can make is to use the plain ’=’ character in
the scope definition object:

test/compile_spec.js

Two-Way Data Binding 27

799 Errata© Tero Parviainen 2016

it('allows binding two-way expression to isolate scope', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 anAttr: '='
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive an-attr="42"></div>');
 $compile(el)($rootScope);

 expect(givenScope.anAttr).toBe(42);
 });
});

We can also use aliasing to make the scope attribute have a different name than the DOM attri-
bute:

test/compile_spec.js
it('allows aliasing two-way expression attribute on isolate scope', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '=theAttr'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive the-attr="42"></div>');
 $compile(el)($rootScope);

 expect(givenScope.myAttr).toBe(42);
 });
});

Two-way bindings are also watched, just like one-way bindings:

test/compile_spec.js
it('watches two-way expressions', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {

Two-Way Data Binding 27

800 Errata© Tero Parviainen 2016

 return {
 scope: {
 myAttr: '='
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-attr="parentAttr + 1"></div>');
 $compile(el)($rootScope);

 $rootScope.parentAttr = 41;
 $rootScope.$digest();
 expect(givenScope.myAttr).toBe(42);
 });
});

And they may be optional, when specified with the binding syntax =?:

test/compile_spec.js
it('does not watch optional missing two-way expressions', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '=?'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect($rootScope.$$watchers.length).toBe(0);
 });
});

We can make these test cases pass by first adding support for the = character in the binding regular
expression.

src/compile.js
function parseIsolateBindings(scope) {
 var bindings = {};
 _.forEach(scope, function(definition, scopeName) {
 var match = definition.match(/\s*([@<=])(\??)\s*(\w*)\s*/);
 // ...

Two-Way Data Binding 27

801 Errata© Tero Parviainen 2016

And then by specifying an implementation that’s indentical to what we just built for one-way bind-
ings:

src/compile.js
_.forEach(
 newIsolateScopeDirective.$$isolateBindings,
 function(definition, scopeName) {
 var attrName = definition.attrName;
 var parentGet, unwatch;
 switch (definition.mode) {
 case '@':
 attrs.$observe(attrName, function(newAttrValue) {
 isolateScope[scopeName] = newAttrValue;
 });
 if (attrs[attrName]) {
 isolateScope[scopeName] = attrs[attrName];
 }
 break;
 case '<':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 isolateScope[scopeName] = parentGet(scope);
 unwatch = scope.$watch(parentGet, function(newValue) {
 isolateScope[scopeName] = newValue;
 });
 isolateScope.$on('$destroy', unwatch);
 break;
 case '=':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 isolateScope[scopeName] = parentGet(scope);
 unwatch = scope.$watch(parentGet, function(newValue) {
 isolateScope[scopeName] = newValue;
 });
 isolateScope.$on('$destroy', unwatch);
 break;
 }
});

If this was all there is to it, there wouldn’t be much point in two-way bindings, would there? At
this point we arrive at the actual two-way aspect of two-way data binding: When you assign an
attribute bound like this on the isolate scope, it may also affect the other side of the binding on the
parent scope. This is something we haven’t seen before. Here’s an example:

test/compile_spec.js

Two-Way Data Binding 27

802 Errata© Tero Parviainen 2016

it('allows assigning to two-way scope expressions', function() {
 var isolateScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '='
 },
 link: function(scope) {
 isolateScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-attr="parentAttr"></div>');
 $compile(el)($rootScope);

 isolateScope.myAttr = 42;
 $rootScope.$digest();
 expect($rootScope.parentAttr).toBe(42);
 });
});

In the test we have bound the attribute myAttr on the isolate scope to an attribute called paren-
tAttr on the parent scope. We test that when we assign a value on the child scope and run a digest,
the same value gets updated on the parent scope.

As soon as data binding works in two ways as it does here, the question of precedence becomes
relevant: What if both the parent and the child attributes change during the same digest? Which
one wins and becomes the value of both the parent and the child? Angular gives precedence to the
parent:

test/compile_spec.js
it('gives parent change precedence when both parent and child change', function() {
 var isolateScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '='
 },
 link: function(scope) {
 isolateScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-attr="parentAttr"></div>');
 $compile(el)($rootScope);

 $rootScope.parentAttr = 42;
 isolateScope.myAttr = 43;

Two-Way Data Binding 27

803 Errata© Tero Parviainen 2016

 $rootScope.$digest();
 expect($rootScope.parentAttr).toBe(42);
 expect(isolateScope.myAttr).toBe(42);
 });
});

So this is basically how two-way data binding should work. Let’s go ahead and build it up. It isn’t
hugely complicated but there are a few subtle details we need to address.

Firstly, we need a bit more control on what happens when changes occur than a plain watch-listen-
er pair can give us. Instead, to make things easier, we’ll only register a watch function and omit the
listener function completely. We rely on the watch function being called in each digest and do our
own change detection in it:

src/compile.js
case '=':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 isolateScope[scopeName] = parentGet(scope);
 var parentValueWatch = function() {
 var parentValue = parentGet(scope);
 if (isolateScope[scopeName] !== parentValue) {
 isolateScope[scopeName] = parentValue;
 }
 return parentValue;
 };
 unwatch = scope.$watch(parentValueWatch);
 isolateScope.$on(‘$destroy’, unwatch);
 break;

This implementation still only passes our old unit tests and not the new ones, but the code is now
in a shape better suited for the two-way part of two-way data binding.

Right now we’re tracking if the current value of the watch is different from what’s on the isolate
scope, but we’re not tracking where the change has occurred if it has indeed occurred. To help with
this, we’ll introduce a new variable lastValue, which will always store the value that the parent
scope had after the last digest:

src/compile.js
case '=':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 var lastValue = isolateScope[scopeName] = parentGet(scope);
 var parentValueWatch = function() {

Two-Way Data Binding 27

804 Errata© Tero Parviainen 2016

 var parentValue = parentGet(scope);
 if (isolateScope[scopeName] !== parentValue) {
 if (parentValue !== lastValue) {
 isolateScope[scopeName] = parentValue;
 }
 }
 lastValue = parentValue;
 return lastValue;
 };
 unwatch = scope.$watch(parentValueWatch);
 isolateScope.$on('$destroy', unwatch);
 break;

The purpose of this new variable becomes more clear when we consider the situation where the
isolate scope attribute’s current value is not equal to the parent scope attribute’s current value, but
is equal to lastValue? That means the value has changed on the isolate scope and we should
update the parent:

src/compile.js
case '=':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 var lastValue = isolateScope[scopeName] = parentGet(scope);
 var parentValueWatch = function() {
 var parentValue = parentGet(scope);
 if (isolateScope[scopeName] !== parentValue) {
 if (parentValue !== lastValue) {
 isolateScope[scopeName] = parentValue;
 } else {

 }
 }
 lastValue = parentValue;
 return lastValue;
 };
 unwatch = scope.$watch(parentValueWatch);
 break;

And how can we update the parent? Well, when we implemented expressions we saw how some
expressions are externally assignable, meaning that they can not only be evaluated for a value, but
can also be updated to a new value using the assign function attached to the expression. That is
what we are going to use to send the new value to the parent scope:

src/compile.js
case '=':
 if (definition.optional && !attrs[attrName]) {
 break;

Two-Way Data Binding 27

805 Errata© Tero Parviainen 2016

 }
 parentGet = $parse(attrs[attrName]);
 var lastValue = isolateScope[scopeName] = parentGet(scope);
 var parentValueWatch = function() {
 var parentValue = parentGet(scope);
 if (isolateScope[scopeName] !== parentValue) {
 if (parentValue !== lastValue) {
 isolateScope[scopeName] = parentValue;
 } else {
 parentValue = isolateScope[scopeName];
 parentGet.assign(scope, parentValue);
 }
 }
 lastValue = parentValue;
 return lastValue;
 };
 unwatch = scope.$watch(parentValueWatch);
 isolateScope.$on(‘$destroy’, unwatch);
 break;

Notice that in addition to calling assign, we update the local parentValue variable, and thus
also the lastValue variable to the value we have assigned. Everything will be in sync for the next
digest.

Notice also how the precedence rule is now implemented here: We have an if-else block where
we first see if the parent scope attribute has changed, and only when it hasn’t do we consider any
changes in the child scope. When both the parent and child have changed, the child change gets
ignored and overwritten.

You may have noticed that data bindings use reference watches to detect value change. While it is
not possible to change this behavior to use value-bases watching, it is possible to shallow-watch
collection changes when using two-way bindings. Using a special syntax in the scope definition
object we can tell the framework that it should use $watchCollection instead of $watch for the
two-way data binding. This is useful when, for example, we have a binding to a function call that
returns a new array every time:

test/compile_spec.js
it('throws when two-way expression returns new arrays', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '='
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });

Two-Way Data Binding 27

806 Errata© Tero Parviainen 2016

 injector.invoke(function($compile, $rootScope) {
 $rootScope.parentFunction = function() {
 return [1, 2, 3];
 };
 var el = $('<div my-directive my-attr="parentFunction()"></div>');
 $compile(el)($rootScope);
 expect(function() {
 $rootScope.$digest();
 }).toThrow();
 });
});

As we see here, normal reference watches can’t cope with this: The watch sees a new array every
time and considers it a new value. The digest runs to the iteration limit and then throws, which is
what the test case expects to happen.

To fix this we can introduce a collection watch using the =* syntax in the scope definition:

test/compile_spec.js
it('can watch two-way bindings as collections', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myAttr: '=*'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 $rootScope.parentFunction = function() {
 return [1, 2, 3];
 };
 var el = $('<div my-directive my-attr="parentFunction()"></div>');
 $compile(el)($rootScope);
 $rootScope.$digest();
 expect(givenScope.myAttr).toEqual([1, 2, 3]);
 });
});

We need a new extension to our parsing function again. It should take an optional asterisk after
the bi-directional data binding character ’=’:

/\s*([@<]|=(*?))(\??)\s*(\w*)\s*/

This now effectively matches the beginning of the expression as “@ or < or (= and optionally *)”.

Two-Way Data Binding 27

807 Errata© Tero Parviainen 2016

Using this regex, parseIsolateBindings can populate a collection flag on the binding, based
on whether an asterisk was seen or not. Notice that we need to change the match indexes again:

src/compile.js
function parseIsolateBindings(scope) {
 var bindings = {};
 _.forEach(scope, function(definition, scopeName) {
 var match = definition.match(/\s*([@<]|=(*?))(\??)\s*(\w*)\s*/);
 bindings[scopeName] = {
 mode: match[1][0],
 collection: match[2] === '*',
 optional: match[3]
 attrName: match[4] || scopeName
 };
 });
 return bindings;
}

And now we can simply choose to use either $watch or $watchCollection based on the value
of the collection flag. The rest of our implementation can remain unchanged:

src/compile.js
case '=':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 var lastValue = isolateScope[scopeName] = parentGet(scope);
 var parentValueWatch = function() {
 var parentValue = parentGet(scope);
 if (isolateScope[scopeName] !== parentValue) {
 if (parentValue !== lastValue) {
 isolateScope[scopeName] = parentValue;
 } else {
 parentValue = isolateScope[scopeName];
 parentGet.assign(scope, parentValue);
 }
 }
 lastValue = parentValue;
 return lastValue;
 };
 if (definition.collection) {
 unwatch = scope.$watchCollection(attrs[attrName], parentValueWatch);
 } else {
 unwatch = scope.$watch(parentValueWatch);
 }
 break;

Note that for the $watchCollection case we register our function as the listener function and not
the watch function. This is mainly because $watchCollection does not support omitting the lis-

Expression Binding 27

808 Errata© Tero Parviainen 2016

tener function like $watch does. This is OK, because we don’t really need to do any work as long
as the parent attribute keeps pointing to the same array or object: Because we’ve copied a reference
to the same array or object, any mutation within it is automatically “synced”. It is only when the
parent starts pointing to a new array or object that we need to react, and at that point the listener
function will fire.

And there we have two-way data binding as well!

Expression Binding

The fourth and final way to bind something on an isolate scope is to bind an expression, which
happens by using the ’&’ character in the scope definition object. It is a bit different from the other
two in that it is primarily designed to bind behavior instead of data: When you apply the directive,
you supply an expression the directive can invoke when something happens. This is useful particu-
larly in event-driven directives such as ngClick, but has general applicability as well.

The bound expression will be present on the isolate scope as a function, which we can call from,
say, the link function:

test/compile_spec.js
it('allows binding an invokable expression on the parent scope', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myExpr: '&'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 $rootScope.parentFunction = function() {
 return 42;
 };
 var el = $('<div my-directive my-expr="parentFunction() + 1"></div>');
 $compile(el)($rootScope);
 expect(givenScope.myExpr()).toBe(43);
 });
});

The myExpr function on the isolate scope is actually the expression function of the ’parent-
Function() + 1’ expression - which invokes parentFunction on the parent scope and adds 1
to the result.

To make this work, we need to revisit the isolate scope definition parsing function one more time.

Expression Binding 27

809 Errata© Tero Parviainen 2016

In this instance, we add the & character as one of the allowed characters for the mode attribute:

src/compile.js
function parseIsolateBindings(scope) {
 var bindings = {};
 _.forEach(scope, function(definition, scopeName) {
 var match = definition.match(/\s*([@<&]|=(*?))(\??)\s*(\w*)\s*/);
 bindings[scopeName] = {
 mode: match[1][0],
 collection: match[2] === '*',
 optional: match[3],
 attrName: match[4] || scopeName
 };
 });
 return bindings;
}

The rest is actually quite simple. When we encounter an &-mode binding, we parse the correspond-
ing attribute into an expression function. We then attach a wrapper function for it on the isolate
scope. All expression functions take a scope as the first argument, and the wrapper function will
supply that. Crucially, the expression is invoked in the context of the parent scope, not the isolate
scope. This makes sense since the expression is defined by the user of the directive, not the direc-
tive itself:

src/compile.js
_.forEach(
 newIsolateScopeDirective.$$isolateBindings,
 function(definition, scopeName) {
 var attrName = definition.attrName;
 switch (definition.mode) {
 case '@':
 // ...
 break;
 case '<':
 // ...
 break;
 case '=':
 // ...
 break;
 case '&':
 var parentExpr = $parse(attrs[attrName]);
 isolateScope[scopeName] = function() {
 return parentExpr(scope);
 };
 break;
 }
});

Our current implementation allows calling functions on the parent scope, but it does not allow any

Expression Binding 27

810 Errata© Tero Parviainen 2016

arguments to be passed, which is a bit limiting. We can fix this by making a few changes. The way
this works is a bit different from how straight-up function calls work though. Consider the follow-
ing expression on the parent scope:

<div my-expr="parentFunction(a, b)"></div>

One might expect to be able to call this from the isolate scope as

scope.myExpr(1, 2);

But this is not the case. If you think of it from the perspective of the directive’s user, a and b are
not necessarily arguments you expect to receive from inside the directive, but might also be attri-
butes on the parent scope itself. It would be pretty limiting if you could not use them in these expres-
sions.

So, how can we implement a solution where arguments to isolate scope expressions may or may not
be supplied from inside the isolate scope. Well, what we can do is named arguments, defined as an
object:

scope.myExpr({a: 1, b: 2});

Then, if your system is designed so that only b comes from the isolate scope and a actually refers
to something on the parent scope, that can easily be accomplished.

When Angular itself uses arguments in isolate scope expressions, it uses the $ prefix to distinguish them
from your own variables. For example, directives like ngClick use $event for passing in the DOM event.

Here’s the idea expressed as a unit test:

test/compile_spec.js
it('allows passing arguments to parent scope expression', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myExpr: '&'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var gotArg;
 $rootScope.parentFunction = function(arg) {
 gotArg = arg;
 };
 var el = $('<div my-directive my-expr="parentFunction(argFromChild)"></div>');

Expression Binding 27

811 Errata© Tero Parviainen 2016

 $compile(el)($rootScope);
 givenScope.myExpr({argFromChild: 42});
 expect(gotArg).toBe(42);
 });
});

Here we have a function defined on the parent scope, which we call from the myExpr expression
bound to the isolate scope. In the expression we refer to an argument called argFromChild, and
that is what we pass in as a named argument from the isolate scope.

Let’s go ahead and implement this. This is actually remarkably simple, and that’s because we
already have an existing solution for passing named arguments to expressions: It is the optional
second locals argument that expression functions take. Our wrapper function takes one argu-
ment - the locals - and passes it into the expression function as the second argument:

src/compile.js
case '&':
 var parentExpr = $parse(attrs[attrName]);
 isolateScope[scopeName] = function(locals) {
 return parentExpr(scope, locals);
 };
 break;

So, when the expression ’parentFunction(argFromChild)’ is evaluated, the argFromChild
lookup is evaluated as part of it. If there is a matching attribute on the locals object (which corre-
sponds to the “named arguments” object passed from the isolate scope), it is used as the value of
argFromChild. If there is no such attribute on the locals, argFromChild is looked up from the
(parent) scope.

Finally, an expression binding may also be marked optional in the isolate scope specification. If
that is done and the expression is not supplied by the directive user, there will be no function to
call on the scope:

test/compile_spec.js
it('sets missing optional parent scope expression to undefined', function() {
 var givenScope;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 scope: {
 myExpr: '&?'
 },
 link: function(scope) {
 givenScope = scope;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var gotArg;

Summary 27

812 Errata© Tero Parviainen 2016

 $rootScope.parentFunction = function(arg) {
 gotArg = arg;
 };
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(givenScope.myExpr).toBeUndefined();
 });
});

Recall from the expression chapters that when $parse is given something it doesn’t know how
to parse (such as undefined or null), it just returns the LoDash no-op function _.noop. We can
make use of that fact and skip creating the binding if that function is what we see for an optional
binding:

src/compile.js
case '&':
 var parentExpr = $parse(attrs[attrName]);
 if (parentExpr === _.noop && definition.optional) {
 break;
 }
 isolateScope[scopeName] = function(locals) {
 return parentExpr(scope, locals);
 };
 break;

Summary

By this point we have both of the core processes of the directive system implemented: Compila-
tion and linking. We understand how directives and scopes interact and how the directive system
creates new scopes.

In this chapter you have learned:

• How linking is built into the functions returned by the compile functions.
• How the public link function, the composite link functions, the node link functions, and the

directive link functions are all return values of their respective compile functions, and how they
are chained together during linking.

• That a directive’s compile function should return its link function.
• That you can omit a directive’s compile function and supply the link function directly.
• How child nodes get linked whether the parent nodes have directives or not.
• That prelink functions are invoked before child node linking, and postlink functions after it.
• That a link function is always a postlink function unless explicitly defined otherwise.
• How the linking process protects itself from DOM mutations that occur during linking.
• How the nodes for multi-element directives are resolved during linking.
• How directives can request new, inherited scopes.
• That inherited scopes are shared by all the directives in the same element and its children.

Summary 27

813 Errata© Tero Parviainen 2016

• How CSS classes and jQuery data are added to elements that have directives with inherited
scopes.

• How directives can request new isolate scopes.
• That isolate scopes are not shared between directives in the same element or its children.
• That there can only be one isolate scope directive per element.
• That there cannot be inherited scope directives on an element when there is an isolate scope

directive.
• How element attributes can be bound as observed values on an isolate scope.
• How one- and two-way data bindings can be attached on an isolate scope.
• How one-way data bindings watch the parent expression, and two-way data bindings watch

both the parent expression and the child scope attribute.
• That when both the parent and child change simultaneously in a two-way data binding, the

parent takes precedence.
• How collections are supported in two-way data bindings.
• How invokable expressions can be attached on an isolate scope.
• How named arguments can be used with invokable expressions.

In the next chapter we’ll start building on the core directive implementation by introducing control-
lers.

 28

814 Errata© Tero Parviainen 2016

Chapter 19

Controllers

The $controller provider 28

815 Errata© Tero Parviainen 2016

Controllers in AngularJS are an interesting beast. Given the huge popularity of so-called “Mod-
el-View Controller” style JavaScript frameworks, and the common (if slightly misleading) charac-
terization of AngularJS as one of those frameworks, it would seem that controllers are one of the
most fundamental building blocks of Angular.

In actual fact, controllers do not have the top-level role in Angular that they seem to have at first
blush. Yes, controllers are important, even crucially so in many applications. But they are in fact
just a part of the directive system. Directives get top billing in Angular, and controllers have a
supporting role in helping directives do their job. Standalone controllers, as in the case of ngCon-
troller et al., are mostly just a side product of the directive system, as we will soon see.

This does not mean that controllers are not interesting or that they are not useful. Quite the op-
posite, as we will learn in this chapter. There are three pieces to the controller puzzle, and we will
look at all of them: The $controller provider, the controller integration of the directive compil-
er, and the ngController directive.

Download the code for the starting point of this chapter.

The $controller provider

It all begins with the ability to bring controller objects to life. There is a specialized service for that,
and it is called $controller. This service as well as its provider are the first things that we need
to add.

The $controller service comes as part of the ng module, and we can create a test for its pres-
ence:

test/angular_public_spec.js
it('sets up $controller', function() {
 publishExternalAPI();
 var injector = createInjector(['ng']);
 expect(injector.has('$controller')).toBe(true);
});

The provider has its own file - src/controller.js - and is set up just like the other providers
we have already created. There’s a provider constructor, and a $get method that will return the
concrete $controller service:

src/controller.js
'use strict';

function $ControllerProvider() {

 this.$get = function() {

http://todomvc.com/
http://todomvc.com/
https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter18-directive-linking-and-scopes

Controller Instantiation 28

816 Errata© Tero Parviainen 2016

 };

}

module.exports = $ControllerProvider;

Now we can reference this provider as we register $controller as part of the ng module:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = window.angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
 ngModule.provider('$httpBackend', require('./http_backend'));
 ngModule.provider('$http', require('./http').$HttpProvider);
 ngModule.provider('$httpParamSerializer',
 require('./http').$HttpParamSerializerProvider);
 ngModule.provider('$httpParamSerializerJQLike',
 require('./http').$HttpParamSerializerJQLikeProvider);
 ngModule.provider('$compile', require('./compile'));
 ngModule.provider('$controller', require('./controller'));
}

Controller Instantiation

Controllers in AngularJS are always created using constructor functions. That is, the kinds of
functions you typically denote with a CapitalizedFunctionNames and that are instantiated with
the new operator:

function MyController() {
 this.someField = 42;
}

The division of labor is such that the application developer provides the constructor function and
the framework’s $controller service instantiates it when required. The simplest way to do this
is to just give $controller a constructor function as an argument and expect an instance of that
constructor as the return value. This constitutes our first test case for $controller, so let’s add a
new test file for it:

test/controller_spec.js
'use strict';

var publishExternalAPI = require('../src/angular_public');

Controller Instantiation 28

817 Errata© Tero Parviainen 2016

var createInjector = require('../src/injector');

describe('$controller', function() {

 beforeEach(function() {
 delete window.angular;
 publishExternalAPI();
 });

 it('instantiates controller functions', function() {
 var injector = createInjector(['ng']);
 var $controller = injector.get('$controller');

 function MyController() {
 this.invoked = true;
 }

 var controller = $controller(MyController);

 expect(controller).toBeDefined();
 expect(controller instanceof MyController).toBe(true);
 expect(controller.invoked).toBe(true);
 });

});

Our test checks that the object we get back is indeed a prototypal instance of the given constructor,
and that the constructor was invoked on that object.

At this point we have nothing we could not easily do ourselves by just using the new operator di-
rectly on the controller constructor. The job of $controller gets a bit more interesting when we
consider a controller that has dependencies. The constructor is, in fact, invoked with dependency
injection:

test/controller_spec.js
it('injects dependencies to controller functions', function() {
 var injector = createInjector(['ng', function($provide) {
 $provide.constant('aDep', 42);
 }]);
 var $controller = injector.get('$controller');

 function MyController(aDep) {
 this.theDep = aDep;
 }

 var controller = $controller(MyController);

 expect(controller.theDep).toBe(42);
});

Controller Instantiation 28

818 Errata© Tero Parviainen 2016

Based on these tests, we see that $controller is a function, since we are just calling it directly. So
the return value of the provider’s $get method should be a function:

src/controller.js
function $ControllerProvider() {

 this.$get = function() {

 return function() {

 };

 };

}

This function can take a constructor function as an argument, and return an instantiated version
of that constructor, with dependencies injected. In our $injector service we have something that
does exactly that - instantiate. We can use it here:

src/controller.js
this.$get = ['$injector', function($injector) {

 return function(ctrl) {
 return $injector.instantiate(ctrl);
 };

}];

Not all of the controller constructor’s arguments need to be registered to the injector beforehand.
We can augment the pre-registered dependencies by supplying an object of locals to $controller
as the second argument. This is something we often do in application unit tests to provide a Scope.

test/controller_spec.js
it('allows injecting locals to controller functions', function() {
 var injector = createInjector(['ng']);
 var $controller = injector.get('$controller');

 function MyController(aDep) {
 this.theDep = aDep;
 }

 var controller = $controller(MyController, {aDep: 42});

 expect(controller.theDep).toBe(42);
});

As it happens, $injector.instantiate has built-in support for this too:

Controller Registration 28

819 Errata© Tero Parviainen 2016

src/controller.js
this.$get = ['$injector', function($injector) {

 return function(ctrl, locals) {
 return $injector.instantiate(ctrl, locals);
 };

}];

Controller Registration

Though it’s a good start, our fledgling $controller provider doesn’t yet have much going for it.
It’s nothing but a wrapper for $injector.instantiate, really. This will start changing as we
consider a more typical use case for the provider: You can register controllers at configuration time
and then look them up at runtime.

Here we use a new method called register on the provider to register a controller constructor in
a config block. Then later we ask for an instance of that controller by name. Just like before, we
expect to get something that’s an instance of the controller constructor:

test/controller_spec.js
it('allows registering controllers at config time', function() {
 function MyController() {
 }
 var injector = createInjector(['ng', function($controllerProvider) {
 $controllerProvider.register('MyController', MyController);
 }]);
 var $controller = injector.get('$controller');

 var controller = $controller('MyController');
 expect(controller).toBeDefined();
 expect(controller instanceof MyController).toBe(true);
});

The $controller provider remembers the registered constructors in an internal object, whose
keys are controller names and values are the constructor functions. You can add one using the
register method of the provider:

src/controller.js
function $ControllerProvider() {

 var controllers = {};

 this.register = function(name, controller) {
 controllers[name] = controller;
 };

Controller Registration 28

820 Errata© Tero Parviainen 2016

 this.$get = ['$injector', function($injector) {

 return function(ctrl, locals) {
 return $injector.instantiate(ctrl, locals);
 };

 }];

}

The actual $controller function can now check whether it should instantiate a constructor di-
rectly or look up a previously registered one, by checking the type of the first argument:

src/controller.js
this.$get = ['$injector', function($injector) {

 return function(ctrl, locals) {
 if (_.isString(ctrl)) {
 ctrl = controllers[ctrl];
 }
 return $injector.instantiate(ctrl, locals);
 };

}];

At this point we should require LoDash into controller.js:

src/controller.js
'use strict';

var _ = require('lodash');

Much like you can with directives, you can also register several controllers with one call to $con-
trollerProvider.register, if you give it an object where the keys are controller names and
the values are their constructor functions:

test/controller_spec.js
it('allows registering several controllers in an object', function() {
 function MyController() { }
 function MyOtherController() { }
 var injector = createInjector(['ng', function($controllerProvider) {
 $controllerProvider.register({
 MyController: MyController,
 MyOtherController: MyOtherController
 });
 }]);
 var $controller = injector.get('$controller');

Controller Registration 28

821 Errata© Tero Parviainen 2016

 var controller = $controller('MyController');
 var otherController = $controller('MyOtherController');

 expect(controller instanceof MyController).toBe(true);
 expect(otherController instanceof MyOtherController).toBe(true);
});

If register is given an object, it can simply extend the internal controllers object with that,
since both objects have the same structure:

src/controller.js
this.register = function(name, controller) {
 if (_.isObject(name)) {
 _.extend(controllers, name);
 } else {
 controllers[name] = controller;
 }
};

As an Angular application developer, the register function of $controllerProvider may not
actually be that familiar to you. This is because the more common approach to register controller
constructors is by doing it on modules. Modules have a controller method, using which you
can register a controller on the module:

test/controller_spec.js
it('allows registering controllers through modules', function() {
 var module = window.angular.module('myModule', []);
 module.controller('MyController', function MyController() { });

 var injector = createInjector(['ng', 'myModule']);
 var $controller = injector.get('$controller');
 var controller = $controller('MyController');

 expect(controller).toBeDefined();
});

What we have on module objects is simply a queued-up invocation of the $controllerProvid-
er.register method we have just created. When you call module.controller, $control-
lerProvider.register will get called for you when the module is loaded:

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 factory: invokeLater('$provide', 'factory'),

Global Controller Lookup 28

822 Errata© Tero Parviainen 2016

 value: invokeLater('$provide', 'value'),
 service: invokeLater('$provide', 'service'),
 decorator: invokeLater('$provide', 'decorator'),
 filter: invokeLater('$filterProvider', 'register'),
 directive: invokeLater('$compileProvider', 'directive'),
 controller: invokeLater('$controllerProvider', 'register'),
 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 run: function(fn) {
 moduleInstance._runBlocks.push(fn);
 return moduleInstance;
 },
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks,
 _runBlocks: []
};

Global Controller Lookup

The method that we just saw for registering controllers is the preferred way to do it in Angular
applications. But there is another approach supported by $controller, which is to look the
constructor up from the global window object. However, this is not enabled by default, and such a
lookup will normally raise an exception:

test/controller_spec.js
it('does not normally look controllers up from window', function() {
 window.MyController = function MyController() { };
 var injector = createInjector(['ng']);
 var $controller = injector.get('$controller');

 expect(function() {
 $controller('MyController');
 }).toThrow();
});

If, on the other hand, you call a special function called allowGlobals on $controllerProvid-
er at config time, suddenly $controller will find the constructor from window and use it:

test/controller_spec.js
it('looks up controllers from window when so configured', function() {
 window.MyController = function MyController() { };
 var injector = createInjector(['ng', function($controllerProvider) {
 $controllerProvider.allowGlobals();
 }]);

 var $controller = injector.get('$controller');
 var controller = $controller('MyController');
 expect(controller).toBeDefined();
 expect(controller instanceof window.MyController).toBe(true);
});

Directive Controllers 28

823 Errata© Tero Parviainen 2016

Using this configuration option is not recommended practice, as it relies on global state, which
does not bode well for modularity. It should only really be used in the simplest of example applica-
tions, and in my opinion it is of dubious value even in those. But it is there nevertheless, and here’s
how it works: The allowGlobals function sets an internal globals flag within the provider to
true. When looking up controllers, we attempt to do a lookup on window if the normal lookup
fails - but only if the globals flag has been set:

src/controller.js
function $ControllerProvider() {

 var controllers = {};
 var globals = false;

 this.allowGlobals = function() {
 globals = true;
 };

 this.register = function(name, controller) {
 if (_.isObject(name)) {
 _.extend(controllers, name);
 } else {
 controllers[name] = controller;
 }
 };

 this.$get = ['$injector', function($injector) {

 return function(ctrl, locals) {
 if (_.isString(ctrl)) {
 if (controllers.hasOwnProperty(ctrl)) {
 ctrl = controllers[ctrl];
 } else if (globals) {
 ctrl = window[ctrl];
 }
 }
 return $injector.instantiate(ctrl, locals);
 };

 }];

}

Directive Controllers

Now that we have a $controller service that knows how to register, look up, and instantiate
controllers, we can start looking at situations where controllers are actually used. This is where
directives come in.

Directive Controllers 28

824 Errata© Tero Parviainen 2016

You can attach a controller to a directive by specifying a controller key in the directive’s defini-
tion object, and providing a controller constructor function as the value. That controller construc-
tor will get instantiated when the directive is linked.

Let’s add a test for that, as we ll as a new describe block in compile_spec.js, into which we
can place all the controller-related tests in this chapter:

test/compile_spec.js
describe('controllers', function() {

 it('can be attached to directives as functions', function() {
 var controllerInvoked;
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 controller: function MyController() {
 controllerInvoked = true;
 }
 };
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(controllerInvoked).toBe(true);
 });
 });

});

The controller key can also point to a string that references the name of a previously registered
controller constructor:

test/compile_spec.js
it('can be attached to directives as string references', function() {
 var controllerInvoked;
 function MyController() {
 controllerInvoked = true;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {controller: 'MyController'};
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(controllerInvoked).toBe(true);
 });

Directive Controllers 28

825 Errata© Tero Parviainen 2016

});

Controllers are instantiated for each directive individually, and there are no restrictions about hav-
ing several directives with different controllers on the same element. Here we have an element with
two directives applied, both of which have their own controller:

test/compile_spec.js
it('can be applied in the same element independent of each other', function() {
 var controllerInvoked;
 var otherControllerInvoked;
 function MyController() {
 controllerInvoked = true;
 }
 function MyOtherController() {
 otherControllerInvoked = true;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $controllerProvider.register('MyOtherController', MyOtherController);
 $compileProvider.directive('myDirective', function() {
 return {controller: 'MyController'};
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {controller: 'MyOtherController'};
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 $compile(el)($rootScope);
 expect(controllerInvoked).toBe(true);
 expect(otherControllerInvoked).toBe(true);
 });
});

There are also no restrictions about using the same controller constructor several times. Each direc-
tive application gets its own instance of the controller, even if the same constructor is used twice
on the same element:

test/compile_spec.js
it('can be applied to different directives, as different instances', function() {
 var invocations = 0;
 function MyController() {
 invocations++;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {controller: 'MyController'};

Directive Controllers 28

826 Errata© Tero Parviainen 2016

 });
 $compileProvider.directive('myOtherDirective', function() {
 return {controller: 'MyController'};
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 $compile(el)($rootScope);
 expect(invocations).toBe(2);
 });
});

Let’s get this series of unit tests to green. First, as we iterate over directives during compilation in
applyDirectivesToNode, we should collect all the directives that have controllers:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = [], postLinkFns = [];
 var newScopeDirective, newIsolateScopeDirective;
 var controllerDirectives;

 function addLinkFns(preLinkFn, postLinkFn, attrStart, attrEnd, isolateScope) {
 // ...
 }

 _.forEach(directives, function(directive) {

 // ...

 if (directive.controller) {
 controllerDirectives = controllerDirectives || {};
 controllerDirectives[directive.name] = directive;
 }
 });

 // ...
}

Here we are building a controllerDirectives object where the keys are directive names and
the values are the corresponding directive objects.

With the help of this object, in the linking phase we now have knowledge about all the controllers
that should be instantiated when a node is linked. We can accomplish this using our new $con-
troller service. It should be able to handle any value given for a directive controller, whether it’s
a constructor function or the name of one:

Directive Controllers 28

827 Errata© Tero Parviainen 2016

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {
 var $element = $(linkNode);

 if (controllerDirectives) {
 _.forEach(controllerDirectives, function(directive) {
 $controller(directive.controller);
 });
 }

 // ...

}

Before this code will work we need to inject the $controller service into $compileProvid-
er.$get:

src/compile.js
this.$get = ['$injector', '$parse', '$controller', '$rootScope',
 function($injector, $parse, $controller, $rootScope) {

This gets all of our test cases to pass. Directive controllers are instantiated using $controller,
and doing that is just a matter of wiring $compile and $controller together.

An interesting additional feature of directive-controller integration is that when you have an attri-
bute directive and specify the controller name as the string ’@’, the controller is looked up using
the value of the directive attribute in the DOM. This can be useful when you want to specify the direc-
tive controller not when the directive is registered, but when the directive is used. Effectively, this
allows you to plug in different controllers for the same directive.

test/compile_spec.js
it('can be aliased with @ when given in directive attribute', function() {
 var controllerInvoked;
 function MyController() {
 controllerInvoked = true;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {controller: '@'};
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive="MyController"></div>');
 $compile(el)($rootScope);
 expect(controllerInvoked).toBe(true);
 });
});

Locals in Directive Controllers 28

828 Errata© Tero Parviainen 2016

The support for this is built into the node link function, where the controller name is substituted
with the value of the DOM attribute if it’s defined as ’@’:

src/compile.js
_.forEach(controllerDirectives, function(directive) {
 var controllerName = directive.controller;
 if (controllerName === '@') {
 controllerName = attrs[directive.name];
 }
 $controller(controllerName);
});

Locals in Directive Controllers

While we now know how to instantiate a controller for a directive, the connection between the
directive and the controller is next to non-existent: The controller just happens to be instantiated
with the directive but it doesn’t really have access to any information about that directive, which
greatly diminishes its value.

We can strengthen this connection by making a few things available to the controller:

• $scope - The directive’s scope object
• $element - The element the directive is being applied to
• $attrs - The Attributes object of the element the directive is being applied to

These are all available to the directive constructor:

test/compile_spec.js
it('gets scope, element, and attrs through DI', function() {
 var gotScope, gotElement, gotAttrs;
 function MyController($element, $scope, $attrs) {
 gotElement = $element;
 gotScope = $scope;
 gotAttrs = $attrs;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {controller: 'MyController'};
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive an-attr="abc"></div>');
 $compile(el)($rootScope);
 expect(gotElement[0]).toBe(el[0]);

Attaching Directive Controllers on The Scope 28

829 Errata© Tero Parviainen 2016

 expect(gotScope).toBe($rootScope);
 expect(gotAttrs).toBeDefined();
 expect(gotAttrs.anAttr).toEqual('abc');
 });
});

We purposefully put $element before $scope in the constructor arguments to highlight the fact that
these are dependency-injected arguments and the order does not matter. In link functions the order is al-
ways scope, element, attrs, because link functions do not use dependency injection.

We can use the locals support we added to $controller earlier to pass these objects into the
controller constructor. We just need to make a suitable locals object in the controller loop and pass
it into $controller. This makes $scope, $element, and $attrs available for injection:

src/compile.js
_.forEach(controllerDirectives, function(directive) {
 var locals = {
 $scope: scope,
 $element: $element,
 $attrs: attrs
 };
 var controllerName = directive.controller;
 if (controllerName === '@') {
 controllerName = attrs[directive.name];
 }
 $controller(controllerName, locals);
});

And now the controller is much more connected to the directive. In fact, given those three objects,
you can do anything in the directive controller that you can do in the directive’s link functions.
Many people actually choose to organize their directive code so that the link function doesn’t do
much at all, and everything is in the controller instead. This has the benefit that the controller is a
separate component that can be unit tested without having to instantiate the directive - something
you can’t really do with link functions.

Attaching Directive Controllers on The Scope

We know how to pass the scope object to the controller. You can also do the inverse of that,
which is to attach the controller object onto the scope. This enables the application pattern of pub-
lishing controller data and functions on this instead of $scope while still making them available
to interpolation expressions in the DOM, as well as child directives and controllers.

This application pattern has been described well in an article by Todd Motto. We defer further discussion
about the pattern to that article and focus here on the infrastructure that enables it.

When a controllerAs key is defined on the directive definition object, it specifies the key by

http://toddmotto.com/digging-into-angulars-controller-as-syntax/

Attaching Directive Controllers on The Scope 28

830 Errata© Tero Parviainen 2016

which the controller object will be attached to the scope:

test/compile_spec.js
it('can be attached on the scope', function() {
 function MyController() { }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {
 controller: 'MyController',
 controllerAs: 'myCtrl'
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect($rootScope.myCtrl).toBeDefined();
 expect($rootScope.myCtrl instanceof MyController).toBe(true);
 });
});

In this case the directive doesn’t request an inherited or isolated scope, so the scope that gets the
controller is $rootScope, making things a bit easier to test.

To support this use case, the $controller function takes an additional, optional argument which
defines the “identifier” of the controller on the scope. In the node link function we can use the
value of controllerAs for this as we call $controller:

src/compile.js
_.forEach(controllerDirectives, function(directive) {
 var locals = {
 $scope: scope,
 $element: $element,
 $attrs: attrs
 };
 var controllerName = directive.controller;
 if (controllerName === '@') {
 controllerName = attrs[directive.name];
 }
 $controller(controllerName, locals, directive.controllerAs);
});

This argument is not really meant to be used by application developers directly. It is there just to support the
controllerAs feature of the directive compiler.

Also, this will actually be the fourth argument to $controller, not the third. The third argument is
reserved for another optional argument, which we’ll introduce later in this chapter.

Controllers on Isolate Scope Directives 28

831 Errata© Tero Parviainen 2016

If this optional argument is given to $controller, it invokes an internal helper function that will
attach the controller instance to the scope:

src/controller.js
return function(ctrl, locals, identifier) {
 if (_.isString(ctrl)) {
 if (controllers.hasOwnProperty(ctrl)) {
 ctrl = controllers[ctrl];
 } else if (globals) {
 ctrl = window[ctrl];
 }
 }
 var instance = $injector.instantiate(ctrl, locals);
 if (identifier) {
 addToScope(locals, identifier, instance);
 }
 return instance;
};

The addToScope function finds the scope - which will be on the given locals object - and puts
the controller instance on it using the identifier. If an identifier has been given but there’s no
$scope in the locals object, an exception is thrown.

This function can be defined on the top level of controller.js:

src/controller.js
function addToScope(locals, identifier, instance) {
 if (locals && _.isObject(locals.$scope)) {
 locals.$scope[identifier] = instance;
 } else {
 throw 'Cannot export controller as ' + identifier +
 '! No $scope object provided via locals';
 }
}

Controllers on Isolate Scope Directives

At first blush, using controllers with isolate scope directives doesn’t look too different from using
them in non-isolated contexts. However, some of the features related to isolate scopes do present
obstacles that require special attention.

Before we go there, let’s cover some of the basics: When a directive has an isolate scope, the
$scope argument injected to the controller should be the isolate scope and not the surrounding
scope.

Controllers on Isolate Scope Directives 28

832 Errata© Tero Parviainen 2016

test/compile_spec.js
it('gets isolate scope as injected $scope', function() {
 var gotScope;
 function MyController($scope) {
 gotScope = $scope;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: 'MyController'
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(gotScope).not.toBe($rootScope);
 });
});

To support this behavior, we’ll need to shift our code in the node link function around a bit. Any
isolate scope should be created before instantiating controllers. We’ll still do the rest of the isolate
scope setup after controller instantiation, for reasons that will become apparent in a moment.

Once we have the isolate scope object, we pass it into the directive controller. We should be careful
to use the isolate scope only for the directive that actually requested it. All other controllers active
on the node still receive the non-isolated scope:

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {
 var $element = $(linkNode);

 var isolateScope;
 if (newIsolateScopeDirective) {
 isolateScope = scope.$new(true);
 $element.addClass('ng-isolate-scope');
 $element.data('$isolateScope', isolateScope);
 }

 if (controllerDirectives) {
 _.forEach(controllerDirectives, function(directive) {
 var locals = {
 $scope: directive === newIsolateScopeDirective ? isolateScope : scope,
 $element: $element,
 $attrs: attrs
 };
 var controllerName = directive.controller;
 if (controllerName === '@') {

Controllers on Isolate Scope Directives 28

833 Errata© Tero Parviainen 2016

 controllerName = attrs[directive.name];
 }
 $controller(controllerName, locals, directive.controllerAs);
 });
 }

 if (newIsolateScopeDirective) {
 _.forEach(
 newIsolateScopeDirective.$$isolateBindings,
 function(definition, scopeName) {
 // ...
 }};
 }

 // ...

}

We could have just moved all of the isolate scope setup code above the controller instantiation
code and our test case would still have passed. So why did we split it in two like we did?

The reason is a feature related to isolate scopes that we’ll implement next, called bindToCon-
troller. This is a flag that can be set in the directive definition object, which controls where all the
isolate scope bindings will be attached. In the previous chapter we saw that all the bindings introduced
with @, <, =, or & are attached on the isolate scope. However, when the bindToController flag
is set on a directive, those bindings should be placed on the controller object instead of the isolate
scope. This is particularly useful in conjunction with the controllerAs option, which then
makes the controller with all those isolate bindings available to child elements.

The catch is that now we have a chicken-and-egg problem when it comes to setting things up:

1. Isolate scope bindings should exist before the controller constructor is called, because the constructor
may expect such bindings to already exist when it runs.

2. If bindToController is used, the isolate scope bindings must be attached on the controller
object, which means we must have the controller object before we can set up the isolate bindings.

This means that we need to have the controller object before we actually call the controller con-
structor. Given the flexibility of the JavaScript language, it is actually possible for us to do that, but
we’ll have to spend some effort to get there.

Let’s first add a couple of unit tests that illustrate where we are going with this. When a controller
constructor is invoked, all isolate scope bindings must already be on the scope:

test/compile_spec.js
it('has isolate scope bindings available during construction', function() {
 var gotMyAttr;
 function MyController($scope) {

Controllers on Isolate Scope Directives 28

834 Errata© Tero Parviainen 2016

 gotMyAttr = $scope.myAttr;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {
 myAttr: '@myDirective'
 },
 controller: 'MyController'
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive="abc"></div>');
 $compile(el)($rootScope);
 expect(gotMyAttr).toEqual('abc');
 });
});

On the other hand, if bindToController is enabled, the isolate scope bindings will be on the
controller instance, not on $scope. When the controller constructor is called, there will already be attri-
butes on this:

test/compile_spec.js
it('can bind isolate scope bindings directly to self', function() {
 var gotMyAttr;
 function MyController() {
 gotMyAttr = this.myAttr;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {
 myAttr: '@myDirective'
 },
 controller: 'MyController',
 bindToController: true
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive="abc"></div>');
 $compile(el)($rootScope);
 expect(gotMyAttr).toEqual('abc');
 });
});

Controllers on Isolate Scope Directives 28

835 Errata© Tero Parviainen 2016

Both of these test cases are initially failing, and will continue to do so until we’re done. So let’s go
ahead and dive into the details.

The $controller function takes an optional third argument, called later, that causes the func-
tion to return a “semi-constructed” controller instead of a fully constructed one.

The meaning of “semi-constructed” is that the controller object already exists, but the controller
constructor has not yet been invoked. In concrete terms, in this case the return value of $con-
troller has the following characteristics:

• It is a function which, when called, will invoke the controller constructor
• It has an attribute called instance that points to the controller object.

This kind of deferred construction gives the caller of $controller a chance to do work between
creating the controller object and calling its constructor - just what we need to set up the isolate
scope bindings.

test/controller_spec.js
it('can return a semi-constructed controller', function() {
 var injector = createInjector(['ng']);
 var $controller = injector.get('$controller');

 function MyController() {
 this.constructed = true;
 this.myAttrWhenConstructed = this.myAttr;
 }

 var controller = $controller(MyController, null, true);

 expect(controller.constructed).toBeUndefined();
 expect(controller.instance).toBeDefined();

 controller.instance.myAttr = 42;
 var actualController = controller();

 expect(actualController.constructed).toBeDefined();
 expect(actualController.myAttrWhenConstructed).toBe(42);
});

As we introduce the later argument to $controller, the identifier argument we introduced
earlier is pushed to be the fourth argument:

src/controller.js
this.$get = ['$injector', function($injector) {

 return function(ctrl, locals, later, identifier) {
 // ...
 };

Controllers on Isolate Scope Directives 28

836 Errata© Tero Parviainen 2016

}];

We want to keep our existing test suite passing, so let’s temporarily supply false as the value for
later in compile.js. We’ll come back and change this in a few moments:

src/compile.js
_.forEach(controllerDirectives, function(directive) {
 var locals = {
 $scope: directive === newIsolateScopeDirective ? isolateScope : scope,
 $element: $element,
 $attrs: attrs
 };
 var controllerName = directive.controller;
 if (controllerName === '@') {
 controllerName = attrs[directive.name];
 }
 $controller(controllerName, locals, false, directive.controllerAs);
});

Both later and identifier are designed to be used only by the framework internally, and not directly
by application developers. If you do use them, beware that they may change or go away in the future since
they are considered to be implementation details.

Inside $controller we can now decide based on this flag whether we should do normal instanti-
ation or something else:

src/controller.js
return function(ctrl, locals, later, identifier) {
 if (_.isString(ctrl)) {
 if (controllers.hasOwnProperty(ctrl)) {
 ctrl = controllers[ctrl];
 } else if (globals) {
 ctrl = window[ctrl];
 }
 }
 var instance;
 if (later) {

 } else {
 instance = $injector.instantiate(ctrl, locals);
 if (identifier) {
 addToScope(locals, identifier, instance);
 }
 return instance;
 }
};

What we do has two steps to it:

Controllers on Isolate Scope Directives 28

837 Errata© Tero Parviainen 2016

1. Create a new object whose prototype is based on the constructor function. Object.create
comes in handy here.

2. Return the “semi-constructed” controller: A function that can be used to actually call the con-
structor later, and that has the object instance available in the instance attribute.

When we do finally call the constructor, we should not do it with $injector.instantiate be-
cause we’re not actually instantiating anything at that point. We can call it as a regular dependen-
cy-injected function with $injector.invoke. We just need to pass the constructor object as the
self argument so that this is bound correctly.

src/controller.js
return function(ctrl, locals, later, identifier) {
 if (_.isString(ctrl)) {
 if (controllers.hasOwnProperty(ctrl)) {
 ctrl = controllers[ctrl];
 } else if (globals) {
 ctrl = window[ctrl];
 }
 }
 var instance;
 if (later) {
 instance = Object.create(ctrl);
 return _.extend(function() {
 $injector.invoke(ctrl, instance, locals);
 return instance;
 }, {
 instance: instance
 });
 } else {
 instance = $injector.instantiate(ctrl, locals);
 if (identifier) {
 addToScope(locals, identifier, instance);
 }
 return instance;
 }
};

Since $controller supports dependency injection, the first argument given to it may actually be
an array-style dependency injection wrapper instead of a plain function. It should still support the
later flag:

test/controller_spec.js
it('can return a semi-constructed ctrl when using array injection', function() {
 var injector = createInjector(['ng', function($provide) {
 $provide.constant('aDep', 42);
 }]);
 var $controller = injector.get('$controller');

Controllers on Isolate Scope Directives 28

838 Errata© Tero Parviainen 2016

 function MyController(aDep) {
 this.aDep = aDep;
 this.constructed = true;
 }

 var controller = $controller(['aDep', MyController], null, true);
 expect(controller.constructed).toBeUndefined();
 var actualController = controller();
 expect(actualController.constructed).toBeDefined();
 expect(actualController.aDep).toBe(42);
});

As we pass in the prototype to Object.create, we need to unwrap the dependency injection
wrapper array if there is one:

src/controller.js
var ctrlConstructor = _.isArray(ctrl) ? _.last(ctrl) : ctrl;
instance = Object.create(ctrlConstructor.prototype);
return _.extend(function() {
 $injector.invoke(ctrl, instance, locals);
 return instance;
}, {
 instance: instance
});

Now, combining the third later argument with the fourth identifier argument, we can also
expect $controller to bind the semi-constructed controller object on the scope if we ask it to:

test/controller_spec.js
it('can bind semi-constructed controller to scope', function() {
 var injector = createInjector(['ng']);
 var $controller = injector.get('$controller');

 function MyController() {
 }
 var scope = {};

 var controller = $controller(MyController, {$scope: scope}, true, 'myCtrl');
 expect(scope.myCtrl).toBe(controller.instance);
});

We’re not using an actual Scope object here - just a plain object. For the purposes of the test, there is no
difference.

This is accomplished by calling the same addToScope helper function from this branch that we
already call in the “eager construction” branch:

src/controller.js
if (later) {

Controllers on Isolate Scope Directives 28

839 Errata© Tero Parviainen 2016

 var ctrlConstructor = _.isArray(ctrl) ? _.last(ctrl) : ctrl;
 instance = Object.create(ctrlConstructor.prototype);
 if (identifier) {
 addToScope(locals, identifier, instance);
 }
 return _.extend(function() {
 $injector.invoke(ctrl, instance, locals);
 return instance;
 }, {
 instance: instance
 });
} else {
 instance = $injector.instantiate(ctrl, locals);
 if (identifier) {
 addToScope(locals, identifier, instance);
 }
 return instance;
}

Now that we have the infrastructure we need in $controller, we can tie things together by mak-
ing a few changes in $compile.

First, let’s introduce a variable in which we can store the semi-constructed controller functions.
This goes into the top level of the applyDirectivesToNode function:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var preLinkFns = [], postLinkFns = [], controllers = {};
 // ...
}

As we construct the controllers, we’ll store the semi-constructed functions in this object. Note that
we now pass in true as the third argument to $controller to trigger the later flag:

src/compile.js
_.forEach(controllerDirectives, function(directive) {
 var locals = {
 $scope: directive === newIsolateScopeDirective ? isolateScope : scope,
 $element: $element,
 $attrs: attrs
 };
 var controllerName = directive.controller;
 if (controllerName === '@') {
 controllerName = attrs[directive.name];
 }
 controllers[directive.name] =
 $controller(controllerName, locals, true, directive.controllerAs);
});

Controllers on Isolate Scope Directives 28

840 Errata© Tero Parviainen 2016

Then, after we have set up the isolate scope bindings, but before we call the prelink functions, we
invoke the semi-constructed controller functions, which triggers the invocation of the actual con-
troller constructors.

src/compile.js
if (newIsolateScopeDirective) {
 _.forEach(
 newIsolateScopeDirective.$$isolateBindings,
 function(definition, scopeName) {
 // ...
 });
}

_.forEach(controllers, function(controller) {
 controller();
});

_.forEach(preLinkFns, function(linkFn) {
 linkFn(linkFn.isolateScope ? isolateScope : scope, $element, attrs);
});

Effectively, we now set up the isolate scope binding while the controllers are in the semi-construct-
ed state.

This has the first of the two high-level test cases passing, but the one for bindToController is
still failing. What we need to do is extend the isolate binding initialization so that it can deal with
two different situations: Regular isolate bindings and bindings to the controller instead of the scope
(when bindToController is true).

To make this easier, let’s change the parsing code for the bindings slightly. What we are currently
doing is setting an $$isolateBindings attribute on the directive when we initialize it. We should
generalize this into a $$bindings attribute with which we can handle both scope and controller
bindings. To initialize it, we’ll use a new helper function called parseDirectiveBindings:

src/compile.js
return _.map(factories, function(factory, i) {
 var directive = $injector.invoke(factory);
 directive.restrict = directive.restrict || 'EA';
 directive.priority = directive.priority || 0;
 if (directive.link && !directive.compile) {
 directive.compile = _.constant(directive.link);
 }
 directive.$$bindings = parseDirectiveBindings(directive);
 directive.name = directive.name || name;
 directive.index = i;
 return directive;
});

Controllers on Isolate Scope Directives 28

841 Errata© Tero Parviainen 2016

A first version of parseDirectiveBindings can merely call the existing parseIsolateBind-
ings function, and set the return value into the isolateScope attribute of our new bindings
object:

src/compile.js
function parseDirectiveBindings(directive) {
 var bindings = {};
 if (_.isObject(directive.scope)) {
 bindings.isolateScope = parseIsolateBindings(directive.scope);
 }
 return bindings;
}

Moving then to the initialization of these bindings that happens during linking, we should do a bit
of refactoring here too. Let’s extract the binding initialization code to a separate function, away
from nodeLinkFn. We can call it initializeDirectiveBindings. It contains the initialization
loop code we’ve written earlier and takes the arguments it needs to do its work:

src/compile.js
function initializeDirectiveBindings(scope, attrs, bindings, isolateScope) {
 _.forEach(bindings, function(definition, scopeName) {
 var attrName = definition.attrName;
 var parentGet, unwatch;
 switch (definition.mode) {
 case '@':
 attrs.$observe(attrName, function(newAttrValue) {
 isolateScope[scopeName] = newAttrValue;
 });
 if (attrs[attrName]) {
 isolateScope[scopeName] = attrs[attrName];
 }
 break;
 case '<':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 isolateScope[scopeName] = parentGet(scope);
 unwatch = scope.$watch(parentGet, function(newValue) {
 isolateScope[scopeName] = newValue;
 });
 isolateScope.$on('$destroy', unwatch);
 break;
 case '=':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 var lastValue = isolateScope[scopeName] = parentGet(scope);

Controllers on Isolate Scope Directives 28

842 Errata© Tero Parviainen 2016

 var parentValueWatch = function() {
 var parentValue = parentGet(scope);
 if (isolateScope[scopeName] !== parentValue) {
 if (parentValue !== lastValue) {
 isolateScope[scopeName] = parentValue;
 } else {
 parentValue = isolateScope[scopeName];
 parentGet.assign(scope, parentValue);
 }
 }
 lastValue = parentValue;
 return lastValue;
 };
 if (definition.collection) {
 unwatch = scope.$watchCollection(attrs[attrName], parentValueWatch);
 } else {
 unwatch = scope.$watch(parentValueWatch);
 }
 isolateScope.$on('$destroy', unwatch);
 break;
 case '&':
 var parentExpr = $parse(attrs[attrName]);
 if (parentExpr === _.noop && definition.optional) {
 break;
 }
 isolateScope[scopeName] = function(locals) {
 return parentExpr(scope, locals);
 };
 break;
 }
 });
}

In nodeLinkFn itself, all that is now left to do is to call this function instead of having the big
loop. As the bindings, we give it the isolate scope bindings we created in the new parseDirec-
tiveBindings function:

src/compile.js
if (newIsolateScopeDirective) {
 initializeDirectiveBindings(
 scope,
 attrs,
 newIsolateScopeDirective.$$bindings.isolateScope,
 isolateScope
);
}

Now we’re ready to extend this to work with bindToController as well. In parseDirective-
Bindings, if this flag is true, we’ll put the bindings in the bindToController key and not the
isolateScope key:

Controllers on Isolate Scope Directives 28

843 Errata© Tero Parviainen 2016

src/compile.js
function parseDirectiveBindings(directive) {
 var bindings = {};
 if (_.isObject(directive.scope)) {
 if (directive.bindToController) {
 bindings.bindToController = parseIsolateBindings(directive.scope);
 } else {
 bindings.isolateScope = parseIsolateBindings(directive.scope);
 }
 }
 return bindings;
}

These new bindings are then initialized just before the controllers are instantiated in the node link
function. We only do so if we have an isolate scope directive that also has a controller. We can
reuse the initializeDirectiveBindings function we extracted earlier:

src/compile.js
if (newIsolateScopeDirective && controllers[newIsolateScopeDirective.name]) {
 initializeDirectiveBindings(
 scope,
 attrs,
 newIsolateScopeDirective.$$bindings.bindToController,
 isolateScope
);
}

_.forEach(controllers, function(controller) {
 controller();
});

The remaining issue with this is that these bindings are still being attached to the isolate scope
object, when the whole point is that they should be attached to the controller! The initialize-
DirectiveBindings function should accept one more argument, which we’ll call destination,
that points to the object on which all the data should be bound. It is used as the target across the
different binding types. We’ll still pass in the isolateScope too, but we’ll just call it newScope and it
is only used to tap into the $destroy event where watches should be deregistered:

src/compile.js
function initializeDirectiveBindings(
 scope, attrs, destination, bindings, newScope) {
 _.forEach(bindings, function(definition, scopeName) {
 var attrName = definition.attrName;
 switch (definition.mode) {
 case '@':
 attrs.$observe(attrName, function(newAttrValue) {
 destination[scopeName] = newAttrValue;
 });

Controllers on Isolate Scope Directives 28

844 Errata© Tero Parviainen 2016

 if (attrs[attrName]) {
 destination[scopeName] = attrs[attrName];
 }
 break;
 case '<':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 destination[scopeName] = parentGet(scope);
 unwatch = scope.$watch(parentGet, function(newValue) {
 destination[scopeName] = newValue;
 });
 newScope.$on('$destroy', unwatch);
 break;
 case '=':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 var parentGet = $parse(attrs[attrName]);
 var lastValue = destination[scopeName] = parentGet(scope);
 var parentValueWatch = function() {
 var parentValue = parentGet(scope);
 if (destination[scopeName] !== parentValue) {
 if (parentValue !== lastValue) {
 destination[scopeName] = parentValue;
 } else {
 parentValue = destination[scopeName];
 parentGet.assign(scope, parentValue);
 }
 }
 lastValue = parentValue;
 return lastValue;
 };
 var unwatch;
 if (definition.collection) {
 unwatch = scope.$watchCollection(attrs[attrName], parentValueWatch);
 } else {
 unwatch = scope.$watch(parentValueWatch);
 }
 newScope.$on('$destroy', unwatch);
 break;
 case '&':
 var parentExpr = $parse(attrs[attrName]);
 if (parentExpr === _.noop && definition.optional) {
 break;
 }
 destination[scopeName] = function(locals) {
 return parentExpr(scope, locals);
 };
 break;
 }
 });

Controllers on Isolate Scope Directives 28

845 Errata© Tero Parviainen 2016

}

In the case of regular isolate bindings, the destination is the isolate scope itself:

src/compile.js
if (newIsolateScopeDirective) {
 initializeDirectiveBindings(
 scope,
 attrs,
 isolateScope,
 newIsolateScopeDirective.$$bindings.isolateScope,
 isolateScope
);
}

And in the case of bindToController, the destination is the controller instance object:

src/compile.js
if (newIsolateScopeDirective && controllers[newIsolateScopeDirective.name]) {
 initializeDirectiveBindings(
 scope,
 attrs,
 controllers[newIsolateScopeDirective.name].instance,
 newIsolateScopeDirective.$$bindings.bindToController,
 isolateScope
);
}

And finally all the tests are passing!

This implementation also unlocks a couple of convenient patterns we can easily enable for ap-
plication developers. Firstly, people might prefer specifying the directive bindings as the value of
bindToController instead of isolateScope, since the controller will be where they end up. It
makes the API just a bit more convenient:

test/compile_spec.js
it('can bind iso scope bindings through bindToController', function() {
 var gotMyAttr;
 function MyController() {
 gotMyAttr = this.myAttr;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: 'MyController',

Controllers on Isolate Scope Directives 28

846 Errata© Tero Parviainen 2016

 bindToController: {
 myAttr: '@myDirective'
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive="abc"></div>');
 $compile(el)($rootScope);
 expect(gotMyAttr).toEqual('abc');
 });
});

We can easily handle this in the parseDirectiveBindings function. If the value of bindTo-
Controller is an object, it is parsed just like the value of scope is parsed:

src/compile.js
function parseDirectiveBindings(directive) {
 var bindings = {};
 if (_.isObject(directive.scope)) {
 if (directive.bindToController) {
 bindings.bindToController = parseIsolateBindings(directive.scope);
 } else {
 bindings.isolateScope = parseIsolateBindings(directive.scope);
 }
 }
 if (_.isObject(directive.bindToController)) {
 bindings.bindToController =
 parseIsolateBindings(directive.bindToController);
 }
 return bindings;
}

Secondly, we can extend this implementation so that you don’t actually need an isolate scope at
all in order to make bindings! You can just use a combination of a regular inherited scope and an
object value for bindToController:

test/compile_spec.js
it('can bind through bindToController without iso scope', function() {
 var gotMyAttr;
 function MyController() {
 gotMyAttr = this.myAttr;
 }
 var injector = createInjector(['ng',
 function($controllerProvider, $compileProvider) {
 $controllerProvider.register('MyController', MyController);
 $compileProvider.directive('myDirective', function() {
 return {
 scope: true,
 controller: 'MyController',

Requiring Controllers 28

847 Errata© Tero Parviainen 2016

 bindToController: {
 myAttr: '@myDirective'
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive="abc"></div>');
 $compile(el)($rootScope);
 expect(gotMyAttr).toEqual('abc');
 });
});

Here we can extend the code we have in the node link function, so that it supports making the
controller binding initialization for either the isolate scope directive or the new scope directive,
whichever the current node has:

src/compile.js
var scopeDirective = newIsolateScopeDirective || newScopeDirective;
if (scopeDirective && controllers[scopeDirective.name]) {
 initializeDirectiveBindings(
 scope,
 attrs,
 controllers[scopeDirective.name].instance,
 scopeDirective.$$bindings.bindToController,
 isolateScope
);
}

And now our controller and isolate scope implementations are fully compatible, and actually sup-
port each other in interesting ways.

It’s quite a bit of infrastructure for a seemingly simple feature, but the application pattern enabled
by this is quite useful: The combination of controllerAs and bindToController lets applica-
tion developers write a lot of code without ever explicitly using the $scope object, which is pre-
ferred by many people.

See this article for some further discussion on this pattern.

Requiring Controllers

Controllers are a handy alternative to link functions for carrying the logic of your directives, but
that’s not all controllers are useful for. Controllers can also be used to provide yet another channel
for communication between different directives. This is perhaps the most powerful of the “cross-di-
rective communication” facilities in Angular: Requiring controllers from other directives.

A directive can “require” some other directive by name by specifying the require key in the

http://flipjs.io/2014/09/09/isolate-scope-controller-as/

Requiring Controllers 28

848 Errata© Tero Parviainen 2016

directive definition object. When this is done, and the required directive is indeed present on the
same element, the required directive’s controller is given to the requiring directive’s link function as
the fourth argument.

Effectively, one directive can gain access to the controller of another directive, and thus all the data
and functions it makes available. This is the case even if one of the directives uses an isolate scope:

test/compile_spec.js
it('can be required from a sibling directive', function() {
 function MyController() { }
 var gotMyController;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {
 require: 'myDirective',
 link: function(scope, element, attrs, myController) {
 gotMyController = myController;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 $compile(el)($rootScope);
 expect(gotMyController).toBeDefined();
 expect(gotMyController instanceof MyController).toBe(true);
 });
});

Here we have two directives, myDirective and myOtherDirective, used on the same element.
myDirective defines both a controller and an isolate scope. myOtherDirective defines nei-
ther, but it requires myDirective. We check that this causes the controller of myDirective to be
passed to myOtherDirective’s link function.

Let’s first attach some information about a directive’s require flag to its link function. As we
invoke addLinkFns in the directive loop of applyDirectivesToNode, let’s pass in the require
attribute of the directive:

src/compile.js
if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 var isolateScope = (directive === newIsolateScopeDirective);
 var attrStart = directive.$$start;

Requiring Controllers 28

849 Errata© Tero Parviainen 2016

 var attrEnd = directive.$$end;
 var require = directive.require;
 if (_.isFunction(linkFn)) {
 addLinkFns(null, linkFn, attrStart, attrEnd, isolateScope, require);
 } else if (linkFn) {
 addLinkFns(
 linkFn.pre, linkFn.post, attrStart, attrEnd, isolateScope, require);
 }
}

In addLinkFns, let’s use this argument to populate the require attribute of both the pre- and
postlink functions:

src/compile.js
function addLinkFns(preLinkFn, postLinkFn, attrStart, attrEnd,
 isolateScope, require) {
 if (preLinkFn) {
 if (attrStart) {
 preLinkFn = groupElementsLinkFnWrapper(preLinkFn, attrStart, attrEnd);
 }
 preLinkFn.isolateScope = isolateScope;
 preLinkFn.require = require;
 preLinkFns.push(preLinkFn);
 }
 if (postLinkFn) {
 if (attrStart) {
 postLinkFn = groupElementsLinkFnWrapper(postLinkFn, attrStart, attrEnd);
 }
 postLinkFn.isolateScope = isolateScope;
 postLinkFn.require = require;
 postLinkFns.push(postLinkFn);
 }
}

As we now invoke those pre- and postlink functions from the node link function, we can check
whether they have the require attribute set. If they do, we’ll pass in a fourth argument to the link
functions. The value of this argument will be the return value of a new function called getCon-
trollers, which we’ll define in a moment:

src/compile.js
_.forEach(preLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require)
);
});
if (childLinkFn) {
 childLinkFn(scope, linkNode.childNodes);

Requiring Controllers 28

850 Errata© Tero Parviainen 2016

}
_.forEachRight(postLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require)
);
});

The getControllers function should be defined inside applyDirectivesToNode, where it has
access to the controllers variable that stores the (semi-constructed) controllers of the current
node:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = [], postLinkFns = [], controllers = {};
 var newScopeDirective, newIsolateScopeDirective;
 var controllerDirectives;

 function getControllers(require) {

 }

 // ...

}

What the function does is look up the required controller and return it. If no controller is found, it
throws an exception:

src/compile.js
function getControllers(require) {
 var value;
 if (controllers[require]) {
 value = controllers[require].instance;
 }
 if (!value) {
 throw 'Controller '+require+' required by directive, cannot be found!';
 }
 return value;
}

Note that what’s stored in controllers are the semi-constructed controller functions from the
previous section, so we need to access the instance attribute to get to the actual controller object
that the link functions will then receive. By that point it will be fully constructed.

Requiring Multiple Controllers 28

851 Errata© Tero Parviainen 2016

Requiring Multiple Controllers

You can actually require not just one, but several other directive controllers to your directive. If
you define an array of strings as the value of require, the fourth argument to your link functions
will be an array of the corresponding controller objects:

test/compile_spec.js
it('can be required from multiple sibling directives', function() {
 function MyController() { }
 function MyOtherController() { }
 var gotControllers;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: true,
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {
 scope: true,
 controller: MyOtherController
 };
 });
 $compileProvider.directive('myThirdDirective', function() {
 return {
 require: ['myDirective', 'myOtherDirective'],
 link: function(scope, element, attrs, controllers) {
 gotControllers = controllers;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive my-third-directive></div>');
 $compile(el)($rootScope);
 expect(gotControllers).toBeDefined();
 expect(gotControllers.length).toBe(2);
 expect(gotControllers[0] instanceof MyController).toBe(true);
 expect(gotControllers[1] instanceof MyOtherController).toBe(true);
 });
});
In this case we have three directives on the same element. The first two both define controllers, and
the third one requires the first two. We then check that the third directive’s link function receives
both controllers.

Making this work is actually quite simple. If the argument given to getControllers is an array,
we’ll return a recursive mapping of the values in that array to getControllers - an array of con-

Requiring Multiple Controllers as an Object 28

852 Errata© Tero Parviainen 2016

trollers:

src/compile.js
function getControllers(require) {
 if (_.isArray(require)) {
 return _.map(require, getControllers);
 } else {
 var value;
 if (controllers[require]) {
 value = controllers[require].instance;
 }
 if (!value) {
 throw 'Controller '+require+' required by directive, cannot be found!';
 }
 return value;
 }
}

Requiring Multiple Controllers as an Object

When you need to require several other controllers, it’s not always very convenient to access them
using an array since you need to keep track of the numeric indexes of what you required. For this
reason there’s an alternative way to require multiple controllers, which is to use an object instead
of an array. What you then get in the link function is an object. The keys in this object are the
names of the required directives and the values are their controllers.

test/compile_spec.js
it('can be required as an object', function() {
 function MyController() { }
 function MyOtherController() { }
 var gotControllers;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: true,
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {
 scope: true,
 controller: MyOtherController
 };
 });
 $compileProvider.directive('myThirdDirective', function() {
 return {
 require: {
 myDirective: 'myDirective',

Requiring Multiple Controllers as an Object 28

853 Errata© Tero Parviainen 2016

 myOtherDirective: 'myOtherDirective'
 },
 link: function(scope, element, attrs, controllers) {
 gotControllers = controllers;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive my-third-directive></div>');
 $compile(el)($rootScope);
 expect(gotControllers).toBeDefined();
 expect(gotControllers.myDirective instanceof MyController).toBe(true);
 expect(gotControllers.myOtherDirective instanceof MyOtherController)
 .toBe(true);
 });
});

Implementing this is, again, simple enough. Just like in the previous section, we map over the col-
lection given. This time we just use the LoDash _.mapValues function which returns a new object
with the same keys, but with the values replaced with our mapping function.

src/compile.js
function getControllers(require) {
 if (_.isArray(require)) {
 return _.map(require, getControllers);
 } else if (_.isObject(require)) {
 return _.mapValues(require, getControllers);
 } else {
 var value;
 if (controllers[require]) {
 value = controllers[require].instance;
 }
 if (!value) {
 throw 'Controller '+require+' required by directive, cannot be found!';
 }
 return value;
 }
}

As seen in the test case above, you do end up with a bit of duplication with this syntax. The keys
and values of the object both contain the required directive name. This is not necessary though,
since Angular lets us omit the value and just use an empty string instead.

test/compile_spec.js
it('can be required as an object with values omitted', function() {
 function MyController() { }
 var gotControllers;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {

https://lodash.com/docs#mapValues

Requiring Multiple Controllers as an Object 28

854 Errata© Tero Parviainen 2016

 return {
 scope: true,
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {
 require: {
 myDirective: '',
 },
 link: function(scope, element, attrs, controllers) {
 gotControllers = controllers;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive my-third-directive></div>');
 $compile(el)($rootScope);
 expect(gotControllers).toBeDefined();
 expect(gotControllers.myDirective instanceof MyController).toBe(true);
 });
});

We fill in for any omitted values during directive registration. As we instantiate a directive, we pro-
cess its require attribute with a new helper function called getDirectiveRequire:

src/compile.js
$provide.factory(name + 'Directive', ['$injector', function($injector) {
 var factories = hasDirectives[name];
 return _.map(factories, function(factory, i) {
 var directive = $injector.invoke(factory);
 directive.restrict = directive.restrict || 'EA';
 directive.priority = directive.priority || 0;
 if (directive.link && !directive.compile) {
 directive.compile = _.constant(directive.link);
 }
 directive.$$bindings = parseDirectiveBindings(directive);
 directive.name = directive.name || name;
 directive.require = getDirectiveRequire(directive);
 directive.index = i;
 return directive;
 });
}]);

This function checks if the value of require is an object (and not an array), and iterates over it if
it is, filling any missing values with the corresponding keys:

src/compile.js

Self-Requiring Directives 28

855 Errata© Tero Parviainen 2016

function getDirectiveRequire(directive) {
 var require = directive.require;
 if (!_.isArray(require) && _.isObject(require)) {
 _.forEach(require, function(value, key) {
 if (!value.length) {
 require[key] = key;
 }
 });
 }
 return require;
}

We will return to add some more functionality to this function soon, as we add support for requir-
ing controllers from ancestor elements.

Self-Requiring Directives

When a directive defines its own controller, but does not require any other directive controllers, it
receives its own controller object as the fourth argument to its link functions. It’s as if the directive
requires itself - a convenient little feature:

test/compile_spec.js
it('requires itself if there is no explicit require', function() {
 function MyController() { }
 var gotMyController;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: MyController,
 link: function(scope, element, attrs, myController) {
 gotMyController = myController;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(gotMyController).toBeDefined();
 expect(gotMyController instanceof MyController).toBe(true);
 });
});

The directive “requiring itself ” is actually exactly what happens. As the directive definition is reg-
istered, if it doesn’t have a require attribute but does have a controller attribute, the require
attribute’s value is set to be the name of the directive itself. This causes the directive’s own control-
ler to be looked up, which passes our test case:

Requiring Controllers in Multi-Element Directives 28

856 Errata© Tero Parviainen 2016

src/compile.js
function getDirectiveRequire(directive, name) {
 var require = directive.require || (directive.controller && name);
 if (!_.isArray(require) && _.isObject(require)) {
 _.forEach(require, function(value, key) {
 if (!value.length) {
 require[key] = key;
 }
 });
 }
 return require;
}

Now we just need to pass in the directive name when we call getDirectiveRequire:
src/compile.js
directive.require = getDirectiveRequire(directive, name);

Requiring Controllers in Multi-Element Directives

Requiring controllers should work just as well for directive with grouped elements:

test/compile_spec.js
it('is passed through grouped link wrapper', function() {
 function MyController() { }
 var gotMyController;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 multiElement: true,
 scope: {},
 controller: MyController,
 link: function(scope, element, attrs, myController) {
 gotMyController = myController;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive-start></div><div my-directive-end></div>');
 $compile(el)($rootScope);
 expect(gotMyController).toBeDefined();
 expect(gotMyController instanceof MyController).toBe(true);
 });
});

In this test we’re using the “self-require” facility from the last section: The fourth argument to the link
function should be the directive’s own controller. We do this just to simplify the test a bit, as we don’t have
to define additional directives.

Requiring Controllers from Parent Elements 28

857 Errata© Tero Parviainen 2016

The reason this test case does not pass immediately is that the groupElementsLinkFnWrapper
function - which is used to wrap the link functions of multi-element directives - is not aware of the
fourth argument to link functions and thus does not pass it forward. Fixing this is easy enough:

src/compile.js
function groupElementsLinkFnWrapper(linkFn, attrStart, attrEnd) {
 return function(scope, element, attrs, ctrl) {
 var group = groupScan(element[0], attrStart, attrEnd);
 return linkFn(scope, group, attrs, ctrl);
 };
}

Requiring Controllers from Parent Elements

Requiring a controller from a sibling directive is one thing, but it is quite limited: We don’t current-
ly have any way for directives that are applied on a family of elements to collaborate (outside of
sharing things on a scope object).

The require flag is in fact more flexible than what we have previously seen, because it allows you
to require controllers not only from the current element but also its parents. This style of lookup is
enabled if you prefix the required directive name with ^:

test/compile_spec.js
it('can be required from a parent directive', function() {
 function MyController() { }
 var gotMyController;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {
 require: '^myDirective',
 link: function(scope, element, attrs, myController) {
 gotMyController = myController;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive><div my-other-directive></div></div>');
 $compile(el)($rootScope);
 expect(gotMyController).toBeDefined();
 expect(gotMyController instanceof MyController).toBe(true);
 });

Requiring Controllers from Parent Elements 28

858 Errata© Tero Parviainen 2016

});

Here myOtherDirective requires ^myDirective, which is found from the parent element.

When the ^ prefix is used, the required directive is searched not only from parent elements, but
also from the current element as well (in fact the current element is looked at first). The exact
meaning of ^ is “current element or one of its ancestors”.

test/compile_spec.js
it('finds from sibling directive when requiring with parent prefix', function() {
 function MyController() { }
 var gotMyController;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {
 require: '^myDirective',
 link: function(scope, element, attrs, myController) {
 gotMyController = myController;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 $compile(el)($rootScope);
 expect(gotMyController).toBeDefined();
 expect(gotMyController instanceof MyController).toBe(true);
 });
});

To get this kind of require system working, we can’t rely on the controllers object we have in
applyDirectivesToNode alone, because that only knows about controllers on the current ele-
ment. Our controller lookup code will need to become aware of the structure of the DOM as well.
The first step towards this is to pass the current element to the getControllers function:

src/compile.js
_.forEach(preLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element)
);

Requiring Controllers from Parent Elements 28

859 Errata© Tero Parviainen 2016

});
if (childLinkFn) {
 childLinkFn(scope, linkNode.childNodes);
}
_.forEachRight(postLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element)
);
});

In the recursive invocations of getControllers we also need to pass this argument along:

src/compile.js
function getControllers(require, $element) {
 if (_.isArray(require)) {
 return _.map(require, function(r) {
 return getControllers(r, $element);
 });
 } else if (_.isObject(require)) {
 return _.mapValues(require, function(r) {
 return getControllers(r, $element);
 });
 } else {
 // ...
 }
}

Before getControllers can now find what it needs, we need to attach some information to the
DOM as we create controllers. Every controller that we create should also be added as jQuery data
to the respective DOM node:

src/compile.js
_.forEach(controllerDirectives, function(directive) {
 var locals = {
 $scope: directive === newIsolateScopeDirective ? isolateScope : scope,
 $element: $element,
 $attrs: attrs
 };
 var controllerName = directive.controller;
 if (controllerName === '@') {
 controllerName = attrs[directive.name];
 }
 var controller =
 $controller(controllerName, locals, true, directive.controllerAs);
 controllers[directive.name] = controller;
 $element.data('$' + directive.name + 'Controller', controller.instance);
});

Requiring Controllers from Parent Elements 28

860 Errata© Tero Parviainen 2016

Now, getControllers should try to match the require argument to a regular expression that
captures any preceding ^ character. If there is no such prefix we can do the lookup as we did be-
fore, but if there is, we need to do something else:

src/compile.js
function getControllers(require, $element) {
 if (_.isArray(require)) {
 return _.map(require, function(r) {
 return getControllers(r, $element);
 });
 } else if (_.isObject(require)) {
 return _.mapValues(require, function(r) {
 return getControllers(r, $element);
 });
 } else {
 var value;
 var match = require.match(/^(\^)?/);
 require = require.substring(match[0].length);
 if (match[1]) {

 } else {
 if (controllers[require]) {
 value = controllers[require].instance;
 }
 }
 if (!value) {
 throw 'Controller '+require+' required by directive, cannot be found!';
 }
 return value;
 }
}

What we do when there is a ^ prefix is walk up the DOM until we find the jQuery data that
matches the required directive name (or until we reach the root of the DOM tree):

src/compile.js
function getControllers(require, $element) {
 if (_.isArray(require)) {
 return _.map(require, function(r) {
 return getControllers(r, $element);
 });
 } else if (_.isObject(require)) {
 return _.mapValues(require, function(r) {
 return getControllers(r, $element);
 });
 } else {
 var value;
 var match = require.match(/^(\^)?/);
 require = require.substring(match[0].length);

Requiring Controllers from Parent Elements 28

861 Errata© Tero Parviainen 2016

 if (match[1]) {
 while ($element.length) {
 value = $element.data('$' + require + 'Controller');
 if (value) {
 break;
 } else {
 $element = $element.parent();
 }
 }
 } else {
 if (controllers[require]) {
 value = controllers[require].instance;
 }
 }
 if (!value) {
 throw 'Controller '+require+' required by directive, cannot be found!';
 }
 return value;
 }
}

In addition to ^, the require attribute also supports a ^^ prefix. It is very similar to ^ in that it
finds a directive controller from a parent element:

test/compile_spec.js
it('can be required from a parent directive with ^^', function() {
 function MyController() { }
 var gotMyController;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {
 require: '^^myDirective',
 link: function(scope, element, attrs, myController) {
 gotMyController = myController;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive><div my-other-directive></div></div>');
 $compile(el)($rootScope);
 expect(gotMyController).toBeDefined();
 expect(gotMyController instanceof MyController).toBe(true);
 });
});

Requiring Controllers from Parent Elements 28

862 Errata© Tero Parviainen 2016

The difference is that ^^ does not look for the controller from sibling directives and starts its search
directly for the parent element:

test/compile_spec.js
it('does not find from sibling directive when requiring with ^^', function() {
 function MyController() { }
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {
 require: '^^myDirective',
 link: function(scope, element, attrs, myController) {
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 expect(function() {
 $compile(el)($rootScope);
 }).toThrow();
 });
});

In the test we expect the linking process to throw since we’re requiring a directive that exists on a
sibling directive and it will never be found because of the ^^ prefix.

The regex in getControllers should optionally match that second ^ in the prefix, and if one is
found, start the search from the current element’s parent instead of the element itself:

src/compile.js
function getControllers(require, $element) {
 if (_.isArray(require)) {
 return _.map(require, function(r) {
 return getControllers(r, $element);
 });
 } else if (_.isObject(require)) {
 return _.mapValues(require, function(r) {
 return getControllers(r, $element);
 });
 } else {
 var value;
 var match = require.match(/^(\^\^?)?/);
 require = require.substring(match[0].length);

Requiring Controllers from Parent Elements 28

863 Errata© Tero Parviainen 2016

 if (match[1]) {
 if (match[1] === '^^') {
 $element = $element.parent();
 }
 while ($element.length) {
 value = $element.data('$' + require + 'Controller');
 if (value) {
 break;
 } else {
 $element = $element.parent();
 }
 }
 } else {
 if (controllers[require]) {
 value = controllers[require].instance;
 }
 }
 if (!value) {
 throw 'Controller '+require+' required by directive, cannot be found!';
 }
 return value;
 }
}

When using the object syntax for requiring controllers, we should be able to define just the prefix as
the value in the object, resulting in the following convenient form:

require: {
 myDirective: '^'
}

Here’s a test case for that:

test/compile_spec.js
it('can be required from parent in object form', function() {
 function MyController() { }
 var gotControllers;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {
 require: {
 myDirective: '^'
 },
 link: function(scope, element, attrs, controllers) {
 gotControllers = controllers;

Requiring Controllers from Parent Elements 28

864 Errata© Tero Parviainen 2016

 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive><div my-other-directive></div></div>');
 $compile(el)($rootScope);
 expect(gotControllers.myDirective instanceof MyController).toBe(true);
 });
});

We can normalize such forms during directive instantiation in the getDirectiveRequire func-
tion. We need to use the same regular expression there as we have in getControllers, so let’s
extract it to a top-level variable:

var REQUIRE_PREFIX_REGEXP = /^(\^\^?)?/;

We’ll then use that variable, first of all in getControllers:

var match = require.match(REQUIRE_PREFIX_REGEXP);

In getDirectiveRequire we use it to extract the prefix in each of the object’s values. Then we
look what’s left in the value after the prefix. If there’s nothing, we fill in the blank using the key. So
myDirective: '^' becomes myDirective: '^myDirective', and so on.

src/compile.js
function getDirectiveRequire(directive, name) {
 var require = directive.require || (directive.controller && name);
 if (!_.isArray(require) && _.isObject(require)) {
 _.forEach(require, function(value, key) {
 var prefix = value.match(REQUIRE_PREFIX_REGEXP);
 var name = value.substring(prefix[0].length);
 if (!name) {
 require[key] = prefix[0] + key;
 }
 });
 }
 return require;
}

Optionally Requiring Controllers

Our require implementation currently always throws an exception when the required controller
cannot be found. You can in fact choose not to be that strict about the requirement by prefixing the
require statement with a question mark. If you do that, instead of throwing an exception, you’ll
just get null as the value of that controller:

Requiring Controllers from Parent Elements 28

865 Errata© Tero Parviainen 2016

test/compile_spec.js
it('does not throw on required missing controller when optional', function() {
 var gotCtrl;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 require: '?noSuchDirective',
 link: function(scope, element, attrs, ctrl) {
 gotCtrl = ctrl;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(gotCtrl).toBe(null);
 });
});

The REQUIRE_PREFIX_REGEXP expression optionally matches this question mark:

var REQUIRE_PREFIX_REGEXP = /^(\^\^?)?(\?)?/;

In getControllers we then only throw an exception on missing controllers when the question
mark was not given. We should also adjust the return statement so that it returns an actual null
instead of undefined when no controller was found:

src/controller.js
function getControllers(require, $element) {
 if (_.isArray(require)) {
 return _.map(require, function(r) {
 return getControllers(r, $element);
 });
 } else if (_.isObject(require)) {
 return _.mapValues(require, function(r) {
 return getControllers(r, $element);
 });
 } else {
 var value;
 var match = require.match(REQUIRE_PREFIX_REGEXP);
 var optional = match[2];
 require = require.substring(match[0].length);
 if (match[1]) {
 if (match[1] === '^^') {
 $element = $element.parent();
 }
 while ($element.length) {
 value = $element.data('$' + require + 'Controller');
 if (value) {
 break;

Requiring Controllers from Parent Elements 28

866 Errata© Tero Parviainen 2016

 } else {
 $element = $element.parent();
 }
 }
 } else {
 if (controllers[require]) {
 value = controllers[require].instance;
 }
 }
 if (!value && !optional) {
 throw 'Controller '+require+' required by directive, cannot be found!';
 }
 return value || null;
 }
}

The final bit of require logic we are going to look at has to do with the syntax of the ^, ^^, and ?
prefixes. Angular actually lets you specify ? either as the suffix or the prefix of ^ and ^^. That means
that both ?^ and ^? are equally valid:

test/compile_spec.js
it('allows optional marker after parent marker', function() {
 var gotCtrl;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 require: '^?noSuchDirective',
 link: function(scope, element, attrs, ctrl) {
 gotCtrl = ctrl;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $compile(el)($rootScope);
 expect(gotCtrl).toBe(null);
 });
});

it('allows optional marker before parent marker', function() {
 function MyController() { }
 var gotMyController;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {

Requiring Controllers from Parent Elements 28

867 Errata© Tero Parviainen 2016

 return {
 require: '?^myDirective',
 link: function(scope, element, attrs, ctrl) {
 gotMyController = ctrl;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');
 $compile(el)($rootScope);
 expect(gotMyController).toBeDefined();
 expect(gotMyController instanceof MyController).toBe(true);
 });
});

Our regular expression must try to match the ^ characters both before and after the question mark.

var REQUIRE_PREFIX_REGEXP = /^(\^\^?)?(\?)?(\^\^?)?/;

We should then use one or the other interchangeably:

src/compile.js
function getControllers(require, $element) {
 if (_.isArray(require)) {
 return _.map(require, function(r) {
 return getControllers(r, $element);
 });
 } else if (_.isObject(require)) {
 return _.mapValues(require, function(r) {
 return getControllers(r, $element);
 });
 } else {
 var value;
 var match = require.match(REQUIRE_PREFIX_REGEXP);
 var optional = match[2];
 require = require.substring(match[0].length);
 if (match[1] || match[3]) {
 if (match[3] && !match[1]) {
 match[1] = match[3];
 }
 if (match[1] === '^^') {
 $element = $element.parent();
 }
 while ($element.length) {
 value = $element.data('$' + require + 'Controller');
 if (value) {
 break;
 } else {
 $element = $element.parent();
 }

Accessing Required Controllers from The Directive Controller 28

868 Errata© Tero Parviainen 2016

 }
 } else {
 if (controllers[require]) {
 value = controllers[require].instance;
 }
 }
 if (!value && !optional) {
 throw 'Controller '+require+' required by directive, cannot be found!';
 }
 return value || null;
 }
}

Accessing Required Controllers from The Directive Con-
troller

So far we’ve seen how the required controllers can be accessed through the fourth argument of the
directive’s link function. Prior to Angular 1.5 this was actually the only way you could get a hold
of them. But that actually often isn’t where you need them the most. They’re needed much more
often in the directive’s controller, since that is where the directive’s business logic is typically imple-
mented.

Starting from Angular 1.5, required controllers are also available as attributes of the directive con-
troller, resulting in a much more natural way of accessing them.

function MyController() {

 this.doSomething() {
 this.someRequiredController.doSomethingElse();
 }

}

This only happens when the object form of require is used. Furthermore, it only happens when the
directive has the bindToController attribute enabled. Here’s a test case.

it('attaches required controllers on controller when using object', function() {
 function MyController() { }
 var instantiatedController;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myDirective', function() {
 return {
 scope: {},
 controller: MyController
 };
 });
 $compileProvider.directive('myOtherDirective', function() {
 return {

Accessing Required Controllers from The Directive Controller 28

869 Errata© Tero Parviainen 2016

 require: {
 myDirective: '^'
 },
 bindToController: true,
 controller: function() {
 instantiatedController = this;
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive><div my-other-directive></div></div>');
 $compile(el)($rootScope);
 expect(instantiatedController.myDirective instanceof MyController).toBe(true);
 });
});

This all happens after we’ve initialized all the controllers of a directive in the node link function.

src/compile.js
_.forEach(controllers, function(controller) {
 controller();
});

_.forEach(controllerDirectives, function(controllerDirective, name) {

});

Note that this means required controllers will not be available right away when the controller’s constructor
runs.

Inside the loop we check the prerequisites, which are that the object form of require is used and
bindToController is enabled for this directive:

src/compile.js
_.forEach(controllerDirectives, function(controllerDirective, name) {
 var require = controllerDirective.require;
 if (_.isObject(require) && !_.isArray(require) &&
 controllerDirective.bindToController) {

 }
});

If the prerequisites hold, we grab the controller object and the object of required controllers, which
we can get using the getControllers function. We then simply attach all the required controllers
as attributes to our controller using the LoDash assign function.

_.forEach(controllerDirectives, function(controllerDirective, name) {
 var require = controllerDirective.require;

https://lodash.com/docs#assign

The ngController Directive 28

870 Errata© Tero Parviainen 2016

 if (_.isObject(require) && !_.isArray(require) &&
 controllerDirective.bindToController) {
 var controller = controllers[controllerDirective.name].instance;
 var requiredControllers = getControllers(require, $element);
 _.assign(controller, requiredControllers);
 }
});

And there we have a complete implementation of the require mechanism of Angular directives!

The ngController Directive

We’ll wrap up the chapter with a discussion and implementation of ngController - a directive
that’s very familiar to pretty much every Angular application developer. For example, the second
code example on the angularjs.org website uses it:

<div ng-controller="TodoController">
 <!-- ... -->
</div>

To begin our treatise on ngController, let’s test that when we use it with the name of a registered
controller constructor, that controller is indeed instantiated. This goes in a new test file, called
test/directives/ng_controller_spec.js:

test/directives/ng_controller_spec.js
'use strict';

var $ = require('jquery');
var publishExternalAPI = require('../../src/angular_public');
var createInjector = require('../../src/injector');

describe('ngController', function() {

 beforeEach(function() {
 delete window.angular;
 publishExternalAPI();
 });

 it('is instantiated during compilation & linking', function() {
 var instantiated;
 function MyController() {
 instantiated = true;
 }
 var injector = createInjector(['ng', function($controllerProvider) {
 $controllerProvider.register('MyController', MyController);
 }]);
 injector.invoke(function($compile, $rootScope) {

The ngController Directive 28

871 Errata© Tero Parviainen 2016

 var el = $('<div ng-controller="MyController"></div>');
 $compile(el)($rootScope);
 expect(instantiated).toBe(true);
 });
 });

});

Let’s also test that the controller also receives $scope, $element, and $attrs as dependency-in-
jected arguments if it requests them:

test/directives/ng_controller_spec.js
it('may inject scope, element, and attrs', function() {
 var gotScope, gotElement, gotAttrs;
 function MyController($scope, $element, $attrs) {
 gotScope = $scope;
 gotElement = $element;
 gotAttrs = $attrs;
 }
 var injector = createInjector(['ng', function($controllerProvider) {
 $controllerProvider.register('MyController', MyController);
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div ng-controller="MyController"></div>');
 $compile(el)($rootScope);
 expect(gotScope).toBeDefined();
 expect(gotElement).toBeDefined();
 expect(gotAttrs).toBeDefined();
 });
});

And while we’re at it, let’s test that the scope received by the constructor is a scope inherited from
the surrounding scope - meaning that ngController should create a new (non-isolated) scope:

test/directives/ng_controller_spec.js
it('has an inherited scope', function() {
 var gotScope;
 function MyController($scope, $element, $attrs) {
 gotScope = $scope;
 }
 var injector = createInjector(['ng', function($controllerProvider) {
 $controllerProvider.register('MyController', MyController);
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div ng-controller="MyController"></div>');
 $compile(el)($rootScope);
 expect(gotScope).not.toBe($rootScope);
 expect(gotScope.$parent).toBe($rootScope);
 expect(Object.getPrototypeOf(gotScope)).toBe($rootScope);
 });

The ngController Directive 28

872 Errata© Tero Parviainen 2016

});

Now, let’s create something that passes these tests. We’ll put it in a new file called src/direc-
tives/ng_controller.js. The implementation is remarkably simple. Here it is in its entirety:

src/directives/ng_controller.js
'use strict';

var ngControllerDirective = function() {
 return {
 restrict: 'A',
 scope: true,
 controller: '@'
 };
};

module.exports = ngControllerDirective;

To make our tests pass, all we need to do is include this new directive as part of the ng module in
angular_public.js:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = window.angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
 ngModule.provider('$httpBackend', require('./http_backend'));
 ngModule.provider('$http', require('./http').$HttpProvider);
 ngModule.provider('$httpParamSerializer',
 require('./http').$HttpParamSerializerProvider);
 ngModule.provider('$httpParamSerializerJQLike',
 require('./http').$HttpParamSerializerJQLikeProvider);
 ngModule.provider('$compile', require('./compile'));
 ngModule.provider('$controller', require('./controller'));
 ngModule.directive('ngController',
 require('./directives/ng_controller'));
}

The simplicity of ngController may be surprising. That’s because it is so prevalently used in
application code that it seems that it must be a major part of the Angular framework architecture.
In actual fact, the whole implementation of ngController just falls out of the implementation of
the $controller service and the support for controllers in $compile.

Attaching Controllers on The Scope 28

873 Errata© Tero Parviainen 2016

Attaching Controllers on The Scope

Earlier in the chapter we saw how you can attach a controller on the scope by defining the con-
trollerAs attribute on the directive definition object.

There is actually another way you can accomplish this attachment, which is most often used in
conjunction with ngController. That is to define the alias right in the string that defines the
controller constructor name:

<div ng-controller="TodoController as todoCtrl">
<!-- ... -->
</div>

Let’s add a test case for this into the ngController test suite:

test/directives/ng_controller_spec.js
it('allows aliasing controller in expression', function() {
 var gotScope;
 function MyController($scope) {
 gotScope = $scope;
 }
 var injector = createInjector(['ng', function($controllerProvider) {
 $controllerProvider.register('MyController', MyController);
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div ng-controller="MyController as myCtrl"></div>');
 $compile(el)($rootScope);
 expect(gotScope.myCtrl).toBeDefined();
 expect(gotScope.myCtrl instanceof MyController).toBe(true);
 });
});

Now, even though we have the test in ng_controller_spec.js, the implementation of this
feature is not actually in ngController. It is in the $controller service. As the controller is looked
up, $controller first extracts the actual controller name and the optional alias from the given
string.

src/controller.js
return function(ctrl, locals, later, identifier) {
 if (_.isString(ctrl)) {
 var match = ctrl.match(/^(\S+)(\s+as\s+(\w+))?/);
 ctrl = match[1];
 if (controllers.hasOwnProperty(ctrl)) {
 ctrl = controllers[ctrl];
 } else if (globals) {
 ctrl = window[ctrl];
 }
 }

Looking Up A Controller Constructor from The Scope 28

874 Errata© Tero Parviainen 2016

 // ...
}

The regex matches a group of non-whitespace characters as the controller name, and then option-
ally the word ’as’ surrounded by whitespace, followed by a group of word characters that specify
the identifier.

If there is an identifier, we should assign it to the identifier variable - unless a value for it was
already explicitly given by the caller. This triggers our existing logic in addToScope and attaches
the controller on the scope, making our test pass.

src/controller.js
return function(ctrl, locals, later, identifier) {
 if (_.isString(ctrl)) {
 var match = ctrl.match(/^(\S+)(\s+as\s+(\w+))?/);
 ctrl = match[1];
 identifier = identifier || match[3];
 if (controllers.hasOwnProperty(ctrl)) {
 ctrl = controllers[ctrl];
 } else if (globals) {
 ctrl = window[ctrl];
 }
 }
 // ...
}

Note that while the “controller as” syntax is most often used in conjunction with ngController, that doesn’t
have to be the case. Since the feature is implemented by the $controller service, you could just as well use
it with directive controllers, specifying something like ‘MyCtrl as myCtrl’ as the value of the con-
troller directive attribute instead of specifying both controller and controllerAs separately.

Looking Up A Controller Constructor from The Scope

There’s one more thing that the controller expressions given to $controller can do, which is to refer
to a controller constructor function attached to the scope instead of a controller constructor function
registered to $controllerProvider.

Here we have a test for a controller called MyCtrlOnScope being used by ngController. In fact,
no controller has been registered by that name but there is a function on the scope matching that
key. That function will be found and used to construct the controller:

test/compile_spec.js
it('allows looking up controller from surrounding scope', function() {
 var gotScope;
 function MyController($scope) {
 gotScope = $scope;

Summary 28

875 Errata© Tero Parviainen 2016

 }
 var injector = createInjector(['ng']);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div ng-controller="MyCtrlOnScope as myCtrl"></div>');
 $rootScope.MyCtrlOnScope = MyController;
 $compile(el)($rootScope);
 expect(gotScope.myCtrl).toBeDefined();
 expect(gotScope.myCtrl instanceof MyController).toBe(true);
 });
});

When $controller is trying to find the controller, it will now need to also look at the $scope
attribute of the given locals object (if there is one), before resorting to a global lookup:

src/controller.js
return function(ctrl, locals, later, identifier) {
 if (_.isString(ctrl)) {
 var match = ctrl.match(/^(\S+)(\s+as\s+(\w+))?/);
 ctrl = match[1];
 identifier = identifier || match[3];
 if (controllers.hasOwnProperty(ctrl)) {
 ctrl = controllers[ctrl];
 } else {
 ctrl = (locals && locals.$scope && locals.$scope[ctrl]) ||
 (globals && window[ctrl]);
 }
 }
 // ...
};

Summary

Controllers are an important part of Angular applications, and in this chapter we have learned
pretty much everything there is to know about them.

The implementation of controllers is perhaps surprisingly tightly coupled with directives. Even
when “standalone” controllers are used, as with ngController, it’s really just an application of
the directive controller system.

In this chapter you’ve learned:

• How controllers can be instantiated by the $controller service.
• How controller instantiation supports dependency injection.
• How controllers can be pre-registered in the config phase using $controllerProvider or

modules.
• That controllers can be optionally looked up from window, even though doing it is not recom-

mended nor is it enabled by default.

Summary 28

876 Errata© Tero Parviainen 2016

• How controllers can be attached to directives.
• That every directive gets its own controller instance, and that there can be many directives with

controllers on the same DOM node.
• How the special @ value can be used to defer the directive controller resolution to the directive

user.
• How $scope, $element, and $attrs are made available for dependency injection in direc-

tive controllers.
• How a directive controller can be attached to the directive’s scope using controllerAs.
• How isolate scope bindings can be attached to controller objects instead of the isolate scope

using bindToController.
• How bindings can be attached using bindToController even without using an isolate scope.
• How controllers are instantiated in a deferred fashion inside $compile to support bindTo-

Controller.
• How a sibling directive’s controller can be required by specifying a require attribute whose

value is the sibling directive’s name.
• How multiple requires can be specified using an arrays or object syntax.
• That if a directive has a controller and does not require any other directives, it is as if the direc-

tive requires itself.
• How parent directives can be required with ^ and ^^.
• How requires can be made optional with ?.
• How the ngController directive works.
• How controllers can also be attached on the scope by giving a ControllerConstructor as

scopeName style expression to $controller.
• How $controller also tries to find controller constructors from the scope, in addition to its

own register and window.

 29

877 Errata© Tero Parviainen 2016

Chapter 20

Directive Templates

What We Will Skip 29

878 Errata© Tero Parviainen 2016

Attaching directives to an existing DOM is one thing, but it is also very common to have directives
that construct their own DOM: A directive may not only decorate an existing element, but also ac-
tually populate the element’s contents with its own. For instance, if you use a directive like <log-
in-form>, you might expect it to actually render a login form with inputs, buttons, and labels.

On some level our directive system already supports this, since you can do arbitrary DOM manip-
ulation in directive compile and link functions. You can construct whatever content the directive
needs using the JavaScript DOM API.

That is not very convenient though. It would be preferable to just supply the framework with a
string of HTML and say “when the directive is applied, populate the element’s contents with this”.
That’s precisely what directive templates are for, and that is what we will implement in this chapter.

Directive templates can be especially useful when combined with isolate scopes, allowing you to construct
your application UI from “components”. This is where Angular 2 is headed, though you can also adopt the
style in Angular 1.x apps.

Download the code for the starting point of this chapter.

What We Will Skip

There are a couple of features in Angular’s directive template support that won’t be covered in this
book.

Firstly, whenever you use a directive template, that template is used to populate the children of
the current element. It is possible to modify this behavior so that the template actually replaces the
element on which you applied the directive. You just need to configure replace: true on the
directive definition object. However, this behavior is deprecated and the Angular team does not
encourage its use. Because of this, we’re not going to implement replace.

Secondly, we’re also going to skip some of the caching functionality that’s built into asynchronous-
ly loaded templates. We’re just going to use $http directly instead.

Basic Templating

The basic idea behind directive templates is simple: A directive may define a template attribute
in its directive definition object. That attribute holds a string of HTML code. When the directive
is compiled into an element in the DOM, the contents of the element will be populated with that
HTML code.

Here’s this behavior in action:

http://teropa.info/blog/2014/10/24/how-ive-improved-my-angular-apps-by-banning-ng-controller.html
http://teropa.info/blog/2014/10/24/how-ive-improved-my-angular-apps-by-banning-ng-controller.html
https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter19-controllers

Basic Templating 29

879 Errata© Tero Parviainen 2016

test/compile_spec.js
describe('template', function() {

 it('populates an element during compilation', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 template: '<div class="from-template"></div>'
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive></div>');
 $compile(el);
 expect(el.find('> .from-template').length).toBe(1);
 });
 });

});

If you use a template directive on an element that already has some contents, those contents will
be replaced by the template. The previous child elements no longer exist after the template has
been applied:

test/compile_spec.js
it('replaces any existing children', function() {
 var injector = makeInjectorWithDirectives('myDirective', function() {
 return {
 template: '<div class="from-template"></div>'
 };
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive><div class="existing"></div></div>');
 $compile(el);
 expect(el.find('> .existing').length).toBe(0);
 });
});

The contents of the template are not just static HTML. They are also compiled so that any direc-
tives used in templates also get applied. We can check this by applying a directive on an element
inside the template and spying on its compile function:

test/compile_spec.js
it('compiles template contents also', function() {
 var compileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 template: '<div my-other-directive></div>'
 };

Basic Templating 29

880 Errata© Tero Parviainen 2016

 },
 myOtherDirective: function() {
 return {
 compile: compileSpy
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive></div>');
 $compile(el);
 expect(compileSpy).toHaveBeenCalled();
 });
});

That’s the basic behavior of templates. Let’s see how we can make it work.

Templates are applied during compilation, in the applyDirectivesToNode function. In this
function, as we iterate over each directive, we can just check if one of them has a template. If we
see one, we’ll replace the element’s inner HTML with that template:

src/compile.js
_.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.scope) {
 if (_.isObject(directive.scope)) {
 if (newIsolateScopeDirective || newScopeDirective) {
 throw 'Multiple directives asking for new/inherited scope';
 }
 newIsolateScopeDirective = directive;
 } else {
 if (newIsolateScopeDirective) {
 throw 'Multiple directives asking for new/inherited scope';
 }
 newScopeDirective = newScopeDirective || directive;
 }
 }
 if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 var isolateScope = (directive === newIsolateScopeDirective);
 var attrStart = directive.$$start;
 var attrEnd = directive.$$end;
 var require = directive.require;
 if (_.isFunction(linkFn)) {
 addLinkFns(null, linkFn, attrStart, attrEnd, isolateScope, require);

Disallowing More Than One Template Directive Per Element 29

881 Errata© Tero Parviainen 2016

 } else if (linkFn) {
 addLinkFns(linkFn.pre, linkFn.post, attrStart, attrEnd, isolateScope,
require);
 }
 }
 if (directive.controller) {
 controllerDirectives = controllerDirectives || {};
 controllerDirectives[directive.name] = directive;
 }
 if (directive.template) {
 $compileNode.html(directive.template);
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
});

This immediately passes all our tests! Any existing contents of the element are replaced by the
template, and when we eventually go compile the element’s children, the elements from the tem-
plate will already be there.

For the remainder of the chapter we’re going to deal with all kinds of subtle details related to
directive templates, but it is good to remember that underneath it all, both the idea and the imple-
mentation of directive templates are very simple.

Disallowing More Than One Template Directive Per Ele-
ment

Since a template directive replaces the element’s contents, it makes very little sense to apply two or
more directives with templates on the same element. Only the last one’s template would remain.

Angular explicitly throws an exception during compilation when you try to do this, so that the
problem is obvious to the application developer:

test/compile_spec.js
it('does not allow two directives with templates', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {template: '<div></div>'};
 },
 myOtherDirective: function() {
 return {template: '<div></div>'};
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive my-other-directive></div>');

Template Functions 29

882 Errata© Tero Parviainen 2016

 expect(function() {
 $compile(el);
 }).toThrow();
 });
});

The implementation for this is similar to what we did when we were checking duplicate inherited
scopes. We’ll introduce a variable with which we track any template directive that we have seen so
far:

src/compile.js
function applyDirectivesToNode(directives, compileNode, attrs) {
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = [], postLinkFns = [], controllers = {};
 var newScopeDirective, newIsolateScopeDirective;
 var templateDirective;
 var controllerDirectives;

 // ...

}

Now that we have that variable, we can assign it when we encounter a template directive, and also
check that we haven’t already encountered one earlier:

src/compile.js
if (directive.template) {
 if (templateDirective) {
 throw 'Multiple directives asking for template';
 }
 templateDirective = directive;
 $compileNode.html(directive.template);
}

Template Functions

The value of the template attribute doesn’t necessarily have to be a string. It can also be a func-
tion that returns a string. The function is called with two arguments: The DOM node the directive
is being applied on, and that node’s Attributes object. This gives you a chance to dynamically
construct the template:

test/compile_spec.js
it('supports functions as template values', function() {
 var templateSpy = jasmine.createSpy()
 .and.returnValue('<div class="from-template"></div>');

Isolate Scope Directives with Templates 29

883 Errata© Tero Parviainen 2016

 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 template: templateSpy
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive></div>');
 $compile(el);
 expect(el.find('> .from-template').length).toBe(1);
 // Check that template function was called with element and attrs
 expect(templateSpy.calls.first().args[0][0]).toBe(el[0]);
 expect(templateSpy.calls.first().args[1].myDirective).toBeDefined();
 });
});

If the template is a function, we’ll just invoke it instead of using it directly:

src/compile.js
if (directive.template) {
 if (templateDirective) {
 throw 'Multiple directives asking for template';
 }
 templateDirective = directive;
 $compileNode.html(_.isFunction(directive.template) ?
 directive.template($compileNode, attrs) :
 directive.template);
}

Isolate Scope Directives with Templates

When we implemented isolate scopes a couple of chapters ago, we discussed that an isolate scope
is only ever used for the directive that asks for it - not for other directives on the element or its chil-
dren.

There’s an exception to this, and it is related to templates: When a directive defines both an isolate
scope and a template, the directives used inside the template will receive the isolate scope (or one of
its descendants). The template contents are considered to be part of the isolate. This makes sense
when you think of this kind of directive as a component that “owns” its own template.

test/compile_spec.js
it('uses isolate scope for template contents', function() {
 var linkSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: {

Asynchronous Templates: templateUrl 29

884 Errata© Tero Parviainen 2016

 isoValue: '=myDirective'
 },
 template: '<div my-other-directive></div>'
 };
 },
 myOtherDirective: function() {
 return {link: linkSpy};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive="42"></div>');
 $compile(el)($rootScope);
 expect(linkSpy.calls.first().args[0]).not.toBe($rootScope);
 expect(linkSpy.calls.first().args[0].isoValue).toBe(42);
 });
});

In the node link function, as we call the child link function, we have thus far only been using the
surrounding scope, never the isolate scope. We’ll change this now, so that if we have an isolate
scope directive, and that directive also has a template, we’ll link the child nodes with the isolate
scope. We can do this, because if this element has any children, they must have come from the
isolate scope directive’s template.

src/compile.js
_.forEach(preLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element)
);
});
if (childLinkFn) {
 var scopeToChild = scope;
 if (newIsolateScopeDirective && newIsolateScopeDirective.template) {
 scopeToChild = isolateScope;
 }
 childLinkFn(scopeToChild, linkNode.childNodes);
}
_.forEachRight(postLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element)
);
});

Asynchronous Templates: templateUrl

Asynchronous Templates: templateUrl 29

885 Errata© Tero Parviainen 2016

When you use the template attribute, you define the directive’s template HTML inline inside a
string in your JavaScript code. That’s not a very convenient place for storing HTML, especially if
there’s a lot of it.

It is often much more convenient to store HTML templates in separate .html files, and then load
them into the application. For this purpose, Angular supports the templateUrl directive attribute.
When that is defined, the template is loaded over HTTP from the specified URL.

Since loading things over HTTP is always asynchronous, this means that when we encounter a
directive with a template URL, we need to pause compilation while the template is loading. We
then need to resume compilation when the template arrives. The majority of the remainder of this
chapter deals with issues caused by this pause-and-resume requirement.

The very first tests we’ll add for this feature are for checking what the compiler shouldn’t do
when it encounters an asynchronous template directive.

First of all, any remaining directives that the element has should not be compiled at this point:

test/compile_spec.js
describe('templateUrl', function() {

 it('defers remaining directive compilation', function() {
 var otherCompileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {templateUrl: '/my_directive.html'};
 },
 myOtherDirective: function() {
 return {compile: otherCompileSpy};
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive my-other-directive></div>');
 $compile(el);
 expect(otherCompileSpy).not.toHaveBeenCalled();
 });
 });

});

For now, all we’ll do is to just short-circuit the directive loop when we see a directive with a tem-
plateUrl attribute. We can do this by returning false from the loop, since LoDash _.forEach
will end the loop for us when that happens:

src/compile.js
if (directive.template) {

Asynchronous Templates: templateUrl 29

886 Errata© Tero Parviainen 2016

 if (templateDirective) {
 throw 'Multiple directives asking for template';
 }
 templateDirective = directive;
 $compileNode.html(_.isFunction(directive.template) ?
 directive.template($compileNode, attrs) :
 directive.template);
}
if (directive.templateUrl) {
 return false;
}

Not only should the compiler short circuit the compilation of other directives, but it shouldn’t even
compile the current directive yet when it sees a template URL:

test/compile_spec.js
it('defers current directive compilation', function() {
 var compileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 templateUrl: '/my_directive.html',
 compile: compileSpy
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive></div>');
 $compile(el);
 expect(compileSpy).not.toHaveBeenCalled();
 });
});

To pass this requirement, we need to move things around a bit. The “if (directive.compile)
{ }” block should be moved so that it is in an else if branch after the templateUrl check. All
the code inside the block remains unchanged. It is just moved so that it’s not called when a direc-
tive has a templateUrl:

src/compile.js
_.forEach(directives, function(directive) {
 if (directive.$$start) {
 $compileNode = groupScan(compileNode, directive.$$start, directive.$$end);
 }

 if (directive.priority < terminalPriority) {
 return false;
 }

 if (directive.scope) {
 if (_.isObject(directive.scope)) {

Asynchronous Templates: templateUrl 29

887 Errata© Tero Parviainen 2016

 if (newIsolateScopeDirective || newScopeDirective) {
 throw 'Multiple directives asking for new/inherited scope';
 }
 newIsolateScopeDirective = directive;
 } else {
 if (newIsolateScopeDirective) {
 throw 'Multiple directives asking for new/inherited scope';
 }
 newScopeDirective = newScopeDirective || directive;
 }
 }
 if (directive.controller) {
 controllerDirectives = controllerDirectives || {};
 controllerDirectives[directive.name] = directive;
 }
 if (directive.template) {
 if (templateDirective) {
 throw 'Multiple directives asking for template';
 }
 templateDirective = directive;
 $compileNode.html(_.isFunction(directive.template) ?
 directive.template($compileNode, attrs) :
 directive.template);
 }
 if (directive.templateUrl) {
 return false;
 } else if (directive.compile) {
 var linkFn = directive.compile($compileNode, attrs);
 var isolateScope = (directive === newIsolateScopeDirective);
 var attrStart = directive.$$start;
 var attrEnd = directive.$$end;
 var require = directive.require;
 if (_.isFunction(linkFn)) {
 addLinkFns(null, linkFn, attrStart, attrEnd, isolateScope, require);
 } else if (linkFn) {
 addLinkFns(linkFn.pre, linkFn.post,
 attrStart, attrEnd, isolateScope, require);
 }
 }
 if (directive.terminal) {
 terminal = true;
 terminalPriority = directive.priority;
 }
});

Another thing that should happen at this point is that the current element’s contents should be
removed. They will eventually be replaced by the template’s contents when it arrives, but we need
to immediately remove any old contents, so that they won’t get unnecessarily compiled:

test/compile_spec.js
it('immediately empties out the element', function() {

Asynchronous Templates: templateUrl 29

888 Errata© Tero Parviainen 2016

 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {templateUrl: '/my_directive.html'};
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive>Hello</div>');
 $compile(el);
 expect(el.is(':empty')).toBe(true);
 });
});

For this purpose, we’re going to introduce a new function called compileTemplateUrl, whose
job will be to handle all the asynchronous work that goes into resolving the template:

src/compile.js
if (directive.templateUrl) {
 compileTemplateUrl($compileNode);
 return false;
}

This function (introduced outside of the applyTemplatesToNode function) will at this point do
nothing but clear the node, making our current test suite pass:

src/compile.js
function compileTemplateUrl($compileNode) {
 $compileNode.empty();
}

What we have effectively implemented now is a suspension of the compilation process for this
DOM subtree when a templateUrl is seen: The current directive or other directives on the cur-
rent element won’t be compiled, and the element’s children have been removed.

Now we can start thinking about how to get to a point where we can resume the compilation. What
we need to do is fetch the template specified in the URL. This we can do with the $http service
that we implemented in the previous part of the book.

In order to test template fetching, we’re going to need to install the fake XMLHttpRequest support
from Sinon.js like we did in the $http chapter.

First, require Sinon into compile_spec.js:

test/compile_spec.js
'use strict';

var _ = require('lodash');
var $ = require('jquery');

Asynchronous Templates: templateUrl 29

889 Errata© Tero Parviainen 2016

var sinon = require('sinon');
var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

Then add the following setup code to the describe(‘templateUrl’) test block:

test/compile_spec.js
describe('templateUrl', function() {

 var xhr, requests;

 beforeEach(function() {
 xhr = sinon.useFakeXMLHttpRequest();
 requests = [];
 xhr.onCreate = function(req) {
 requests.push(req);
 };
 });
 afterEach(function() {
 xhr.restore();
 });

 // ...

});

Now we can add the first test that deals with template loading. It checks that when a directive with
a templateUrl is compiled, a GET request to that URL is made:

test/compile_spec.js
it('fetches the template', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {templateUrl: '/my_directive.html'};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');

 $compile(el);
 $rootScope.$apply();

 expect(requests.length).toBe(1);
 expect(requests[0].method).toBe('GET');
 expect(requests[0].url).toBe('/my_directive.html');
 });
});

Note the $apply call after the $compile call. We need it to kick off the Promise chain within
$http.

Asynchronous Templates: templateUrl 29

890 Errata© Tero Parviainen 2016

We’re going to make the HTTP request from compileTemplateUrl. Before it can do that, it
needs access to the directive object, so we should pass it in:

src/compile.js
if (directive.templateUrl) {
 compileTemplateUrl(directive, $compileNode);
 return false;
} else if (directive.compile) {

We can use the get method of the $http service to make the actual request:

src/compile.js
function compileTemplateUrl(directive, $compileNode) {
 $compileNode.empty();
 $http.get(directive.templateUrl);
}

We don’t have $http in the $compile service yet, so we need to add an injection for it into Com-
pileProvider.$get:

src/compile.js
this.$get = ['$injector', '$parse', '$controller', '$rootScope', '$http',
 function($injector, $parse, $controller, $rootScope, $http) {

This now satisfies our test.

What should happen when the template is eventually received? The most obvious effect is that the
element’s contents should be populated from the template:

test/compile_spec.js
it('populates element with template', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {templateUrl: '/my_directive.html'};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');

 $compile(el);
 $rootScope.$apply();

 requests[0].respond(200, {}, '<div class="from-template"></div>');
 expect(el.find('> .from-template').length).toBe(1);
 });
});

Asynchronous Templates: templateUrl 29

891 Errata© Tero Parviainen 2016

This we can do by attaching a success handler to the Promise returned from the $http call. The
first argument of the handler will be the response body - the template HTML:

src/compile.js
function compileTemplateUrl(directive, $compileNode) {
 $compileNode.empty();
 $http.get(directive.templateUrl).success(function(template) {
 $compileNode.html(template);
 });
}

Now we have the DOM in a state where we can resume directive compilation. This means that
when a template response is received, we should also expect the current directive’s compile func-
tion to finally get invoked:

test/compile_spec.js
it('compiles current directive when template received', function() {
 var compileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 templateUrl: '/my_directive.html',
 compile: compileSpy
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');

 $compile(el);
 $rootScope.$apply();

 requests[0].respond(200, {}, '<div class="from-template"></div>');
 expect(compileSpy).toHaveBeenCalled();
 });
});

The same is true for any remaining directives on the element - the ones we short-circuited in ap-
plyDirectivesToNode. We should now compile them as well:

test/compile_spec.js
it('resumes compilation when template received', function() {
 var otherCompileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {templateUrl: '/my_directive.html'};
 },
 myOtherDirective: function() {

Asynchronous Templates: templateUrl 29

892 Errata© Tero Parviainen 2016

 return {compile: otherCompileSpy};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');

 $compile(el);
 $rootScope.$apply();

 requests[0].respond(200, {}, '<div class="from-template"></div>');
 expect(otherCompileSpy).toHaveBeenCalled();
 });
});

How should this work? What we would really like to do is somehow resume the logic of ap-
plyDirectivesToNode again when we have received the template, but to do it only for the direc-
tives that haven’t been compiled yet. And that is exactly what we’re going to do.

To begin with, compileTemplateUrl will need access not only to the current directive, but to all
directives that haven’t been applied yet. In other words, it needs a subarray of all the directives we
have, starting from the index of the current directive. Additionally, we’ll pass it the Attributes
object of the current element, because we’re going to need that too:

src/compile.js
if (directive.templateUrl) {
 compileTemplateUrl(_.drop(directives, i), $compileNode, attrs);
 return false;

The i variable here does not exist yet. We should introduce it as the second argument of the direc-
tive _.forEach loop. It refers to the current index in the loop:

src/compile.js
_.forEach(directives, function(directive, i) {

 // ...

});

Now, the first argument in compileTemplateUrl will be an array, and the directive with the tem-
plateUrl will be the first item of the array:
src/compile.js
function compileTemplateUrl(directives, $compileNode, attrs) {
 var origAsyncDirective = directives[0];
 $compileNode.empty();
 $http.get(origAsyncDirective.templateUrl).success(function(template) {
 $compileNode.html(template);
 });
}

Asynchronous Templates: templateUrl 29

893 Errata© Tero Parviainen 2016

Now we also have everything we need to call back to applyDirectivesToNode:

src/compile.js
function compileTemplateUrl(directives, $compileNode, attrs) {
 var origAsyncDirective = directives[0];
 $compileNode.empty();
 $http.get(origAsyncDirective.templateUrl).success(function(template) {
 $compileNode.html(template);
 applyDirectivesToNode(directives, $compileNode, attrs);
 });
}

There’s still a problem with this though. We are resuming compilation from the directive that has
the templateUrl attribute. That means that applyDirectivesToNode will immediately see the
templateUrl and stop the compilation again. We’re forever stuck fetching the template over and
over.

We can fix this by first removing the asynchronous template directive from the directive array:

src/compile.js
function compileTemplateUrl(directives, $compileNode, attrs) {
 var origAsyncDirective = directives.shift();
 $compileNode.empty();
 $http.get(origAsyncDirective.templateUrl).success(function(template) {
 $compileNode.html(template);
 applyDirectivesToNode(directives, $compileNode, attrs);
 });
}

We’ll then replace it with a new directive object that copies all the attributes of the original direc-
tive, but sets the templateUrl to null.

src/compile.js
function compileTemplateUrl(directives, $compileNode, attrs) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend(
 {},
 origAsyncDirective,
 {templateUrl: null}
);
 $compileNode.empty();
 $http.get(origAsyncDirective.templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);
 $compileNode.html(template);
 applyDirectivesToNode(directives, $compileNode, attrs);
 });
}

Template URL Functions 29

894 Errata© Tero Parviainen 2016

Another thing we’re still missing from our resumed compilation process is the compilation of child
nodes. The applyDirectivesToNode function does not do it.

test/compile_spec.js
it('resumes child compilation after template received', function() {
 var otherCompileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {templateUrl: '/my_directive.html'};
 },
 myOtherDirective: function() {
 return {compile: otherCompileSpy};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');

 $compile(el);
 $rootScope.$apply();

 requests[0].respond(200, {}, '<div my-other-directive></div>');
 expect(otherCompileSpy).toHaveBeenCalled();
 });
});

All we need to do to make this work is to call compileNodes with the child nodes of the current
node - which will at this point contain the child nodes that came from the template:

src/compile.js
function compileTemplateUrl(directives, $compileNode, attrs) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend({}, origAsyncDirective, {templateUrl: null});
 $compileNode.empty();
 $http.get(origAsyncDirective.templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);
 $compileNode.html(template);
 applyDirectivesToNode(directives, $compileNode, attrs);
 compileNodes($compileNode[0].childNodes);
 });
}

Template URL Functions

Just like inline templates can be defined as functions instead of strings, so can template URLs. The
function signature is exactly the same for both. There are two arguments: The current node and its
Attributes.

Disallowing More Than One Template URL Directive Per Element 29

895 Errata© Tero Parviainen 2016

test/compile_spec.js
it('supports functions as values', function() {
 var templateUrlSpy = jasmine.createSpy()
 .and.returnValue('/my_directive.html');
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 templateUrl: templateUrlSpy
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');

 $compile(el);
 $rootScope.$apply();

 expect(requests[0].url).toBe('/my_directive.html');
 expect(templateUrlSpy.calls.first().args[0][0]).toBe(el[0]);
 expect(templateUrlSpy.calls.first().args[1].myDirective).toBeDefined();
 });
});

The implementation is also very similar. We simply see if the templateUrl value is a function,
and if it is we invoke it:

src/compile.js
function compileTemplateUrl(directives, $compileNode, attrs) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend({}, origAsyncDirective, {templateUrl: null});
 var templateUrl = _.isFunction(origAsyncDirective.templateUrl) ?
 origAsyncDirective.templateUrl($compileNode, attrs) :
 origAsyncDirective.templateUrl;
 $compileNode.empty();
 $http.get(templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);
 $compileNode.html(template);
 applyDirectivesToNode(directives, $compileNode, attrs);
 compileNodes($compileNode[0].childNodes);
 });
}

Disallowing More Than One Template URL Directive Per
Element

Earlier in the chapter we added a check for making sure that no more than one directive is try-
ing to apply a template to the same element. We should extend this check to cover asynchronous
template directives too. When a template directive has been seen, a templateUrl should not be

Disallowing More Than One Template URL Directive Per Element 29

896 Errata© Tero Parviainen 2016

allowed later:

test/compile_spec.js
it('does not allow templateUrl directive after template directive', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {template: '<div></div>'};
 },
 myOtherDirective: function() {
 return {templateUrl: '/my_other_directive.html'};
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-directive my-other-directive></div>');
 expect(function() {
 $compile(el);
 }).toThrow();
 });
});

We can cover this case by simply adding a check to the templateUrl branch of applyDirec-
tivesToNode. If we’ve seen a template directive earlier, we throw an exception:

src/compile.js
if (directive.templateUrl) {
 if (templateDirective) {
 throw 'Multiple directives asking for template';
 }
 templateDirective = directive;
 compileTemplateUrl(_.drop(directives, i), $compileNode, attrs);
 return false;

The same check should also apply in the opposite order. When a templateUrl directive has been
seen, a template directive should not be allowed later:

test/compile_spec.js
it('does not allow template directive after templateUrl directive', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {templateUrl: '/my_directive.html'};
 },
 myOtherDirective: function() {
 return {template: '<div></div>'};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');

 $compile(el);
 $rootScope.$apply();

Disallowing More Than One Template URL Directive Per Element 29

897 Errata© Tero Parviainen 2016

 requests[0].respond(200, {}, '<div class="replacement"></div>');
 expect(el.find('> .replacement').length).toBe(1);
 });
});

Note that in this case we don’t get an exception, because the check is done after the template URL
has been asynchronously resolved, which happens in a separate execution context. Instead we
simply check that the template from the second directive does not get applied.

This check is a bit more tricky, since by the time we’re looking at the second directive, we’re in the
second invocation of applyDirectivesToNode, where all the local variables including templa-
teDirective from the previous invocation have been cleared.

What we really need to do is preserve the information of any template directives we’ve seen between
the two invocations. We essentially need to pass some state from one invocation of applyDirec-
tivesToNode to another one, via the compileTemplateUrl invocation that happens in between.

For this purpose, we’ll introduce an object that we’ll call the previous compile context, into which we
add the state that we should preserve. Its purpose is to “transport” some local state between two
different invocations of the applyDirectivesToNode function. At this point the only thing we’ll
add to it is the template directive variable, but we’ll add more later.

The previous compile context is given to compileTemplateUrl as the last argument:

src/compile.js
compileTemplateUrl(
 _.drop(directives, i),
 $compileNode,
 attrs,
 {templateDirective: templateDirective}
);

The compileTemplateUrl function does nothing with the previous compile context except pass
it back to applyDirectivesToNode when it calls it for the second time:

src/compile.js
function compileTemplateUrl(
 directives, $compileNode, attrs, previousCompileContext) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend(
 {},
 origAsyncDirective,
 {templateUrl: null}
);
 var templateUrl = _.isFunction(origAsyncDirective.templateUrl) ?
 origAsyncDirective.templateUrl($compileNode, attrs) :

Linking Asynchronous Directives 29

898 Errata© Tero Parviainen 2016

 origAsyncDirective.templateUrl;
 $compileNode.empty();
 $http.get(templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);
 $compileNode.html(template);
 applyDirectivesToNode(
 directives, $compileNode, attrs, previousCompileContext);
 compileNodes($compileNode[0].childNodes);
 });
}

Back in applyDirectivesToNode we’ll now receive the previous compile context, and initialize
the local templateDirective variable from it:

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {
 previousCompileContext = previousCompileContext || {};
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = [], postLinkFns = [], controllers = {};
 var newScopeDirective, newIsolateScopeDirective;
 var templateDirective = previousCompileContext.templateDirective;
 var controllerDirectives;

And now our test passes. In the process we have introduced a simple mechanism with which we
can retain state between two calls to applyDirectivesToNode, when there’s an asynchronous
template fetch in between. We’ll be adding more state to that object in the remainder of this chap-
ter.

Linking Asynchronous Directives

We are now able to fully resume the compilation process after an async template fetch, but we’re
missing the ability to also link all the directives that get compiled asynchronously. What we’re
currently doing is simply discarding their link functions, because when applyDirectivesToNode
is called for the second time, the node link function it returns is thrown away. This means these
directives will never get linked.

This is not how it should be. When the public link function is called, the directives that were com-
piled asynchronously should be linked like any other directives:

test/compile_spec.js
it('links the directive when public link function is invoked', function() {
 var linkSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {

Linking Asynchronous Directives 29

899 Errata© Tero Parviainen 2016

 return {
 templateUrl: '/my_directive.html',
 link: linkSpy
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');

 var linkFunction = $compile(el);
 $rootScope.$apply();

 requests[0].respond(200, {}, '<div></div>');

 linkFunction($rootScope);
 expect(linkSpy).toHaveBeenCalled();
 expect(linkSpy.calls.first().args[0]).toBe($rootScope);
 expect(linkSpy.calls.first().args[1][0]).toBe(el[0]);
 expect(linkSpy.calls.first().args[2].myDirective).toBeDefined();
 });
});

The same applies to all directives in the child elements that come from the template. We should ex-
pect them to be linked too, but they currently aren’t. That’s because we also throw away the return
value of the compileNodes() invocation we make from compileTemplateUrl.

test/compile_spec.js
it('links child elements when public link function is invoked', function() {
 var linkSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {templateUrl: '/my_directive.html'};
 },
 myOtherDirective: function() {
 return {link: linkSpy};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');

 var linkFunction = $compile(el);
 $rootScope.$apply();

 requests[0].respond(200, {}, '<div my-other-directive></div>');

 linkFunction($rootScope);
 expect(linkSpy).toHaveBeenCalled();
 expect(linkSpy.calls.first().args[0]).toBe($rootScope);
 expect(linkSpy.calls.first().args[1][0]).toBe(el[0].firstChild);
 expect(linkSpy.calls.first().args[2].myOtherDirective).toBeDefined();
 });

Linking Asynchronous Directives 29

900 Errata© Tero Parviainen 2016

});

The trick we’re going to apply to enable asynchronous linking consists of several steps. Let’s take
them one at a time.

The contract of applyDirectivesToNode is that it returns the node link function for that node.
The node link function is defined inside applyDirectivesToNode with the statement function
nodeLinkFn(...).

When one of the directives on the node has an asynchronous template, we should not return this
normal node link function, and instead return a special “delayed node link function”. We’ll set
things up so that the delayed node link function will be returned by compileTemplateUrl. As-
suming this will be the case, we can capture that return value and overwrite the local nodeLink-
Fn variable with it. The delayed node link functions becomes the return value of applyDirec-
tivesToNode:

src/compile.js
if (directive.templateUrl) {
 if (templateDirective) {
 throw 'Multiple directives asking for template';
 }
 templateDirective = directive;
 nodeLinkFn = compileTemplateUrl(
 _.drop(directives, i),
 $compileNode,
 attrs,
 {templateDirective: templateDirective}
);
 return false;

Inside compileTemplateUrl we should now introduce this delayed node link function. This
function will be responsible for handling the whole linking process of this node - it has to because
we just replaced the regular node link function with it. The end result of all of this is that when the
node link function for this node is called, what actually gets called is delayedNodeLinkFn:

src/compile.js
function compileTemplateUrl(
 directives, $compileNode, attrs, previousCompileContext) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend(
 {},
 origAsyncDirective,
 {templateUrl: null}
);
 var templateUrl = _.isFunction(origAsyncDirective.templateUrl) ?
 origAsyncDirective.templateUrl($compileNode, attrs) :
 origAsyncDirective.templateUrl;
 $compileNode.empty();

Linking Asynchronous Directives 29

901 Errata© Tero Parviainen 2016

 $http.get(templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);
 $compileNode.html(template);
 applyDirectivesToNode(
 directives, $compileNode, attrs, previousCompileContext);
 compileNodes($compileNode[0].childNodes);
 });

 return function delayedNodeLinkFn() {

 };
}

What exactly should we do inside the delayed node link function? One thing we should definitely
do is link all the directives that we’ve compiled asynchronously - both from the current node and
from the child nodes. We get the link functions for them by capturing the return values of the ap-
plyDirectivesToNode and compileNodes invocations that we were previously throwing away.
We’ll call them afterTemplateNodeLinkFn and afterTemplateChildLinkFn, since they are
link functions for everything we linked after loading the template:

src/compile.js
function compileTemplateUrl(
 directives, $compileNode, attrs, previousCompileContext) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend(
 {},
 origAsyncDirective,
 {templateUrl: null}
);
 var templateUrl = _.isFunction(origAsyncDirective.templateUrl) ?
 origAsyncDirective.templateUrl($compileNode, attrs) :
 origAsyncDirective.templateUrl;
 var afterTemplateNodeLinkFn, afterTemplateChildLinkFn;
 $compileNode.empty();
 $http.get(templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);
 $compileNode.html(template);
 afterTemplateNodeLinkFn = applyDirectivesToNode(
 directives, $compileNode, attrs, previousCompileContext);
 afterTemplateChildLinkFn = compileNodes($compileNode[0].childNodes);
 });

 return function delayedNodeLinkFn() {

 };
}

We should now call both of these functions from the delayed node link function. But first, let’s
think about the arguments the delayed node link function itself will receive. It will be called as a
regular node link function, which means that it will get three arguments:

Linking Asynchronous Directives 29

902 Errata© Tero Parviainen 2016

1. The child link function
2. The scope to link
3. The node being linked

The last two arguments are self-explanatory, but the first one - the child link function - is a bit more
interesting: It will be the child link function from before we loaded the template. Since we cleared
the node’s children before we started loading the template, it will actually do nothing. We can safe-
ly ignore it, and instead just use afterTemplateChildLinkFn as we proceed with the linking:

src/compile.js
function compileTemplateUrl(
 directives, $compileNode, attrs, previousCompileContext) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend(
 {},
 origAsyncDirective,
 {templateUrl: null}
);
 var templateUrl = _.isFunction(origAsyncDirective.templateUrl) ?
 origAsyncDirective.templateUrl($compileNode, attrs) :
 origAsyncDirective.templateUrl;
 var afterTemplateNodeLinkFn, afterTemplateChildLinkFn;
 $compileNode.empty();
 $http.get(templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);
 $compileNode.html(template);
 afterTemplateNodeLinkFn = applyDirectivesToNode(
 directives, $compileNode, attrs, previousCompileContext);
 afterTemplateChildLinkFn = compileNodes($compileNode[0].childNodes);
 });

 return function delayedNodeLinkFn(_ignoreChildLinkFn, scope, linkNode) {
 afterTemplateNodeLinkFn(afterTemplateChildLinkFn, scope, linkNode);
 };
}

This satisfies our test case, but if you look at the order in which things are done in that test case,
you may find it a bit strange: The test first waits for the template to be received, and then calls the
public link function. Our current implementation actually necessitates this.

This is not a reasonable requirement. If we were to leave it at this, whoever calls the public link
function would need to know when all asynchronous template fetches have been finished. In actu-
al fact, as an Angular user, you don’t have to think about this. It is indeed much more common to
call the link function immediately after compilation finishes.

So we need to support the scenario where the public link function is called before the template has
been received, and thus before we actually have the afterTemplateNodeLinkFn and afterTem-

Linking Asynchronous Directives 29

903 Errata© Tero Parviainen 2016

plateChildLinkFn functions. What should happen in this case is that the linking occurs later
when we finally do receive the template:

test/compile_spec.js
it('links when template arrives if node link fn was called', function() {
 var linkSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 templateUrl: '/my_directive.html',
 link: linkSpy
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');

 var linkFunction = $compile(el)($rootScope); // link first

 $rootScope.$apply();
 requests[0].respond(200, {}, '<div></div>'); // then receive template

 expect(linkSpy).toHaveBeenCalled();
 expect(linkSpy.calls.argsFor(0)[0]).toBe($rootScope);
 expect(linkSpy.calls.argsFor(0)[1][0]).toBe(el[0]);
 expect(linkSpy.calls.argsFor(0)[2].myDirective).toBeDefined();
 });
});

What this means that delayedNodeLinkFn may get called before we’re ready to link. When this
is the case, we should store the arguments we were given so that we can apply them when we’re
ready. Those arguments will go into a “link queue” that we store internally in compileTempla-
teUrl. We initialize it as an array first, and set it to null when we’ve received the template:
src/compile.js
function compileTemplateUrl(
 directives, $compileNode, attrs, previousCompileContext) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend(
 {},
 origAsyncDirective,
 {templateUrl: null}
);
 var templateUrl = _.isFunction(origAsyncDirective.templateUrl) ?
 origAsyncDirective.templateUrl($compileNode, attrs) :
 origAsyncDirective.templateUrl;
 var afterTemplateNodeLinkFn, afterTemplateChildLinkFn;
 var linkQueue = [];
 $compileNode.empty();
 $http.get(templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);

Linking Asynchronous Directives 29

904 Errata© Tero Parviainen 2016

 $compileNode.html(template);
 afterTemplateNodeLinkFn = applyDirectivesToNode(
 directives, $compileNode, attrs, previousCompileContext);
 afterTemplateChildLinkFn = compileNodes($compileNode[0].childNodes);
 linkQueue = null;
 });

 return function delayedNodeLinkFn(_ignoreChildLinkFn, scope, linkNode) {
 afterTemplateNodeLinkFn(afterTemplateChildLinkFn, scope, linkNode);
 };
}

In delayedNodeLinkFn we now have two choices: If there is a link queue, just put the arguments
there because we’re not ready yet. If there is no link queue (because it is null), just call the node
link function right away as we did earlier:

src/compile.js
return function delayedNodeLinkFn(_ignoreChildLinkFn, scope, linkNode) {
 if (linkQueue) {
 linkQueue.push({scope: scope, linkNode: linkNode});
 } else {
 afterTemplateNodeLinkFn(afterTemplateChildLinkFn, scope, linkNode);
 }
};

Now, when we receive the template, if the link function has already been called, there will be one
or more entries in the link queue. We’ll apply those calls right away:

src/compile.js
function compileTemplateUrl(
 directives, $compileNode, attrs, previousCompileContext) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend(
 {},
 origAsyncDirective,
 {templateUrl: null}
);
 var templateUrl = _.isFunction(origAsyncDirective.templateUrl) ?
 origAsyncDirective.templateUrl($compileNode, attrs) :
 origAsyncDirective.templateUrl;
 var afterTemplateNodeLinkFn, afterTemplateChildLinkFn;
 var linkQueue = [];
 $compileNode.empty();
 $http.get(templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);
 $compileNode.html(template);
 afterTemplateNodeLinkFn = applyDirectivesToNode(
 directives, $compileNode, attrs, previousCompileContext);
 afterTemplateChildLinkFn = compileNodes($compileNode[0].childNodes);
 _.forEach(linkQueue, function(linkCall) {

Linking Directives that Were Compiled Earlier 29

905 Errata© Tero Parviainen 2016

 afterTemplateNodeLinkFn(
 afterTemplateChildLinkFn, linkCall.scope, linkCall.linkNode);
 });
 linkQueue = null;
 });

 return function delayedNodeLinkFn(_ignoreChildLinkFn, scope, linkNode) {
 if (linkQueue) {
 linkQueue.push({scope: scope, linkNode: linkNode});
 } else {
 afterTemplateNodeLinkFn(afterTemplateChildLinkFn, scope, linkNode);
 }
 };
}

Usually the link function is only called once, so there’s really no need to have a queue of multiple link invo-
cations. Since technically a link function can be called multiple times though, this capability is preserved for
asynchronous templates.

The link queue essentially time-shifts the linking process for this DOM subtree, so that it is only
initiated when the asynchronous template fetch has completed.

Note that this also means that when you call a public link function in Angular, you can’t always be
sure that everything has been linked when the function returns. If there are asynchronous template
directives in the DOM, the linking will only finish when they’re done loading.

Linking Directives that Were Compiled Earlier

There are a few cases we still need to cover before we can say that our asynchronous compiler and
linker is fully functional. One glaring omission is the linking of directives that were compiled before
an asynchronous template was seen on the same element. We collected their link functions to the
preLinkFns and postLinkFns collections, but then we simply threw them away as we replaced
the node link function with the delayed node link function.

test/compile_spec.js
it('links directives that were compiled earlier', function() {
 var linkSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {link: linkSpy};
 },
 myOtherDirective: function() {
 return {templateUrl: '/my_other_directive.html'};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');

Linking Directives that Were Compiled Earlier 29

906 Errata© Tero Parviainen 2016

 var linkFunction = $compile(el);
 $rootScope.$apply();

 linkFunction($rootScope);

 requests[0].respond(200, {}, '<div></div>');

 expect(linkSpy).toHaveBeenCalled();
 expect(linkSpy.calls.argsFor(0)[0]).toBe($rootScope);
 expect(linkSpy.calls.argsFor(0)[1][0]).toBe(el[0]);
 expect(linkSpy.calls.argsFor(0)[2].myDirective).toBeDefined();
 });
});

This is a situation where the “previous compile context” object we introduced earlier comes in
handy. The pre-link functions and post-link function need to be preserved between the two calls to
applyDirectivesToNode. We should add those collections to the context as we give it to com-
pileTemplateUrl:

src/compile.js
nodeLinkFn = compileTemplateUrl(
 _.drop(directives, i),
 $compileNode,
 attrs,
 {
 templateDirective: templateDirective,
 preLinkFns: preLinkFns,
 postLinkFns: postLinkFns
 }
);

Then we also need to be ready to receive them when applyDirectivesToNode gets called for the
second time:

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {
 previousCompileContext = previousCompileContext || {};
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = previousCompileContext.preLinkFns || [];
 var postLinkFns = previousCompileContext.postLinkFns || [];
 var controllers = {};
 var newScopeDirective, newIsolateScopeDirective;
 var templateDirective = previousCompileContext.templateDirective;
 var controllerDirectives;

 // ...
}

Preserving The Isolate Scope Directive 29

907 Errata© Tero Parviainen 2016

And now we are keeping the same link function collections throughout asynchronous template
loads. When we finally call the link functions, we call all of them, regardless of whether they were
formed before or after a template was loaded.

Preserving The Isolate Scope Directive

Another thing that we currently “forget” as we go asynchronous is whether there was an isolate
scope directive on the element. If there was one, its linking will fail:

test/compile_spec.js
it('retains isolate scope directives from earlier', function() {
 var linkSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: {val: '=myDirective'},
 link: linkSpy
 };
 },
 myOtherDirective: function() {
 return {templateUrl: '/my_other_directive.html'};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive="42" my-other-directive></div>');

 var linkFunction = $compile(el);
 $rootScope.$apply();

 linkFunction($rootScope);

 requests[0].respond(200, {}, '<div></div>');

 expect(linkSpy).toHaveBeenCalled();
 expect(linkSpy.calls.first().args[0]).toBeDefined();
 expect(linkSpy.calls.first().args[0]).not.toBe($rootScope);
 expect(linkSpy.calls.first().args[0].val).toBe(42);
 });
});

This is also something that should go on the previous compile context:

src/compile.js
nodeLinkFn = compileTemplateUrl(
 _.drop(directives, i),
 $compileNode,
 attrs,
 {

Preserving The Isolate Scope Directive 29

908 Errata© Tero Parviainen 2016

 templateDirective: templateDirective,
 newIsolateScopeDirective: newIsolateScopeDirective,
 preLinkFns: preLinkFns,
 postLinkFns: postLinkFns
 }
);

And correspondingly, we should unpack it when we come back:

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {
 previousCompileContext = previousCompileContext || {};
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = previousCompileContext.preLinkFns || [];
 var postLinkFns = previousCompileContext.postLinkFns || [];
 var controllers = {};
 var newScopeDirective;
 var newIsolateScopeDirective = previousCompileContext.newIsolateScopeDirective;
 var templateDirective = previousCompileContext.templateDirective;
 var controllerDirectives;

There’s a remaining issue with this though, which comes to light when we we combine the use of
an isolate scope and a template URL in the same directive:

test/compile_spec.js
it('supports isolate scope directives with templateUrls', function() {
 var linkSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: {val: '=myDirective'},
 link: linkSpy,
 templateUrl: '/my_other_directive.html'
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive="42"></div>');

 var linkFunction = $compile(el)($rootScope);
 $rootScope.$apply();

 requests[0].respond(200, {}, '<div></div>');

 expect(linkSpy).toHaveBeenCalled();
 expect(linkSpy.calls.first().args[0]).not.toBe($rootScope);
 expect(linkSpy.calls.first().args[0].val).toBe(42);

Preserving The Isolate Scope Directive 29

909 Errata© Tero Parviainen 2016

 });
});
The link function is not being called! This is essentially because there’s an exception before that
happens in the asynchronous template processing (which we unfortunately cannot see).

The root cause is that we’re setting up our isolate scope bindings in the wrong directive. Before we
start the asynchronous load, we initialize the bindings on the asynchronous directive, whereas we
should only do so for the derived synchronous directive.

This can be fixed easily enough, by guarding the new or isolate scope directive handling with a
clause that skips directives that have template URLs. Such directives will be dealt with later when
the template has arrived:

src/compile.js
if (directive.scope && !directive.templateUrl) {
 if (_.isObject(directive.scope)) {
 if (newIsolateScopeDirective || newScopeDirective) {
 throw 'Multiple directives asking for new/inherited scope';
 }
 newIsolateScopeDirective = directive;
 } else {
 if (newIsolateScopeDirective) {
 throw 'Multiple directives asking for new/inherited scope';
 }
 newScopeDirective = newScopeDirective || directive;
 }
}

A related issue surfaces when we check about the linking of directives inside an isolate scope directive’s
template. Earlier in the chapter we discussed that they should be linked with the isolate scope because
they’re “owned” by the isolate scope directive. But this is not happening when there’s an asynchronously
loaded template.

it('links children of isolate scope directives with templateUrls', function() {
 var linkSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: {val: '=myDirective'},
 templateUrl: '/my_other_directive.html'
 };
 },
 myChildDirective: function() {
 return {
 link: linkSpy
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {

Preserving Controller Directives 29

910 Errata© Tero Parviainen 2016

 var el = $('<div my-directive="42"></div>');

 var linkFunction = $compile(el)($rootScope);
 $rootScope.$apply();

 requests[0].respond(200, {}, '<div my-child-directive></div>');

 expect(linkSpy).toHaveBeenCalled();
 expect(linkSpy.calls.first().args[0]).not.toBe($rootScope);
 expect(linkSpy.calls.first().args[0].val).toBe(42);
 });
});
The child directive is in fact being linked to the root scope, not the isolate scope.

For this issue the culprit can be found in the node link function, where we decide which scope to
link the node’s children with. We’re checking if the isolate scope directive has a template and only
in that case do we use the isolate scope. Our derived sync directive does not have a template, nor
does it have a template URL. But it should still cause the children to be linked with the isolate
scope!

To fix this, we’ll make use of the fact that we’re explicitly setting the templateUrl of derived
sync directives to null. In the node link function, we’ll check if the isolate scope directive either
has a template, or has an exactly null value for templateUrl. This will then cover both cases.

src/compile.js
if (childLinkFn) {
 var scopeToChild = scope;
 if (newIsolateScopeDirective &&
 (newIsolateScopeDirective.template ||
 newIsolateScopeDirective.templateUrl === null)) {
 scopeToChild = isolateScope;
 }
 childLinkFn(scopeToChild, linkNode.childNodes);
}

Preserving Controller Directives

Finally, we should apply this trick one more time, for the controller directive mapping object. We
currently forget all about the controller configurations that we saw before moving to delayed link-
ing:

test/compile_spec.js
it('sets up controllers for all controller directives', function() {
 var myDirectiveControllerInstantiated, myOtherDirectiveControllerInstantiated;
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {

Preserving Controller Directives 29

911 Errata© Tero Parviainen 2016

 controller: function MyDirectiveController() {
 myDirectiveControllerInstantiated = true;
 }
 };
 },
 myOtherDirective: function() {
 return {
 templateUrl: '/my_other_directive.html',
 controller: function MyOtherDirectiveController() {
 myOtherDirectiveControllerInstantiated = true;
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-other-directive></div>');

 $compile(el)($rootScope);
 $rootScope.$apply();

 requests[0].respond(200, {}, '<div></div>');

 expect(myDirectiveControllerInstantiated).toBe(true);
 expect(myOtherDirectiveControllerInstantiated).toBe(true);
 });
});

We should put controllerDirectives into the previous compile context:

src/compile.js
nodeLinkFn = compileTemplateUrl(
 _.drop(directives, i),
 $compileNode,
 attrs,
 {
 templateDirective: templateDirective,
 newIsolateScopeDirective: newIsolateScopeDirective,
 controllerDirectives: controllerDirectives,
 preLinkFns: preLinkFns,
 postLinkFns: postLinkFns
 }
);
And we should also get them back from the context:

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {
 previousCompileContext = previousCompileContext || {};
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;

Summary 29

912 Errata© Tero Parviainen 2016

 var preLinkFns = previousCompileContext.preLinkFns || [];
 var postLinkFns = previousCompileContext.postLinkFns || [];
 var controllers = {};
 var newScopeDirective;
 var newIsolateScopeDirective = previousCompileContext.newIsolateScopeDirective;
 var templateDirective = previousCompileContext.templateDirective;
 var controllerDirectives = previousCompileContext.controllerDirectives;

Summary

Directive templates are not a complicated feature to understand or to implement. In fact, in the
beginning of the chapter, we already had a functional implementation after just a couple of pages.

However, when we started to build support for the asynchronous loading of templates, things got
a lot more complicated. We needed to build a full pause/resume mechanism for compilation and
linking, and in the process ended up shifting a lot of state around between functions. It is some-
times surprising just how complicated it can be to implement seemingly simple features!

In this chapter you have learned:

• That when a directive has a template attribute, its contents are used to populate the inner
HTML of the element.

• That when a template is used, it replaces any existing contents an element may have had.
• How a template’s contents also get compiled and linked.
• That only one template directive may be used for each element.
• How you can also use a function as the value of template or templateUrl, to support dy-

namically forming the template or its URL.
• That when isolate scopes are used together with templates, the contents of the template are

linked with the isolate scope.
• How the compilation process is paused and later resumed when a template is asynchronously

loaded with templateUrl.
• How the linking process may be suspended and later resumed if the public link function is

called while there are templates loading.

 30

913 Errata© Tero Parviainen 2016

Chapter 21

Directive Transclusion

 30

914 Errata© Tero Parviainen 2016

We’ve seen how to make directives that have their own templates, making them act a bit like
self-contained “components”. We’ve also seen how we can customize the behavior of these com-
ponents by passing arguments to them, using scope attributes or isolate scopes and HTML attri-
butes.

Sometimes it would be additionally useful to pass in whole HTML structures to a directive. A clas-
sic example of this is a “tab bar” component, that renders itself as a collection of tabs, but lets the
user of the component provide the actual content that goes inside the tabs.

Something like this could conceivably already be done with our current directive implementation:
You could cram the tab HTML content into attributes, to be passed into isolate scopes, for exam-
ple. Or you could resort to a custom approach based on manual DOM manipulation. But these
kinds of solutions are not optimal for components like our “tab bar” example. This is especially
because with Angular you don’t only care about DOM structures, but also the Scope hierarchies
that data is passed around in. If there are directives used in the DOM, we want those directives to
always be linked to the correct scopes.

This is where transclusion comes in: Transclusion allows passing a DOM structure to a directive,
and lets the directive decide where and how to internally use it. Not only this, but transclusion also
sets up a scope structure that makes this kind of DOM moving easier: Although the DOM you
pass in will be used inside another directive’s template, its scope will still be as if it was used where
you wrote it: Outside the directive’s template.

The word “transclusion” is a bit esoteric, and often criticised for that. It wasn’t invented for Angular
though, and does have a history in computer science, which is interesting in itself. The word makes sense if
you think of it as inclusion of content from once place across (trans) templates to another place.

In addition to managing scopes on the application developer’s behalf, transclusion can also do
cloning for the DOM elements being transcluded. This enables the same DOM elements to be
linked several times, each time with different scope contents. You can, for example, transclude some
piece of DOM for each item in a collection, a bit like ngRepeat does.

This cloning is so useful that sometimes you want to use it without actually moving anything from
one place to another. For this, Angular provides the transclude: ‘element’ configuration op-
tion, that enables these cloning and multi-linking features without the actual transclusion feature.
This is what some of Angular’s core directives like ng-repeat are in fact built on.

These are all features we will be building throughout this chapter. The transclusion implementa-
tion is baked into the compilation and linking processes in compile.js. Throughout the chapter
we’ll be revisiting many parts of that file. Let’s start with the most basic transclusion feature you
can think of: Shifting a piece of DOM from one template to another.

Download the code for the starting point of this chapter.

http://en.wikipedia.org/wiki/Transclusion
https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter20-directive-templates

Basic Transclusion 30

915 Errata© Tero Parviainen 2016

Basic Transclusion

The most basic transclusion use case is this: When a transclusion directive is used on an element,
take the child nodes of that element and move them to some location inside the directive’s tem-
plate.

template

transclude

Result

<my-component>
 <p>Transcluded content...</p>
 <p>More transcluded content...</p>
</my-component>

<article>
 <h2>My Article Title</h2>
 <div insert-transclusion-here>

 </div>
</article>

<my-component>
 <article>
 <h2>My Article Title</h2>
 <div insert-transclusion-here>
 <p>Transcluded content...</p>
 <p>More transcluded content...</p>
 </div>
 </article>
</my-component>

Directive Application

Directive Template

This feature is activated when a directive’s definition object contains a transclude: true entry.
The very first visible effect of the feature is that the child nodes of the current element disappear
from the DOM:

test/compile_spec.js
describe('transclude', function() {

 it('removes the children of the element from the DOM', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {

Basic Transclusion 30

916 Errata© Tero Parviainen 2016

 return {transclude: true};
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-transcluder><div>Must go</div></div>');

 $compile(el);

 expect(el.is(':empty')).toBe(true);
 });
 });

});

This we can achieve easily enough. While compiling directives in applyDirectivesToNode, we
can check if one has a truthy transclude attribute and clear the node contents if so. We’ll do this
inside the directive loop, in between processing the controller and the template attributes of
each directive:

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {
 // ...

 _.forEach(directives, function(directive, i) {
 // ...

 if (directive.controller) {
 controllerDirectives = controllerDirectives || {};
 controllerDirectives[directive.name] = directive;
 }
 if (directive.transclude) {
 $compileNode.empty();
 }
 if (directive.template) {
 // ...
 }
 // ..
 }};
 // ...
}

Here we simply get rid of the contents of the node when transclusion is configured. You may have
guessed that that’s not the end of the story. What should we really do with those child nodes?

One thing that should happen is those nodes should still be compiled. Currently they are not being
compiled because we remove them, and that happens before compileNodes would traverse them.
If we assert that they are compiled, the test fails:

Basic Transclusion 30

917 Errata© Tero Parviainen 2016

test/compile_spec.js
it('compiles child elements', function() {
 var insideCompileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {transclude: true};
 },
 insideTranscluder: function() {
 return {compile: insideCompileSpy};
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-transcluder><div inside-transcluder></div></div>');

 $compile(el);

 expect(insideCompileSpy).toHaveBeenCalled();
 });
});

So we should compile the child nodes but still have them removed from the DOM tree we were
originally compiling. We can achieve both by separately calling the compile service for those
detached child nodes. Effectively, the transcluded content is compiled in a separate, independent
compilation process:

src/compile.js
if (directive.transclude) {
 var $transcludedNodes = $compileNode.clone().contents();
 compile($transcludedNodes);
 $compileNode.empty();
}

Notice that we also clone the compile node before getting its contents. This is so that after we’ve
emptied the node, we’ll still have another clone that contains the transcluded content.

Now we’re compiling the transcluded nodes, but we’re still throwing them away after that. They’re
not used for anything and will never get attached to the page. What we want to do is enable trans-
cluding those elements somewhere. But where, and how?

The question of where these elements get transcluded is one we cannot solve in the framework.
The application developer should decide that. What we can do is make those elements available to the
application developer, so that they can attach them where they want.

This we’ll do by passing in a new, fifth argument to the transclusion directive’s link function. That
argument is the transclusion function. It’s a function that gives the directive author access to the
transcluded content. Here’s our first test directive that actually does transclusion: It uses the trans-
clusion function to get the transcluded content, and attaches it into its template.
test/compile_spec.js

Basic Transclusion 30

918 Errata© Tero Parviainen 2016

it('makes contents available to directive link function', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 template: '<div in-template></div>',
 link: function(scope, element, attrs, ctrl, transclude) {
 element.find('[in-template]').append(transclude());
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transcluder></div></div>');

 $compile(el)($rootScope);
 expect(el.find('> [in-template] > [in-transcluder]').length).toBe(1);
 });
});

So there should be a fifth argument to directive link functions, available for transclusion directives:
The transclusion function. Let’s see how to create that function and pass it in.

In applyDirectivesToNode we’re going to introduce a new tracking variable called
childTranscludeFn:

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {
 previousCompileContext = previousCompileContext || {};
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = previousCompileContext.preLinkFns || [];
 var postLinkFns = previousCompileContext.postLinkFns || [];
 var controllers = {};
 var newScopeDirective;
 var newIsolateScopeDirective = previousCompileContext.newIsolateScopeDirective;
 var templateDirective = previousCompileContext.templateDirective;
 var controllerDirectives = previousCompileContext.controllerDirectives;
 var childTranscludeFn;

 // ...
}

In this variable we’ll store the return value of the compile call we make for the transcluded con-
tent. That means it’ll be the public link function for that content:

src/compile.js
if (directive.transclude) {

Basic Transclusion 30

919 Errata© Tero Parviainen 2016

 var $transcludedNodes = $compileNode.clone().contents();
 childTranscludeFn = compile($transcludedNodes);
 $compileNode.empty();
}

The simplest thing we can now do to make our test pass is to modify the public link function, so
that it returns the node(s) that it linked:

src/compile.js
return function publicLinkFn(scope) {
 $compileNodes.data('$scope', scope);
 compositeLinkFn(scope, $compileNodes);
 return $compileNodes;
};

We do this because now we can simply use the public link function of the transcluded content as
the transclusion function given to directives:

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode) {

 // ...

 _.forEach(preLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element),
 childTranscludeFn
);
 });
 if (childLinkFn) {
 var scopeToChild = scope;
 if (newIsolateScopeDirective && newIsolateScopeDirective.template) {
 scopeToChild = isolateScope;
 }
 childLinkFn(scopeToChild, linkNode.childNodes);
 }
 _.forEachRight(postLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element),
 childTranscludeFn
);
 });
}

Basic Transclusion 30

920 Errata© Tero Parviainen 2016

Note that the transclusion function is passed to all the directives on the node - the one that had trans-
clude: true and any other ones.

We’ve arrived at a key takeaway: At its core, the transclusion function is really a link function. Right
now, it is the raw public link function for the transcluded content. Things aren’t going to remain
quite that simple though. We’ve completely ignored scope management for now, for example. But
the core idea of transclusion functions really being link functions will remain.

Before we get into scope management, let’s add one restriction to how transclusion can be used:
Just like with templates, you can only do transclusion once per element. Doing it in two directives
would make little sense, since the first one already clears out the node’s contents, leaving nothing
for the second one. So we explicitly throw an exception when two or more transclusion directives
are used:

test/compile_spec.js
it('is only allowed once per element', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {transclude: true};
 },
 mySecondTranscluder: function() {
 return {transclude: true};
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div my-transcluder my-second-transcluder></div>');

 expect(function() {
 $compile(el);
 }).toThrow();
 });
});

To track this we’ll use another new variable in applyDirectivesToNode, which is simply a flag
that tracks if we’ve seen a transclusion directive on this element already:

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {
 previousCompileContext = previousCompileContext || {};
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = previousCompileContext.preLinkFns || [];
 var postLinkFns = previousCompileContext.postLinkFns || [];
 var controllers = {};
 var newScopeDirective;
 var newIsolateScopeDirective = previousCompileContext.newIsolateScopeDirective;

Transclusion And Scopes 30

921 Errata© Tero Parviainen 2016

 var templateDirective = previousCompileContext.templateDirective;
 var controllerDirectives = previousCompileContext.controllerDirectives;
 var childTranscludeFn, hasTranscludeDirective;

 // ...

}

We then check this flag when a transclusion directive comes up:

src/compile.js
if (directive.transclude) {
 if (hasTranscludeDirective) {
 throw 'Multiple directives asking for transclude';
 }
 hasTranscludeDirective = true;
 var $transcludedNodes = $compileNode.clone().contents();
 childTranscludeFn = compile($transcludedNodes);
 $compileNode.empty();
}

Transclusion And Scopes

If and when there are any directives being used inside the transcluded content, they should be
linked. We are already doing that, since we use the public link function as the transclusion func-
tion. But that linking is done with no scope, as we plainly see if we try to use a scope inside trans-
cluded content:

test/compile_spec.js
it('makes scope available to link functions inside', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 link: function(scope, element, attrs, ctrl, transclude) {
 element.append(transclude());
 }
 };
 },
 myInnerDirective: function() {
 return {
 link: function(scope, element) {
 element.html(scope.anAttr);
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div my-inner-directive></div></div>');

Transclusion And Scopes 30

922 Errata© Tero Parviainen 2016

 $rootScope.anAttr = 'Hello from root';
 $compile(el)($rootScope);
 expect(el.find('> [my-inner-directive]').html()).toBe('Hello from root');
 });
});

We can fix this by pre-binding the transclusion function to a scope. This is done by actually wrap-
ping that function with another one that calls the original with a scope. This just means the direc-
tive author doesn’t have to provide the scope - we do it from within the directive system.

src/compile.js
function boundTranscludeFn() {
 return childTranscludeFn(scope);
}

_.forEach(preLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element),
 boundTranscludeFn
);
});
if (childLinkFn) {
 var scopeToChild = scope;
 if (newIsolateScopeDirective && newIsolateScopeDirective.template) {
 scopeToChild = isolateScope;
 }
 childLinkFn(scopeToChild, linkNode.childNodes);
}
_.forEachRight(postLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element),
 boundTranscludeFn
);
});

Readers familiar with functional programming may recognize this as partial function application. We could
simply use LoDash and do var boundTranscludeFn = _.partial(childTranscludeFn,
scope), but since we’re going to do more work in the bound transclude function later, we use the manual
form.

The scope we are binding the transclusion function to is not quite the correct one yet. The trans-
cluded content should be linked to the scope in which it was defined, whereas right now it’s linked
to the scope in which it’s used. For instance, if the transclusion directive produces an inherited

http://en.wikipedia.org/wiki/Partial_application

Transclusion And Scopes 30

923 Errata© Tero Parviainen 2016

scope, the transcluded content should know nothing about it. We see how this is a problem if the
transclusion directive shadows an attribute from the parent scope. The transcluded content’s scope
should still see the parent’s value but it doesn’t:

test/compile_spec.js
it('does not use the inherited scope of the directive', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 scope: true,
 link: function(scope, element, attrs, ctrl, transclude) {
 scope.anAttr = 'Shadowed attribute';
 element.append(transclude());
 }
 };
 },
 myInnerDirective: function() {
 return {
 link: function(scope, element) {
 element.html(scope.anAttr);
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div my-inner-directive></div></div>');

 $rootScope.anAttr = 'Hello from root';
 $compile(el)($rootScope);
 expect(el.find('> [my-inner-directive]').html()).toBe('Hello from root');
 });
});

This poses a problem to our bound transclusion function, because it’s created in the node link
function where the inherited scope is the only scope we know about. In order to properly decide
which scope to use for transclusion, we need to do it in the composite link function instead.

But first we need to let the composite link function know when a node has a transclusion directive.
We can do this by attaching our two new tracking variables to the node link function as attributes:

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {

 // ...

 nodeLinkFn.terminal = terminal;
 nodeLinkFn.scope = newScopeDirective && newScopeDirective.scope;
 nodeLinkFn.transcludeOnThisElement = hasTranscludeDirective;

Transclusion And Scopes 30

924 Errata© Tero Parviainen 2016

 nodeLinkFn.transclude = childTranscludeFn;

 return nodeLinkFn;
}

In the composite link function itself we can now set up the bound transclusion function. First, let’s
change the current code for making an inherited scope for a node so that it doesn’t overwrite the
parent scope variable but instead uses a separate variable:

src/compile.js
_.forEach(linkFns, function(linkFn) {
 var node = stableNodeList[linkFn.idx];
 if (linkFn.nodeLinkFn) {
 var childScope;
 if (linkFn.nodeLinkFn.scope) {
 childScope = scope.$new();
 $(node).data('$scope', childScope);
 } else {
 childScope = scope;
 }
 linkFn.nodeLinkFn(
 linkFn.childLinkFn,
 childScope,
 node,
 boundTranscludeFn
);
 } else {
 linkFn.childLinkFn(
 scope,
 node.childNodes
);
 }
});

And now, if there was a directive on the node that used transclusion (causing transcludeOn-
ThisElement to become true), we make the bound transclusion function. It calls the original
transclusion function (which is now in the node link function’s transclude attribute) with the
surrounding scope. We then pass the bound transclusion function to the node link function as an
argument:

src/compile.js
_.forEach(linkFns, function(linkFn) {
 var node = stableNodeList[linkFn.idx];
 if (linkFn.nodeLinkFn) {
 var childScope;
 if (linkFn.nodeLinkFn.scope) {
 childScope = scope.$new();
 $(node).data('$scope', childScope);
 } else {

Transclusion And Scopes 30

925 Errata© Tero Parviainen 2016

 childScope = scope;
 }

 var boundTranscludeFn;
 if (linkFn.nodeLinkFn.transcludeOnThisElement) {
 boundTranscludeFn = function() {
 return linkFn.nodeLinkFn.transclude(scope);
 };
 }

 linkFn.nodeLinkFn(
 linkFn.childLinkFn,
 childScope,
 node,
 boundTranscludeFn
);
 } else {
 linkFn.childLinkFn(
 scope,
 node.childNodes
);
 }
});

We now have a new argument we need the node link function to receive. While adding it, also
remove the function boundTranscludeFn statement from the node link function - we no longer want
it since we use the one given as argument instead.

src/compile.js
function nodeLinkFn(childLinkFn, scope, linkNode, boundTranscludeFn) {

 // ...

}

What we ended up with here is a version of the bound transclusion function that does the binding
to the scope outside of the transclusion directive. The transcluded content now has access to the
scope contents that it needs.

This scope is still not quite the one we need though. While it does have exactly the data - and the
prototypal inheritance hierarchy - that we want, there’s a problem that has to do with scope lifecy-
cle: When the scope of the transclusion directive is destroyed, we’d like all the watches and event
listeners from inside the transclusion to be destroyed as well. This does not currently happen, be-
cause we use the surrounding scope for the transclusion, and that may continue to exist a long time
after the transclusion directive is gone.

test/compile_spec.js
it('stops watching when transcluding directive is destroyed', function() {

Transclusion And Scopes 30

926 Errata© Tero Parviainen 2016

 var watchSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 scope: true,
 link: function(scope, element, attrs, ctrl, transclude) {
 element.append(transclude());
 scope.$on('destroyNow', function() {
 scope.$destroy();
 });
 }
 };
 },
 myInnerDirective: function() {
 return {
 link: function(scope) {
 scope.$watch(watchSpy);
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div my-inner-directive></div></div>');
 $compile(el)($rootScope);

 $rootScope.$apply();
 expect(watchSpy.calls.count()).toBe(2);

 $rootScope.$apply();
 expect(watchSpy.calls.count()).toBe(3);

 $rootScope.$broadcast('destroyNow');
 $rootScope.$apply();
 expect(watchSpy.calls.count()).toBe(3);
 });
});

Here we have a watch expression registered inside the transclusion. We’d expect it to stop being
active when the transclusion directive’s scope is destroyed, but it doesn’t.

This is the point where we see how transclusion scopes are different from other scopes: The parent
scope they get their data from should actually be different from the parent scope that determines
when they’re destroyed. They need two parents.

All the way back in Chapter 2 we implemented a feature that enables something like this with
Scope objects. When you call scope.$new(), you can give an optional second argument: A
Scope object that becomes the $parent of the new Scope. That Scope will determine when the
new Scope gets destroyed, while the JavaScript prototype (and hence all the data) is still set to the
Scope you call $new on.

Transclusion And Scopes 30

927 Errata© Tero Parviainen 2016

Now we can make use of this feature: We should create a special transclusion scope that prototypally
inherits from the surrounding scope, but whose $parent is set to the Scope of the transclusion
directive.

That latter Scope is supplied by the node link function, which now creates a second layer of binding
wrappers to the transclusion function - the scope-bound transclusion function:

src/compile.js
function scopeBoundTranscludeFn() {
 return boundTranscludeFn(scope);
}

_.forEach(preLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element),
 scopeBoundTranscludeFn
);
});
if (childLinkFn) {
 var scopeToChild = scope;
 if (newIsolateScopeDirective && newIsolateScopeDirective.template) {
 scopeToChild = isolateScope;
 }
 childLinkFn(scopeToChild, linkNode.childNodes);
}
_.forEachRight(postLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element),
 scopeBoundTranscludeFn
);
});

When you receive a transclusion function in your directive, this is actually what you receive: The
raw link function of the transcluded content wrapped in two separate binding functions.

Transclusion And Scopes 30

928 Errata© Tero Parviainen 2016

Called as
transclusion function

Links transclusion
content

scopeBoundTranscludeFn()
provides containingScope

boundTranscludeFn(containingScope)
provides transclusionDirectiveScope
transclusionScope = transclusionDirectiveScope.$new(false, containingScope)

publicLinkFunction(transclusionScope)

In the earlier, “inner” bound transclude function, we should now receive this “containing scope”:

src/compile.js
var boundTranscludeFn;
if (linkFn.nodeLinkFn.transcludeOnThisElement) {
 boundTranscludeFn = function(containingScope) {
 return linkFn.nodeLinkFn.transclude(scope);
 };
}

This gives us everything we needs to construct the transclusion scope, which is what we actually
link to:

src/compile.js
var boundTranscludeFn;
if (linkFn.nodeLinkFn.transcludeOnThisElement) {
 boundTranscludeFn = function(containingScope) {
 var transcludedScope = scope.$new(false, containingScope);
 return linkFn.nodeLinkFn.transclude(transcludedScope);
 };
}

So, the prototypal parent of the transcluded scope will be the outer scope, while $parent will be
the inner containingScope.

If the transclusion directive doesn’t use scope inheritance or an isolate scope, these two scopes will actually
be the same. That’s because the composite link function just passes the surrounding scope to the node link
function, which will then “provide it back” with the scope-bound transclusion function.

There’s one more thing about transclusion scopes before we move on to the next topic: As the
directive user, you can actually bypass the transclusion scope creation we just implemented, and
just pass your own scope from the directive. You can do it by giving it to the transclusion function
when you call it:

Transclusion And Scopes 30

929 Errata© Tero Parviainen 2016

test/compile_spec.js
it('allows passing another scope to transclusion function', function() {
 var otherLinkSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 scope: {},
 template: '<div></div>',
 link: function(scope, element, attrs, ctrl, transclude) {
 var mySpecialScope = scope.$new(true);
 mySpecialScope.specialAttr = 42;
 transclude(mySpecialScope);
 }
 };
 },
 myOtherDirective: function() {
 return {link: otherLinkSpy};
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div my-other-directive></div></div>');

 $compile(el)($rootScope);

 var transcludedScope = otherLinkSpy.calls.first().args[0];
 expect(transcludedScope.specialAttr).toBe(42);
 });
});

This means that scopeBoundTranscludeFn takes an optional argument: The scope to use for
transclusion. It just passes it to the inner bound transclusion function, as the first argument:

src/compile.js
function scopeBoundTranscludeFn(transcludedScope) {
 return boundTranscludeFn(transcludedScope, scope);
}

The inner bound transclude function receives this transclusion scope, or creates it if one wasn’t
given:

src/compile.js
var boundTranscludeFn;
if (linkFn.nodeLinkFn.transcludeOnThisElement) {
 boundTranscludeFn = function(transcludedScope, containingScope) {
 if (!transcludedScope) {
 transcludedScope = scope.$new(false, containingScope);
 }
 return linkFn.nodeLinkFn.transclude(transcludedScope);
 };

Transclusion from Descendant Nodes 30

930 Errata© Tero Parviainen 2016

}

Transclusion from Descendant Nodes

As we have seen, when you have a directive with transclude: true, it will get a transclusion
function as the fifth argument of its link function(s), which gives it access to the transcluded con-
tent. In fact, that fifth argument is available to all directives on that element, because we pass it to
all pre- and postlink function that we have.

The transclusion function is actually available to even more directives than that: The fifth argu-
ment is given whenever there’s a transclusion on the current element or any ancestor element. This
means that you can actually do the attachment of the transcluded content in some directive inside
the template of the transclusion directive, as we do here:

test/compile_spec.js
it('makes contents available to child elements', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 template: '<div in-template></div>'
 };
 },
 inTemplate: function() {
 return {
 link: function(scope, element, attrs, ctrl, transcludeFn) {
 element.append(transcludeFn());
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transclude></div></div>');

 $compile(el)($rootScope);

 expect(el.find('> [in-template] > [in-transclude]').length).toBe(1);
 });
});

This test is currently failing because the inTemplate directive is not actually receiving a trans-
clude function, so it’s trying to call undefined.

In the node link function, as we call the child link function, we should pass in the bound transclu-
sion function to make it available to child nodes:

src/compile.js

Transclusion from Descendant Nodes 30

931 Errata© Tero Parviainen 2016

_.forEach(preLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element),
 scopeBoundTranscludeFn
);
});
if (childLinkFn) {
 var scopeToChild = scope;
 if (newIsolateScopeDirective && newIsolateScopeDirective. template) {
 scopeToChild = isolateScope;
 }
 childLinkFn(scopeToChild, linkNode.childNodes, boundTranscludeFn);
}
_.forEachRight(postLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element),
 scopeBoundTranscludeFn
);
});

Note that we do not pass in the scope-bound transclusion function, just the inner bound transclu-
sion function. Child nodes will eventually construct their own scope-bound transclusion functions.

The child link function being called is the composite link function of the child nodes. That func-
tion is not yet ready to receive this third argument. Let’s add it, and call it the parentBoundTran-
scludeFn, as it is a bound transclusion function from a parent node:

src/compile.js
function compositeLinkFn(scope, linkNodes, parentBoundTranscludeFn) {
 // ...
}

Now, inside the link function loop in this function, we’ll use this parent-bound transclude function
as the bound transclude function - but only if the child node doesn’t do any transclusion of its
own:

src/compile.js
var boundTranscludeFn;
if (linkFn.nodeLinkFn.transcludeOnThisElement) {
 boundTranscludeFn = function(transcludedScope, containingScope) {
 if (!transcludedScope) {
 transcludedScope = scope.$new(false, containingScope);
 }

Transclusion from Descendant Nodes 30

932 Errata© Tero Parviainen 2016

 return linkFn.nodeLinkFn.transclude(transcludedScope);
 };
} else if (parentBoundTranscludeFn) {
 boundTranscludeFn = parentBoundTranscludeFn;
}

That passes our test: We can now attach transcluded content coming from a transclusion directive
on some ancestor node. The lifecycle of the eventual transclusion scope is still based on where the
transclusion is actually done.

Not every element in the DOM is going to have directives, and we should be able to pass the tran-
sclusion function across them as well. In this test, there’s a plain div in the transcluding directive’s
template, causing the in-template directive to not receive the transclude function:

test/compile_spec.js
it('makes contents available to indirect child elements', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 template: '<div><div in-template></div></div>'
 };
 },
 inTemplate: function() {
 return {
 link: function(scope, element, attrs, ctrl, transcludeFn) {
 element.append(transcludeFn());
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transclude></div></div>');

 $compile(el)($rootScope);

 expect(el.find('> div > [in-template] > [in-transclude]').length).toBe(1);
 });
});

We again have the same problem where the directive is trying to invoke undefined as the transclu-
sion function.

This we can fix by passing the parent-bound transclusion function onward in the composite link
function, in the case where there is no node link function for the current node:

src/compile.js
if (linkFn.nodeLinkFn) {
 // ...

Transclusion from Descendant Nodes 30

933 Errata© Tero Parviainen 2016

} else {
 linkFn.childLinkFn(
 scope,
 node.childNodes,
 parentBoundTranscludeFn
);
}

One additional way of “passing on” the transclusion function is useful in cases where you do
something complex in your directive that requires you to run your own, manual compilation and/
or linking for child nodes. A “lazily compiling” directve in the vein of ng-if would be one exam-
ple of such a use case.

When you have a directive like that, and you use it in the middle of a transclusion, things may
break since the transclusion function doesn’t find its way from the parent to the children if you’re
linking them separately.

You can support transclusion in these kinds of directives too, by passing an additional argument to
the public link function of your custom-compiled nodes. That argument is an options object, and
one of its supported keys is parentBoundTranscludeFn. With that you can pass the transclusion
function you received across to the other linking process:

test/compile_spec.js
it('supports passing transclusion function to public link function', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function($compile) {
 return {
 transclude: true,
 link: function(scope, element, attrs, ctrl, transclude) {
 var customTemplate = $('<div in-custom-template></div>');
 element.append(customTemplate);
 $compile(customTemplate)(scope, {
 parentBoundTranscludeFn: transclude
 });
 }
 };
 },
 inCustomTemplate: function() {
 return {
 link: function(scope, element, attrs, ctrl, transclude) {
 element.append(transclude());
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transclude></div></div>');

 $compile(el)($rootScope);

Transclusion from Descendant Nodes 30

934 Errata© Tero Parviainen 2016

 expect(el.find('> [in-custom-template] > [in-transclude]').length).toBe(1);
 });
});

The public link function should take this optional options argument, and grab the parent-
BoundTranscludeFn attribute from it when available. It can then pass it to the composite link
function, which is already able to take the parent-bound transclude function as its third argument:

src/compile.js
return function publicLinkFn(scope, options) {
 options = options || {};
 var parentBoundTranscludeFn = options.parentBoundTranscludeFn;
 $compileNodes.data('$scope', scope);
 compositeLinkFn(scope, $compileNodes, parentBoundTranscludeFn);
 return $compileNodes;
};

options is actually the third argument to the public link function, not the second. The second argument is
something we haven’t added yet but will do later in this chapter.

This does introduce a problem related to scope lifecycle: What we are passing over is the scope-
bound transclusion function, because that’s what we have in the link function. The $parent of the
transclusion scope will incorrectly be bound to the current scope, even though we’re not linking
the transclusion here. This is plain when we destroy the custom-linked content and expect watches
inside the transcluded content to stop firing:

test/compile_spec.js
it('destroys scope passed through public link fn at the right time', function() {
 var watchSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myTranscluder: function($compile) {
 return {
 transclude: true,
 link: function(scope, element, attrs, ctrl, transclude) {
 var customTemplate = $('<div in-custom-template></div>');
 element.append(customTemplate);
 $compile(customTemplate)(scope, {
 parentBoundTranscludeFn: transclude
 });
 }
 };
 },
 inCustomTemplate: function() {
 return {
 scope: true,
 link: function(scope, element, attrs, ctrl, transclude) {
 element.append(transclude());
 scope.$on('destroyNow', function() {

Transclusion from Descendant Nodes 30

935 Errata© Tero Parviainen 2016

 scope.$destroy();
 });
 }
 };
 },
 inTransclude: function() {
 return {
 link: function(scope) {
 scope.$watch(watchSpy);
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transclude></div></div>');

 $compile(el)($rootScope);

 $rootScope.$apply();
 expect(watchSpy.calls.count()).toBe(2);

 $rootScope.$apply();
 expect(watchSpy.calls.count()).toBe(3);

 $rootScope.$broadcast('destroyNow');
 $rootScope.$apply();
 expect(watchSpy.calls.count()).toBe(3);
 });
});

We need to figure out how to “unbind” the scope-bound transclude function in this case. The trick
is to attach an attribute to that function, which points to the function being wrapped:

src/compile.js
function scopeBoundTranscludeFn(transcludedScope) {
 return boundTranscludeFn(transcludedScope, scope);
}
scopeBoundTranscludeFn.$$boundTransclude = boundTranscludeFn;

In the public link function we can use this attribute to unwrap when appropriate. This causes ev-
erything to line up again:

src/compile.js
return function publicLinkFn(scope, options) {
 options = options || {};
 var parentBoundTranscludeFn = options.parentBoundTranscludeFn;
 if (parentBoundTranscludeFn && parentBoundTranscludeFn.$$boundTransclude) {
 parentBoundTranscludeFn = parentBoundTranscludeFn.$$boundTransclude;
 }
 $compileNodes.data('$scope', scope);

Transclusion in Controllers 30

936 Errata© Tero Parviainen 2016

 compositeLinkFn(scope, $compileNodes, parentBoundTranscludeFn);
 return $compileNodes;
};

Transclusion in Controllers

You can also choose to call the transclusion function from within a directive’s controller, as an al-
ternative to doing it from the link function. The transclusion function is available in the controller
as the injected $transclude argument:

test/compile_spec.js
it('makes contents available to controller', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 template: '<div in-template></div>',
 controller: function($element, $transclude) {
 $element.find('[in-template]').append($transclude());
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transclude></div></div>');
 $compile(el)($rootScope);

 expect(el.find('> [in-template] > [in-transclude]').length).toBe(1);
 });
});

We can simply add the scope-bound transclude function to the controller’s locals object before
constructing the controller:

src/compile.js
if (controllerDirectives) {
 _.forEach(controllerDirectives, function(directive, directiveName) {
 var locals = {
 $scope: directive === newIsolateScopeDirective ? isolateScope : scope,
 $element: $element,
 $transclude: scopeBoundTranscludeFn,
 $attrs: attrs
 };
 var controllerName = directive.controller;
 if (controllerName === '@') {
 controllerName = attrs[directive.name];
 }
 var controller =
 $controller(controllerName, locals, true, directive.controllerAs);

The Clone Attach Function 30

937 Errata© Tero Parviainen 2016

 controllers[directive.name] = controller;
 $element.data('$' + directive.name + 'Controller', controller.instance);
 });
}

This means the fifth argument to a directive’s link function and the $transclude argument to a
directive’s controller both give you exactly the same thing: The scope-bound transclude function.

The Clone Attach Function

We’ve seen how the transclusion function you get in your directive’s link function (or controller)
generally works: You call it, and it returns you a reference to the transcluded DOM, which you
can then attach somewhere. Internally it links the transcluded DOM to a transclusion scope,
whose parents are based on where the transclusion was defined and where you’re calling the tran-
sclusion function from. You can also optionally give the transclusion function a scope as an argu-
ment, in which case it’ll use that scope instead of making a transclusion scope.

There’s one more central aspect of the transclusion function that we need to cover. That is giving it
a clone attach function.

A clone attach function is a function you can supply whenever you are linking a piece of DOM.
When you supply one, Angular will not actually link the original DOM that was compiled. Instead
it will first make a clone of that DOM and then link that clone. It will also call your clone attach
function during the compilation, giving it the cloned DOM as well as the scope used for linking.
You’re expected to attach the clone somewhere at that point - hence the name “clone attach func-
tion”.

So there are really two, related but separate, purposes for the clone attach function:

1. As a side effect, using one causes a clone of the compiled DOM to be created and linked.
2. It acts as a callback to the linking process - it gets invoked at a specific point in time after the

DOM has been cloned.

We’ll soon see how both of these can be useful.

At its core, the clone attach function doesn’t necessarily have anything to do with transclusion at
all. It is part of the public linking API and can be used without transclusion. We just cover it in
this chapter since the two so often go together.

When you give a clone attach function to the public link function, it will get called during linking:

test/compile_spec.js
describe('clone attach function', function() {

The Clone Attach Function 30

938 Errata© Tero Parviainen 2016

 it('can be passed to public link fn', function() {
 var injector = makeInjectorWithDirectives({});
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div>Hello</div>');
 var myScope = $rootScope.$new();
 var gotEl, gotScope;

 $compile(el)(myScope, function cloneAttachFn(el, scope) {
 gotEl = el;
 gotScope = scope;
 });

 expect(gotEl[0].isEqualNode(el[0])).toBe(true);
 expect(gotScope).toBe(myScope);
 });
 });

});

We can make this initial test pass by just calling the supplied clone attach function from the public
link function. We do this just before actually linking the DOM:

src/compile.js
return function publicLinkFn(scope, cloneAttachFn, options) {
 options = options || {};
 var parentBoundTranscludeFn = options.parentBoundTranscludeFn;
 if (parentBoundTranscludeFn && parentBoundTranscludeFn.$$boundTransclude) {
 parentBoundTranscludeFn = parentBoundTranscludeFn.$$boundTransclude;
 }
 $compileNodes.data('$scope', scope);
 if (cloneAttachFn) {
 cloneAttachFn($compileNodes, scope);
 }
 compositeLinkFn(scope, $compileNodes, parentBoundTranscludeFn);
 return $compileNodes;
};

Since we added the clone attach function as the second argument, that pushes options to the third
position. We need to modify the earlier test cases ”supports passing transclusion func-
tion to public link function” and ”destroys scope passed through public link
fn at the right time” to support this. There, we can just pass undefined as the clone attach
function:

src/compile.js
$compile(customTemplate)(scope, undefined, {
 parentBoundTranscludeFn: transclude
});

As discussed, this is no ordinary callback function though, since it actually causes the DOM to be

The Clone Attach Function 30

939 Errata© Tero Parviainen 2016

a clone of the original:

test/compile_spec.js
it('causes compiled elements to be cloned', function() {
 var injector = makeInjectorWithDirectives({});
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div>Hello</div>');
 var myScope = $rootScope.$new();
 var gotClonedEl;

 $compile(el)(myScope, function(clonedEl) {
 gotClonedEl = clonedEl;
 });

 expect(gotClonedEl[0].isEqualNode(el[0])).toBe(true);
 expect(gotClonedEl[0]).not.toBe(el[0]);
 });
});

This cloned DOM isn’t just used for the clone attach function, but it is also the version of the
DOM that gets linked. The original DOM, on the other hand, will not get linked. So the element
received by a directive’s link function will in this case be different from the one received by its com-
pile function:

test/compile_spec.js
it('causes cloned DOM to be linked', function() {
 var gotCompileEl, gotLinkEl;
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 compile: function(compileEl) {
 gotCompileEl = compileEl;
 return function link(scope, linkEl) {
 gotLinkEl = linkEl;
 };
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 var myScope = $rootScope.$new();

 $compile(el)(myScope, function() {});

 expect(gotCompileEl[0]).not.toBe(gotLinkEl[0]);
 });
});

So, if a clone attach function is given, we should make a clone the compiled nodes, and then give

The Clone Attach Function 30

940 Errata© Tero Parviainen 2016

it to the clone attach function as well as to the composite link function, instead of the original
compiled nodes.

src/compile.js
return function publicLinkFn(scope, cloneAttachFn, options) {
 options = options || {};
 var parentBoundTranscludeFn = options.parentBoundTranscludeFn;
 if (parentBoundTranscludeFn && parentBoundTranscludeFn.$$boundTransclude) {
 parentBoundTranscludeFn = parentBoundTranscludeFn.$$boundTransclude;
 }
 var $linkNodes;
 if (cloneAttachFn) {
 $linkNodes = $compileNodes.clone();
 cloneAttachFn($linkNodes, scope);
 } else {
 $linkNodes = $compileNodes;
 }
 $linkNodes.data('$scope', scope);
 compositeLinkFn(scope, $linkNodes, parentBoundTranscludeFn);
 return $linkNodes;
};

This makes our test suite pass. Do note that we also change the $scope jQuery data attachment to
happen on the cloned nodes, because those are the ones that are actually linked to the scope

Passing a clone attach function causes nodes to be cloned before linking, but this doesn’t yet
explain why we need a function for it though. Wouldn’t a “clone” boolean flag do? For the current
implementation, it would, but using a function starts to make more sense when we begin bringing
this discussion back to transclusion.

First of all, you can also pass a clone attach function to the transclusion function. When you do
that, it gives you an alternative way to obtain the transcluded nodes: They are not only given as the
return value of the transclusion function, but also as the first argument to the clone attach func-
tion. That means you can do something like this:

test/compile_spec.js
it('allows connecting transcluded content', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 template: '<div in-template></div>',
 link: function(scope, element, attrs, ctrl, transcludeFn) {
 var myScope = scope.$new();
 transcludeFn(myScope, function(transclNode) {
 element.find('[in-template]').append(transclNode);
 });
 }
 };

The Clone Attach Function 30

941 Errata© Tero Parviainen 2016

 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transclude></div></div>');

 $compile(el)($rootScope);

 expect(el.find('> [in-template] > [in-transclude]').length).toBe(1);
 });
});

What the directive is calling is the scope-bound transclusion function, so we should add the abil-
ity for it to receive the clone attach function. It can just pass it on to the inner bound transclusion
function - also as the second argument:

src/compile.js
function scopeBoundTranscludeFn(transcludedScope, cloneAttachFn) {
 return boundTranscludeFn(transcludedScope, cloneAttachFn, scope);
}
scopeBoundTranscludeFn.$$boundTransclude = boundTranscludeFn;

The inner bound transclude function receives this new second argument, and passes it on to the
actual transclude function - which is the public link function that already supports clone attach
functions:

src/compile.js
var boundTranscludeFn;
if (linkFn.nodeLinkFn.transcludeOnThisElement) {
 boundTranscludeFn = function(transcludedScope, cloneAttachFn, containingScope) {
 if (!transcludedScope) {
 transcludedScope = scope.$new(false, containingScope);
 }
 return linkFn.nodeLinkFn.transclude(transcludedScope, cloneAttachFn);
 };
} else if (parentBoundTranscludeFn) {
 boundTranscludeFn = parentBoundTranscludeFn;
}

This still doesn’t explain why we need a function though. We could have just passed in a boolean
flag for this all to work.

There is one reason for the function form already in our implementation, which is related to tim-
ing: When you get the return value of the transclusion function, the DOM will already have been
linked. But the clone attach function is called before linking. This gives you a chance to manipulate
the fresh clone of the DOM before it gets linked: Just make your changes from inside the clone
attach function.

But the bigger reason for the existence of the clone attach function has to do with scopes, and we

The Clone Attach Function 30

942 Errata© Tero Parviainen 2016

will arrive at it in the next couple of pages.

For one thing, you don’t have to supply your own transclusion scope when you use a clone attach
function, like we did in our last test. You can omit it, and just pass the clone attach function as the
only argument. (In that case, the default logic for creating the transclusion scope gets used.)

test/compile_spec.js
it('can be used as the only transclusion function argument', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 template: '<div in-template></div>',
 link: function(scope, element, attrs, ctrl, transcludeFn) {
 transcludeFn(function(transclNode) {
 element.find('[in-template]').append(transclNode);
 });
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transclusion></div></div>');

 $compile(el)($rootScope);

 expect(el.find('> [in-template] > [in-transclusion]').length).toBe(1);
 });
});

This if the first time we see the transclusion function being used in the way it most often gets used in the
wild: Passing the clone attach function as the only argument.

What this means is the transclusion function can actually be called in three different ways:

1. With a transclusion scope and a clone attach function
2. With just a transclusion scope
3. With just a clone attach function

This means that we need to check the “type” of the first argument passed to that function. If it
doesn’t look like a scope object, we assume it’ll be the clone attach function (or just undefined):

src/compile.js
function scopeBoundTranscludeFn(transcludedScope, cloneAttachFn) {
 if (!transcludedScope || !transcludedScope.$watch ||
 !transcludedScope.$evalAsync) {
 cloneAttachFn = transcludedScope;
 transcludedScope = undefined;
 }

The Clone Attach Function 30

943 Errata© Tero Parviainen 2016

 return boundTranscludeFn(transcludedScope, cloneAttachFn, scope);
}
scopeBoundTranscludeFn.$$boundTransclude = boundTranscludeFn;

Here’s the biggest reason the clone attach function is a function. When you don’t supply your own
scope, and a default transclusion scope is used, the clone attach function is the only way you can
gain access to that scope from your transclusion directive. And you do often need access to it: If
you remove the transcluded DOM before your transclusion directive itself gets removed, as the
documentation states, it is your responsibility to destroy the transclusion scope, and you can only
do that when you have access to it.

Furthermore, the clone attach function lets you put data on the transclusion scope before the tran-
scluded content gets linked. So you can essentially pass additional data to the transcluded content
via the scope, as the following test case shows. It passes right away as we’ve already implemented
everything it needs, but we include it for the purpose of illustrating the point:

test/compile_spec.js
it('allows passing data to transclusion', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 template: '<div in-template></div>',
 link: function(scope, element, attrs, ctrl, transcludeFn) {
 transcludeFn(function(transclNode, transclScope) {
 transclScope.dataFromTranscluder = 'Hello from transcluder';
 element.find('[in-template]').append(transclNode);
 });
 }
 };
 },
 myOtherDirective: function() {
 return {
 link: function(scope, element) {
 element.html(scope.dataFromTranscluder);
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div my-other-directive></div></div>');

 $compile(el)($rootScope);

 expect(el.find('> [in-template] > [my-other-directive]').html())
 .toEqual('Hello from transcluder');
 });
});

https://goo.gl/EYzqij
https://goo.gl/EYzqij

Transclusion with Template URLs 30

944 Errata© Tero Parviainen 2016

Transclusion with Template URLs

In the previous chapter we put a whole lot of effort into the pause-resume mechanism that makes
the asynchronous loading of templates possible. How does this work with transclusion?

The answer is that currently it doesn’t. The bound transclusion function that node link functions
now receive isn’t supported by the delayed node link function that takes control when templa-
teUrls are used. We should fix that, since using templateUrls should have no bearing on wheth-
er transclusion works or not.

Let’s first think about the case where a templateUrl is used but the template still happens to
arrive before linking occurs. Add the following test block in the “templateUrl” section of com-
pile_spec.js:

test/compile_spec.js
describe('with transclusion', function() {

 it('works when template arrives first', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 templateUrl: 'my_template.html',
 link: function(scope, element, attrs, ctrl, transclude) {
 element.find('[in-template]').append(transclude());
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transclude></div></div>');

 var linkFunction = $compile(el);
 $rootScope.$apply();
 requests[0].respond(200, {}, '<div in-template></div>'); // respond first
 linkFunction($rootScope); // then link

 expect(el.find('> [in-template] > [in-transclude]').length).toBe(1);
 });
 });

});

The test fails, as we expected. What we need to do is have the delayed node link function accept
the bound transclusion function, which is being given to it. If the template has alreary arrived and
the linkQueue is no longer there, we can just pass it on to the regular node link function:

src/compile.js

Transclusion with Template URLs 30

945 Errata© Tero Parviainen 2016

return function delayedNodeLinkFn(
 _ignoreChildLinkFn, scope, linkNode, boundTranscludeFn) {
 if (linkQueue) {
 linkQueue.push({scope: scope, linkNode: linkNode});
 } else {
 afterTemplateNodeLinkFn(
 afterTemplateChildLinkFn, scope, linkNode, boundTranscludeFn);
 }
};

This still doesn’t fix the test though. What’s going on?

The problem is that because this directive has the transclude option on it, once we populate
its contents with the template and call applyDirectivesToNode from compileTemplateUrl
again, it will remove all the nodes that just came from the template. We don’t want to be doing all
that again after the template arrives, because we set up the transclusion already in the previous
applyDirectivesToNode call. So we can just set the transclude flag to null in our derived
synchronous directive so that the transclusion logic doesn’t activate for a second time:

src/compile.js
function compileTemplateUrl(
 directives, $compileNode, attrs, previousCompileContext) {
 var origAsyncDirective = directives.shift();
 var derivedSyncDirective = _.extend(
 {},
 origAsyncDirective,
 {
 templateUrl: null,
 transclude: null
 }
);
 // ...
}

The other, arguably more common order of events with template URLs is when the public link
function gets invoked before our template has arrived from the server. We are still not properly
handling transclusion in that case:

test/compile_spec.js
it('works when template arrives after', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: true,
 templateUrl: 'my_template.html',
 link: function(scope, element, attrs, ctrl, transclude) {
 element.find('[in-template]').append(transclude());
 }
 };

Transclusion with Template URLs 30

946 Errata© Tero Parviainen 2016

 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder><div in-transclude></div></div>');

 var linkFunction = $compile(el);
 $rootScope.$apply();
 linkFunction($rootScope); // link first
 requests[0].respond(200, {}, '<div in-template></div>'); // then respond

 expect(el.find('> [in-template] > [in-transclude]').length).toBe(1);
 });
});

This is the case where the link queue is used to store pending linkings. The bound transclude func-
tion needs to be added to the link queue so that we don’t just drop it on the floor:

src/compile.js
return function delayedNodeLinkFn(
 _ignoreChildLinkFn, scope, linkNode, boundTranscludeFn) {
 if (linkQueue) {
 linkQueue.push(
 {scope: scope, linkNode: linkNode, boundTranscludeFn: boundTranscludeFn});
 } else {
 afterTemplateNodeLinkFn(
 afterTemplateChildLinkFn, scope, linkNode, boundTranscludeFn);
 }
};

Once the template then arrives, we can grab the stored bound transclude function and hand it over
to the node link function:

src/compile.js
$http.get(templateUrl).success(function(template) {
 directives.unshift(derivedSyncDirective);
 $compileNode.html(template);
 afterTemplateNodeLinkFn = applyDirectivesToNode(
 directives, $compileNode, attrs, previousCompileContext);
 afterTemplateChildLinkFn = compileNodes($compileNode[0].childNodes);
 _.forEach(linkQueue, function(linkCall) {
 afterTemplateNodeLinkFn(
 afterTemplateChildLinkFn,
 linkCall.scope,
 linkCall.linkNode,
 linkCall.boundTranscludeFn
);
 });
 linkQueue = null;
});

Transclusion with Template URLs 30

947 Errata© Tero Parviainen 2016

The final point about handling transclusion with asynchronous directives is controlling that transclusion
isn’t used in two directives on the same element. We already have this check for regular synchronous
directives but it doesn’t work when templateUrl is used. The second directive here should not be
compiled:

test/compile_spec.js
it('is only allowed once', function() {
 var otherCompileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 priority: 1,
 transclude: true,
 templateUrl: 'my_template.html'
 };
 },
 mySecondTranscluder: function() {
 return {
 priority: 0,
 transclude: true,
 compile: otherCompileSpy
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder my-second-transcluder></div>');

 $compile(el);
 $rootScope.$apply();
 requests[0].respond(200, {}, '<div in-template></div>');

 expect(otherCompileSpy).not.toHaveBeenCalled();
 });
});

The hasTranscludeDirective tracking variable is another one of those things we should pass
on through the previous compile context object. We should put it in when we construct the context:

src/compile.js
nodeLinkFn = compileTemplateUrl(
 _.drop(directives, i),
 $compileNode,
 attrs,
 {
 templateDirective: templateDirective,
 newIsolateScopeDirective: newIsolateScopeDirective,
 controllerDirectives: controllerDirectives,
 hasTranscludeDirective: hasTranscludeDirective,
 preLinkFns: preLinkFns,
 postLinkFns: postLinkFns

Transclusion with Multi-Element Directives 30

948 Errata© Tero Parviainen 2016

 }
);

And then we should unpack it when arriving back at applyDirectivesToNode:

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {
 previousCompileContext = previousCompileContext || {};
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = previousCompileContext.preLinkFns || [];
 var postLinkFns = previousCompileContext.postLinkFns || [];
 var controllers = {};
 var newScopeDirective;
 var newIsolateScopeDirective = previousCompileContext.newIsolateScopeDirective;
 var templateDirective = previousCompileContext.templateDirective;
 var controllerDirectives = previousCompileContext.controllerDirectives;
 var childTranscludeFn;
 var hasTranscludeDirective = previousCompileContext.hasTranscludeDirective;

 // ...
}

Transclusion with Multi-Element Directives

A second special case that needs extra care when combined with transclusion is multi-element
directives. You could argue it makes little sense to use these two features together: Since multi-ele-
ment directives start and end in different sibling nodes, exactly what node’s children should be-
come the transcluded contents?

The answer isn’t obvious, and as it happens, Angular contains no special logic for this - it just
does whatever the jQuery/jqLite DOM manipulation functions do by default when applied to
multiple elements. Angular does, however, have rudimentary support for using transclude and
multiElement together. We should add a test for it in the describe(‘transclude’) block of
compile_spec.js:

test/compile_spec.js
it('can be used with multi-element directives', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function($compile) {
 return {
 transclude: true,
 multiElement: true,
 template: '<div in-template></div>',
 link: function(scope, element, attrs, ctrl, transclude) {
 element.find('[in-template]').append(transclude());

The ngTransclude Directive 30

949 Errata© Tero Parviainen 2016

 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $(
 '<div><div my-transcluder-start><div in-transclude></div></div>'+
 '<div my-transcluder-end></div></div>'
);
 $compile(el)($rootScope);
 expect(el.find('[my-transcluder-start] [in-template] [in-transclude]').length)
 .toBe(1);
 });
});

All we really need to do to make this work is ensure the link function wrapper used for grouped
elements passes the transclusion function through :

src/compile.js
function groupElementsLinkFnWrapper(linkFn, attrStart, attrEnd) {
 return function(scope, element, attrs, ctrl, transclude) {
 var group = groupScan(element[0], attrStart, attrEnd);
 return linkFn(scope, group, attrs, ctrl, transclude);
 };
}

The ngTransclude Directive

When you first learned transclusion, it is likely that it was introduced with a reference to the
ng-transclude directive, which you can use inside the template of your transclusion directive, to
mark where the transcluded content should go. Using ng-transclude you can forego having to
call the transclusion function yourself, or even knowing that one exists. It’s kind of a more declara-
tive way to implement common transclusion scenarios.

As it turns out, this directive can be fully implemented using the features we’ve introduced in this
chapter, and we don’t actually need much code to do it. But let’s begin by pinning down the behav-
ior of this directive with a test suite. The very first thing we need is some setup code into a new file
test/directives/ng_transclude_spec.js. We’ll add the usual Angular setup as well as a
helper function that creates a transclusion directive for a given template.

test/directives/ng_transclude_spec.js
'use strict';

var $ = require('jquery');
var publishExternalAPI = require('../../src/angular_public');
var createInjector = require('../../src/injector');

The ngTransclude Directive 30

950 Errata© Tero Parviainen 2016

describe('ngTransclude', function() {

 beforeEach(function() {
 delete window.angular;
 publishExternalAPI();
 });

 function createInjectorWithTranscluderTemplate(template) {
 return createInjector(['ng', function($compileProvider) {
 $compileProvider.directive('myTranscluder', function() {
 return {
 transclude: true,
 template: template
 };
 });
 }]);
 }

});

That lets us get on with the test definitions. Firstly, a transclusion directive whose template con-
tains the ng-transclude attribute on some element will attach the transcluded content inside
that element:

test/directives/ng_transclude_spec.js
it('transcludes the parent directive transclusion', function() {
 var injector = createInjectorWithTranscluderTemplate(
 '<div ng-transclude></div>'
);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder>Hello</div>');
 $compile(el)($rootScope);
 expect(el.find('> [ng-transclude]').html()).toEqual('Hello');
 });
});

Secondly, any existing contents the element with the ng-transclude attribute may have had will
be removed:

test/directives/ng_transclude_spec.js
it('empties existing contents', function() {
 var injector = createInjectorWithTranscluderTemplate(
 '<div ng-transclude>Existing contents</div>'
);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder>Hello</div>');
 $compile(el)($rootScope);
 expect(el.find('> [ng-transclude]').html()).toEqual('Hello');
 });
});

The ngTransclude Directive 30

951 Errata© Tero Parviainen 2016

In addition to an attribute, you can make ng-transclude an element instead:

test/directives/ng_transclude_spec.js
it('may be used as element', function() {
 var injector = createInjectorWithTranscluderTemplate(
 '<ng-transclude>Existing contents</ng-transclude>'
);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder>Hello</div>');
 $compile(el)($rootScope);
 expect(el.find('> ng-transclude').html()).toEqual('Hello');
 });
});

Finally, you can also make ng-transclude a CSS class:

test/directives/ng_transclude_spec.js
it('may be used as class', function() {
 var injector = createInjectorWithTranscluderTemplate(
 '<div class="ng-transclude">Existing contents</div>'
);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-transcluder>Hello</div>');
 $compile(el)($rootScope);
 expect(el.find('> .ng-transclude').html()).toEqual('Hello');
 });
});

There’s our test suite for ng-transclude. Let’s go ahead and implement the code to make it pass.
We need a directive factory, which we’ll put in src/directives/ng_transclude.js:

src/directives/ng_transclude.js
'use strict';

var ngTranscludeDirective = function() {

 return {
 };

};

module.exports = ngTranscludeDirective;

We also need to register this directive into the ng module so that the compiler finds it when it’s
applied:

src/angular_public.js

Full Element Transclusion 30

952 Errata© Tero Parviainen 2016

function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = window.angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
 ngModule.provider('$httpBackend', require('./http_backend'));
 ngModule.provider('$http', require('./http').$HttpProvider);
 ngModule.provider('$httpParamSerializer',
 require('./http').$HttpParamSerializerProvider);
 ngModule.provider('$httpParamSerializerJQLike',
 require('./http').$HttpParamSerializerJQLikeProvider);
 ngModule.provider('$compile', require('./compile'));
 ngModule.provider('$controller', require('./controller'));
 ngModule.directive('ngController',
 require('./directives/ng_controller'));
 ngModule.directive('ngTransclude',
 require('./directives/ng_transclude'));
}

And finally, let’s fill in the details. Literally all this directive needs to do is call the transclusion
function, and append the received DOM element to the current element, while also clearing out
any existing contents:

src/directives/ng_transclude.js
var ngTranscludeDirective = function() {

 return {
 restrict: 'EAC',
 link: function(scope, element, attrs, ctrl, transclude) {
 transclude(function(clone) {
 element.empty();
 element.append(clone);
 });
 }
 };

};

As it turns out, ng-transclude, just like ng-controller, is actually a very simple directive,
although it’s a “major” framework feature. Both directives simply make some of the core features
of the directive compiler more easily accessible.

Full Element Transclusion

For the remainder of this chapter we’ll focus our attention on a slightly different use case for the

Full Element Transclusion 30

953 Errata© Tero Parviainen 2016

transclusion features we have built. It will also require us to extend those transclusion features a
bit.

Usually, when transclusion is discussed, we’re talking about taking the contents of an element and
including them inside another element in another template. That’s how the feature was introduced
in this chapter, and that’s what people usually mean when they talk about transclusion.

There is a second kind of “transclusion” supported by the transclude configuration option,
called full element transclusion. It is enabled by setting the value of transclude not to true but
to the string ’element’.

Superficially, there is just a minor difference between this kind of transclusion and the regular
kind: Full element transclusion takes the whole element with the transclusion directive itself as the trans-
clusion content, whereas regular transclusion only takes its children.

That is not where the differences end, however. It turns out that transclude: ‘element’ is ac-
tually designed for a completely different use case from regular transclusion. It just happens to be
enabled by the same configuration option and shares a lot of the same implementation.

The difference between the use cases is this: transclude: true is meant to include part of one
template in another template. transclude: ‘element’ is meant to keep the element in place,
but to provide more control over what happens to it: The element could be added only when some
condition holds true, or it could be added at a later time, or it could even be added multiple times.

This is a major building block for directives like ngIf and ngRepeat, and directives like that are
in fact what full element transclusion is designed to support. It provides these features largely by
building on the cloning and scope management features of transclusion that we have already im-
plemented.

Let’s begin exploring what element transclusion means exactly, by adding our first test for it.
When you use a directive with transclude: ‘element’, the element with that directive actually
disappears from the DOM during compilation:

test/compile_spec.js
describe('element transclusion', function() {

 it('removes the element from the DOM', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: 'element'
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div><div my-transcluder></div></div>');

Full Element Transclusion 30

954 Errata© Tero Parviainen 2016

 $compile(el);

 expect(el.is(':empty')).toBe(true);
 });
 });

});

That’s a slightly strange way to begin, but it is something that really should happen.

Let’s introduce element transclusion inside applyDirectivesToNode, where we can add an if-
else construct to separate it from regular transclusion:

if (directive.transclude) {
 if (hasTranscludeDirective) {
 throw 'Multiple directives asking for transclude';
 }
 hasTranscludeDirective = true;
 if (directive.transclude === 'element') {
 $compileNode.remove();
 } else {
 var $transcludedNodes = $compileNode.clone().contents();
 childTranscludeFn = compile($transcludedNodes);
 $compileNode.empty();
 }
}

This element does not just disappear, however. Instead, an HTML comment gets introduced in its
place. The comment contains the directive name, followed by a colon character, followed by two space
characters:

test/compile_spec.js
it('replaces the element with a comment', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: 'element'
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div><div my-transcluder></div></div>');

 $compile(el);

 expect(el.html()).toEqual('<!-- myTranscluder: -->');
 });
});

Full Element Transclusion 30

955 Errata© Tero Parviainen 2016

Notice that we wrap the element with the directive into an outer <div> so that we can more easily
inspect what happened.

We can create this comment using the standard DOM document.createComment() function.
We can then replace the current node with this new comment node, using the jQuery/jqLite re-
placeWith() function. This function manipulates the DOM so that the comment goes where the
original element used to be.

Note that this does not replace the internal contents of the $compileNode variable itself, though
based on the API it may look like that. $compileNode will keep holding the original element.

src/compile.js
if (directive.transclude) {
 if (hasTranscludeDirective) {
 throw 'Multiple directives asking for transclude';
 }
 hasTranscludeDirective = true;
 if (directive.transclude === 'element') {
 $compileNode.replaceWith(
 $(document.createComment(' ' + directive.name + ': ')));
 } else {
 var $transcludedNodes = $compileNode.clone().contents();
 childTranscludeFn = compile($transcludedNodes);
 $compileNode.empty();
 }
}

One additional piece of information we should add to the generated HTML comment is the direc-
tive attribute’s value, if there was one on the original element. The comment we generate essential-
ly becomes one that looks like the original directive had been applied as a comment directive:

test/compile_spec.js
it('includes directive attribute value in comment', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {transclude: 'element'};
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div><div my-transcluder=42></div></div>');

 $compile(el);

 expect(el.html()).toEqual('<!-- myTranscluder: 42 -->');
 });
});

Full Element Transclusion 30

956 Errata© Tero Parviainen 2016

We can just grab the corresponding attribute from the current Attributes object to make this test
pass:

src/compile.js
if (directive.transclude === 'element') {
 $compileNode.replaceWith($(document.createComment(
 ' ' + directive.name + ': ' +attrs[directive.name] + ' '
)));
} else {
 // ...
}

If we replace the element with a comment node in the DOM, what exactly should we pass to the
directive’s compile and link functions? We actually pass in the comment node. So when you have
a directive with transclude: ‘element’, peculiarly enough it always gets compiled and linked
with a comment node:

test/compile_spec.js
it('calls directive compile and link with comment', function() {
 var gotCompiledEl, gotLinkedEl;
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: 'element',
 compile: function(compiledEl) {
 gotCompiledEl = compiledEl;
 return function(scope, linkedEl) {
 gotLinkedEl = linkedEl;
 };
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div><div my-transcluder></div></div>');

 $compile(el)($rootScope);

 expect(gotCompiledEl[0].nodeType).toBe(Node.COMMENT_NODE);
 expect(gotLinkedEl[0].nodeType).toBe(Node.COMMENT_NODE);
 });
});

The trick we need to apply here is to replace the $compileNode variable with one that holds the
new HTML comment, since that’s what will eventually be given to compile and link functions. So
let’s reinitialize $compileNode, but before that, store its original value (the original element) in
another variable:

src/compile.js

Full Element Transclusion 30

957 Errata© Tero Parviainen 2016

if (directive.transclude === 'element') {
 var $originalCompileNode = $compileNode;
 $compileNode = $(document.createComment(
 ' ' + directive.name + ': ' + attrs[directive.name] + ' '
));
 $originalCompileNode.replaceWith($compileNode);
} else {
 // ...
}

So at this point $originalCompileNode will contain the original element that had the directive,
and $compileNode will contain the genrated comment. The original element isn’t attached any-
where, and the comment is attached wherever the original element originally was.

Interestingly though, if there are lower priority directives on the same element, they should still get
compiled too, even though we’ve removed the element from the DOM:

test/compile_spec.js
it('calls lower priority compile with original', function() {
 var gotCompiledEl;
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 priority: 2,
 transclude: 'element'
 };
 },
 myOtherDirective: function() {
 return {
 priority: 1,
 compile: function(compiledEl) {
 gotCompiledEl = compiledEl;
 }
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $('<div><div my-transcluder my-other-directive></div></div>');

 $compile(el);

 expect(gotCompiledEl[0].nodeType).toBe(Node.ELEMENT_NODE);
 });
});

While these directives do get compiled in the current implementation, it happens with the com-
ment node, which is a bit strange since they are not even present on that comment node. The test
above fails because it expects the compilation to occur on an element node, not a comment node.

Full Element Transclusion 30

958 Errata© Tero Parviainen 2016

In addition to this, any directives on child elements of the original element should also be com-
piled:

test/compile_spec.js
it('calls compile on child element directives', function() {
 var compileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: 'element'
 };
 },
 myOtherDirective: function() {
 return {
 compile: compileSpy
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $(
 '<div><div my-transcluder><div my-other-directive></div></div></div>');

 $compile(el);

 expect(compileSpy).toHaveBeenCalled();
 });
});

How do we fulfill these requirements? What we need to do is split this compilation into two: We
need to stop the current compilation on the current directive, so that it is the last thing that will get
compiled. Then we’ll launch another compilation for the element we just replaced.

To stop the current compilation, we can use the terminal priority support we already have, by set-
ting the terminal priority to the current directive’s priority:

src/compile.js
if (directive.transclude === 'element') {
 var $originalCompileNode = $compileNode;
 $compileNode = $(document.createComment(
 ' ' + directive.name + ': ' + attrs[directive.name] + ' '
));
 $originalCompileNode.replaceWith($compileNode);
 terminalPriority = directive.priority;
} else {
 // ...
}

Now the lower-priority directives on the original element won’t get compiled, nor will anything in
the original element’s child nodes. Our latest test cases are still failing, but now failing a bit differ-

Full Element Transclusion 30

959 Errata© Tero Parviainen 2016

ently.

Now we’ll launch the second compilation on the element we just replaced:

src/compile.js
if (directive.transclude === 'element') {
 var $originalCompileNode = $compileNode;
 $compileNode = $(document.createComment(
 ' ' + directive.name + ': ' + attrs[directive.name] + ' '
));
 $originalCompileNode.replaceWith($compileNode);
 terminalPriority = directive.priority;
 compile($originalCompileNode);
} else {
 // ...
}

Here we have introduced a big problem though, which you’ll notice when running the test suite
after this change. When we call compile on the original node, it’ll find our element transclusion
directive again and redo this same logic for a second time. It will keep doing this until it blows the
stack. The unfortunate end result is that the test runner crashes or at least slows to a crawl.

We need to somehow let that second compilation know that it should only compile directives with
lower priority than what the transclusion directive had. The higher priority ones were already com-
piled on the first run.

The first step to doing that is to pass the current directive’s priority into the recursive compile
invocation:

src/compile.js
if (directive.transclude === 'element') {
 var $originalCompileNode = $compileNode;
 $compileNode = $(document.createComment(
 ' ' + directive.name + ': ' + attrs[directive.name] + ' '
));
 $originalCompileNode.replaceWith($compileNode);
 terminalPriority = directive.priority;
 compile($originalCompileNode, terminalPriority);
} else {
 // ...
}

The compile function receives this argument as an argument called maxPriority. It passes it on
to compileNodes:

src/compile.js
function compile($compileNodes, maxPriority) {

Full Element Transclusion 30

960 Errata© Tero Parviainen 2016

 var compositeLinkFn = compileNodes($compileNodes, maxPriority);

 // ...

}

In compileNodes we pass the argument on to collectDirectives:

src/compile.js
function compileNodes($compileNodes, maxPriority) {
 var linkFns = [];
 _.forEach($compileNodes, function(node, i) {
 var attrs = new Attributes($(node));
 var directives = collectDirectives(node, attrs, maxPriority);
 // ...
 });

 // ...
}

Note that we do not pass the max priority to the recursive compileNodes call for the element’s
children. When used, maxPriority only applies to the root element of the compilation, whereas
in child elements all directives are compiled regardless of priority.

In collectDirectives we pass the argument onward one more time, to each invocation of the
addDirective function:

src/compile.js
function collectDirectives(node, attrs, maxPriority) {
 var directives = [];
 var match;
 if (node.nodeType === Node.ELEMENT_NODE) {
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName, 'E', maxPriority);
 _.forEach(node.attributes, function(attr) {
 var attrStartName, attrEndName;
 var name = attr.name;
 var normalizedAttrName = directiveNormalize(name.toLowerCase());
 var isNgAttr = /^ngAttr[A-Z]/.test(normalizedAttrName);
 if (isNgAttr) {
 name = _.kebabCase(
 normalizedAttrName[6].toLowerCase() +
 normalizedAttrName.substring(7)
);
 normalizedAttrName = directiveNormalize(name.toLowerCase());
 }

 attrs.$attr[normalizedAttrName] = name;

 var directiveNName = normalizedAttrName.replace(/(Start|End)$/, '');

Full Element Transclusion 30

961 Errata© Tero Parviainen 2016

 if (directiveIsMultiElement(directiveNName)) {
 if (/Start$/.test(normalizedAttrName)) {
 attrStartName = name;
 attrEndName = name.substring(0, name.length - 5) + 'end';
 name = name.substring(0, name.length - 6);
 }
 }
 normalizedAttrName = directiveNormalize(name.toLowerCase());
 addDirective(
 directives, normalizedAttrName, 'A', maxPriority,
 attrStartName, attrEndName);
 if (isNgAttr || !attrs.hasOwnProperty(normalizedAttrName)) {
 attrs[normalizedAttrName] = attr.value.trim();
 if (isBooleanAttribute(node, normalizedAttrName)) {
 attrs[normalizedAttrName] = true;
 }
 }

 });
 var className = node.className;
 if (_.isString(className) && !_.isEmpty(className)) {
 while ((match = /([\d\w\-_]+)(?:\:([^;]+))?;?/.exec(className))) {
 var normalizedClassName = directiveNormalize(match[1]);
 if (addDirective(directives, normalizedClassName, 'C', maxPriority)) {
 attrs[normalizedClassName] = match[2] ? match[2].trim() : undefined;
 }
 className = className.substr(match.index + match[0].length);
 }
 }
 } else if (node.nodeType === Node.COMMENT_NODE) {
 match = /^\s*directive\:\s*([\d\w\-_]+)\s*(.*)$/.exec(node.nodeValue);
 if (match) {
 var normalizedName = directiveNormalize(match[1]);
 if (addDirective(directives, normalizedName, 'M', maxPriority)) {
 attrs[normalizedName] = match[2] ? match[2].trim() : undefined;
 }
 }
 }
 directives.sort(byPriority);
 return directives;
}

Finally, in addDirective we actually do something about this argument. If given, it means we’re
only interested in directives with a numerically lower priority:

src/compile.js
function addDirective(
 directives, name, mode, maxPriority, attrStartName, attrEndName) {
 var match;
 if (hasDirectives.hasOwnProperty(name)) {
 var foundDirectives = $injector.get(name + 'Directive');

Full Element Transclusion 30

962 Errata© Tero Parviainen 2016

 var applicableDirectives = _.filter(foundDirectives, function(dir) {
 return (maxPriority === undefined || maxPriority > dir.priority) &&
 dir.restrict.indexOf(mode) !== -1;
 });
 // ...
 }
 return match;
}

In our current use case, this causes the directive with the element transclusion (and any higher-pri-
ority directives), to be ignored in the recursive transclusion compilation.

Since maxPriority is an argument of the public API of the compile service, you can also pass one your-
self when you’re doing manual compilation, if you ever find reason for it.

So as we’ve seen, in the case of element transclusion, directives in child nodes get compiled as part
of the second, recursive compilation. But there’s something fishy going on, which becomes appar-
ent when we check how many times the compile function of a child element directive gets called.
We would expect it to be one:
src/compile.js
it('compiles original element contents once', function() {
 var compileSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {transclude: 'element'};
 },
 myOtherDirective: function() {
 return {
 compile: compileSpy
 };
 }
 });
 injector.invoke(function($compile) {
 var el = $(
 '<div><div my-transcluder><div my-other-directive></div></div></div>');

 $compile(el);

 expect(compileSpy.calls.count()).toBe(1);
 });
});

It is in fact not one but two. Why is that?

This is caused by a subtle bug in the compileNodes function, where we loop over each node in
the node collection. We’re using the loop variable node to hold the node we’re currently at. When
and if that node gets replaced by a comment in applyDirectivesToNode, the local variable
node in the compileNodes loop does not get replaced, and the children of the original node still

Full Element Transclusion 30

963 Errata© Tero Parviainen 2016

get compiled, even though that node is now gone from the DOM.

We can fix this by not using a separate loop variable for the node, but by instead always refer-
ring to the node through its index in the node collection. That way, when the node gets replaced,
we also start automatically using the replacement node. So we should change the loop from a
_.forEach loop to a _.times loop and use the array index to refer to the current node:

src/compile.js
function compileNodes($compileNodes, maxPriority) {
 var linkFns = [];
 _.times($compileNodes.length, function(i) {
 var attrs = new Attributes($($compileNodes[i]));
 var directives = collectDirectives($compileNodes[i], attrs, maxPriority);
 var nodeLinkFn;
 if (directives.length) {
 nodeLinkFn = applyDirectivesToNode(directives, $compileNodes[i], attrs);
 }
 var childLinkFn;
 if ((!nodeLinkFn || !nodeLinkFn.terminal) &&
 $compileNodes[i].childNodes && $compileNodes[i].childNodes.length) {
 childLinkFn = compileNodes($compileNodes[i].childNodes);
 }
 if (nodeLinkFn && nodeLinkFn.scope) {
 attrs.$$element.addClass('ng-scope');
 }
 if (nodeLinkFn || childLinkFn) {
 linkFns.push({
 nodeLinkFn: nodeLinkFn,
 childLinkFn: childLinkFn,
 idx: i
 });
 }
 });

 // ...
}

And now we can finally discuss how all of this makes full element transclusion possible.

The original element that was replaced by the comment should be made available through the
transclusion function to the transclusion directive, so that it can link clones of the original when it
needs to, and as many times as it needs to. For example, here’s a test directive that links and at-
taches two copies of the original content:

test/compile_spec.js
it('makes original element available for transclusion', function() {
 var injector = makeInjectorWithDirectives({
 myDouble: function() {
 return {

Full Element Transclusion 30

964 Errata© Tero Parviainen 2016

 transclude: 'element',
 link: function(scope, el, attrs, ctrl, transclude) {
 transclude(function(clone) {
 el.after(clone);
 });
 transclude(function(clone) {
 el.after(clone);
 });
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div><div my-double>Hello</div>');

 $compile(el)($rootScope);

 expect(el.find('[my-double]').length).toBe(2);
 });
});

This is essentially a directive that duplicates an element - complete with all the directives in it. It is
easy to see how this could be extended to something like an ngRepeat directive, which is precisely
what element transclusion is designed for!

There’s just one simple piece of the puzzle we’re missing before this will work. The return value of
the recursive compile call should become the transclusion function:

src/compile.js
if (directive.transclude === 'element') {
 var $originalCompileNode = $compileNode;
 $compileNode = $(document.createComment(
 ' ' + directive.name + ': ' + attrs[directive.name] + ' '
));
 $originalCompileNode.replaceWith($compileNode);
 terminalPriority = directive.priority;
 childTranscludeFn = compile($originalCompileNode, terminalPriority);
} else {
 var $transcludedNodes = $compileNode.clone().contents();
 childTranscludeFn = compile($transcludedNodes);
 $compileNode.empty();
}

And that connects the dots!

To recap, the implementation of full element transclusion is pretty much the same as that of regu-
lar transclusion:

• In regular transclusion the child nodes become the transclusion content, and are compiled sepa-

Full Element Transclusion 30

965 Errata© Tero Parviainen 2016

rately and made available through the transclusion function.
• In full element transclusion the element itself becomes the transclusion content. All lower prior-

ity directives on the current element as well as all child elements are compiled separately and
made available through the transclusion function.

Two different use cases with very similar implementations.

There’s one final inconsistency we need to iron out before our element transclusion implementa-
tion is complete: While the compile and link functions of the transclusion directive now receive
the comment node as the element, they are still able to manipulate the attributes of the original el-
ement through the Attributes object. That should not be possible, since the original element is now
in the domain of the transclusion:

test/compile_spec.js
it('sets directive attributes element to comment', function() {
 var injector = makeInjectorWithDirectives({
 myTranscluder: function() {
 return {
 transclude: 'element',
 link: function(scope, element, attrs, ctrl, transclude) {
 attrs.$set('testing', '42');
 element.after(transclude());
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div><div my-transcluder></div></div>');

 $compile(el)($rootScope);

 expect(el.find('[my-transcluder]').attr('testing')).toBeUndefined();
 });
});

We can make things consistent by replacing not only $compileNode but the element inside the
Attributes object:

src/compile.js
if (directive.transclude === 'element') {
 var $originalCompileNode = $compileNode;
 $compileNode = attrs.$$element = $(document.createComment(
 ' ' + directive.name + ': ' + attrs[directive.name] + ' '
));
 $originalCompileNode.replaceWith($compileNode);
 terminalPriority = directive.priority;
 childTranscludeFn = compile($originalCompileNode, terminalPriority);
} else {
 // ...

Requiring Controllers from Transcluded Directives 30

966 Errata© Tero Parviainen 2016

}

Requiring Controllers from Transcluded Directives

In the chapter about controllers we also implemented the require configuration option, using
which you can access some other directive’s controller from the current element or an ancestor
element. How does this fit in with transclusion, where an element may be shifted from one place
to another, causing its DOM ancestry to also change?

With regular transclusion, everything is just fine, as ancestor elements can still be found by walk-
ing the DOM. But with full element transclusion, we have an issue. If there’s a controller on some
directive on the same element where we have an element transclusion directive, and we try to
require that controller from inside the transclusion, it does not work:

tst/compile_spec.js
it('supports requiring controllers', function() {
 var MyController = function() { };
 var gotCtrl;
 var injector = makeInjectorWithDirectives({
 myCtrlDirective: function() {
 return {controller: MyController};
 },
 myTranscluder: function() {
 return {
 transclude: 'element',
 link: function(scope, el, attrs, ctrl, transclude) {
 el.after(transclude());
 }
 };
 },
 myOtherDirective: function() {
 return {
 require: '^myCtrlDirective',
 link: function(scope, el, attrs, ctrl, transclude) {
 gotCtrl = ctrl;
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $(
 '<div><div my-ctrl-directive my-transcluder><div my-other-directive></div></
div>');

 $compile(el)($rootScope);

 expect(gotCtrl).toBeDefined();
 expect(gotCtrl instanceof MyController).toBe(true);
 });

Requiring Controllers from Transcluded Directives 30

967 Errata© Tero Parviainen 2016

});

The reason for this is that the element with the controller now becomes an HTML comment,
which does not support jQuery data, and is also not in the transcluded content’s ancestry (they’re
siblings instead). So our normal require implementation does not cut it.

What we need to do is explicitly give references to the controllers to the element that eventually
gets transcluded. We also need to do this in JavaScript, since jQuery data isn’t available to us.

Firstly, let’s add a variable to applyDirectivesToNode that marks if an element transclusion
directive is present on the current node.

src/compile.js
function applyDirectivesToNode(
 directives, compileNode, attrs, previousCompileContext) {
 previousCompileContext = previousCompileContext || {};
 var $compileNode = $(compileNode);
 var terminalPriority = -Number.MAX_VALUE;
 var terminal = false;
 var preLinkFns = previousCompileContext.preLinkFns || [];
 var postLinkFns = previousCompileContext.postLinkFns || [];
 var controllers = {};
 var newScopeDirective;
 var newIsolateScopeDirective = previousCompileContext.newIsolateScopeDirective;
 var templateDirective = previousCompileContext.templateDirective;
 var controllerDirectives = previousCompileContext.controllerDirectives;
 var childTranscludeFn;
 var hasTranscludeDirective = previousCompileContext.hasTranscludeDirective;
 var hasElementTranscludeDirective;

 // ...
}

Let’s also set this flag when we see an element transclusion directive:

src/compile.js
if (directive.transclude === 'element') {
 hasElementTranscludeDirective = true;
 var $originalCompileNode = $compileNode;
 $compileNode = attrs.$$element = $(document.createComment(
 ' ' + directive.name + ': ' + attrs[directive.name] + ' '
));
 $originalCompileNode.replaceWith($compileNode);
 terminalPriority = directive.priority;
 childTranscludeFn = compile($originalCompileNode, terminalPriority);
} else {
 // ...
}

Requiring Controllers from Transcluded Directives 30

968 Errata© Tero Parviainen 2016

In the scope-bound transclusion function, we’ll pass a new argument to the inner bound transclu-
sion function (but only if this is a full element transclusion). The argument will be the object of all
the controllers on this element:

src/compile.js
function scopeBoundTranscludeFn(transcludedScope, cloneAttachFn) {
 var transcludeControllers;
 if (!transcludedScope || !transcludedScope.$watch ||
 !transcludedScope.$evalAsync) {
 cloneAttachFn = transcludedScope;
 transcludedScope = undefined;
 }
 if (hasElementTranscludeDirective) {
 transcludeControllers = controllers;
 }
 return boundTranscludeFn(
 transcludedScope, cloneAttachFn, transcludeControllers, scope);
}
scopeBoundTranscludeFn.$$boundTransclude = boundTranscludeFn;

In the bound transclusion function, we should now receive this argument and pass it on to the
original transclusion function (the public link function of the transcluded content), as part of the
options object:

src/compile.js
var boundTranscludeFn;
if (linkFn.nodeLinkFn.transcludeOnThisElement) {
 boundTranscludeFn = function(
 transcludedScope, cloneAttachFn, transcludeControllers, containingScope) {
 if (!transcludedScope) {
 transcludedScope = scope.$new(false, containingScope);
 }
 return linkFn.nodeLinkFn.transclude(transcludedScope, cloneAttachFn, {
 transcludeControllers: transcludeControllers
 });
 };
} else if (parentBoundTranscludeFn) {
 boundTranscludeFn = parentBoundTranscludeFn;
}

Finally, in the public link function we’ll grab any transcluded controllers from the options object,
and attach them as jQuery data to the transcluded node. This means that references to the control-
lers are made discoverable by directives inside this transcluded clone, using the normal require
discovery mechanism:

src/compile.js
return function publicLinkFn(scope, cloneAttachFn, options) {
 options = options || {};
 var parentBoundTranscludeFn = options.parentBoundTranscludeFn;

Summary 30

969 Errata© Tero Parviainen 2016

 var transcludeControllers = options.transcludeControllers;
 if (parentBoundTranscludeFn && parentBoundTranscludeFn.$$boundTransclude) {
 parentBoundTranscludeFn = parentBoundTranscludeFn.$$boundTransclude;
 }
 var $linkNodes;
 if (cloneAttachFn) {
 $linkNodes = $compileNodes.clone();
 cloneAttachFn($linkNodes, scope);
 } else {
 $linkNodes = $compileNodes;
 }
 _.forEach(transcludeControllers, function(controller, name) {
 $linkNodes.data('$' + name + 'Controller', controller.instance);
 });
 $linkNodes.data('$scope', scope);
 compositeLinkFn(scope, $linkNodes, parentBoundTranscludeFn);
 return $linkNodes;
};

Recall that the controllers object contains partially constructed controller functions, which means
that to attach the actual controller object to the DOM, we need to use the instance attribute.

Summary

Transclusion is a big topic, both in terms of the complexity of the implemention, and because of
how it is baked into the $compile service: We’ve touched a great number of different parts of the
compile.js code while adding this feature.

What we’ve managed to do while doing that is introduce two important features to the DOM
compiler: The ability to include parts of one template in another (regular transclusion) and the
ability to easily control when and how many copies of a given element are linked and attached
(full element transclusion).

In this chapter you have learned:

• How transclusion causes the contents of an element to be removed from the DOM, separately
compiled, and made available to link and attach later using the transclusion function.

• That the transclusion function is really just a public link function, wrapped inside a couple of
other functions.

• That the transclusion function is available to all directives on the element, not just the one that
asked for transclusion. Even when there is no transclusion directive on an element, the trans-
clusion function of the nearest transcluding parent is received.

• That only one transclusion directive is allowed per element.
• That by default, transcluded contents are linked using a special transclusion scope, that proto-

typally inherits from the surrounding scope so that it has the correct data, but whose $parent
is based on where the transclusion function is called, so that the lifecycle is correct.

Summary 30

970 Errata© Tero Parviainen 2016

• That when a directive author calls the transclusion function, they can choose to provide their
own scope in which case the default transclusion scope is not constructed.

• That the public link function has an “options” argument, through which arguments like
parentBoundTranscludeFn and transcludeControllers can be passed. While they are
mostly used internally by the transclusion system, they can be used when calling the public link
function in other contexts.

• That the transclusion function is available to directive controllers through the $transclude
injection, and that it is the exact same function given to directive link functions as the fifth
argument.

• That the public link function can receive a “clone attach function” that causes a clone of the
original DOM to be linked instead of the original DOM itself. This is useful when, for exam-
ple, you want to link several copies of a DOM that was previously compiled once.

• That you can also pass the clone attach function to the transclude function.
• That when you pass a clone attach function, it will be called with the transcluded DOM and

scope. Also, it will be called before linking occurs so that you can manipulate the DOM and the
scope just before they are linked.

• How transclusion is supported by the asynchronous template loading triggered by templa-
teUrl.

• How transclusion is (kind of) supported by multi-element directives.
• How the ngTransclude directive works - by simply making the core transclusion features

available through a simple declarative interface.
• How full element transclusion has a similar implementation as regular transclusion, but that it

is meant for a completely different purpose.
• That full element transclusion causes the original element to be replaced with a comment, and

the original element with its children to be available through the transclusion function.
• That the public compile function takes a maxPriority argument, used by full element trans-

clusion, but available for other potential use cases as well.
• How controller requiring is enabled for element transclusion

 31

971 Errata© Tero Parviainen 2016

Chapter 22

Interpolation

The $interpolate service 31

972 Errata© Tero Parviainen 2016

Almost every Angular tutorial out there begins with an introduction to data binding, with exam-
ples of JavaScript values being bound to HTML using markup like {{this}}. While we’ve fully
covered change detection and expressions during the course of this book, we haven’t yet talked
about this particular manifestation of those features. This type of markup is called interpolation,
and using it is familiar to every Angular developer.

An interpolation expression consists of double curly braces {{ and }} with an Angular expression
inside. The expression itself is one of those things we implemented in Part 2 of the book. What
interpolation adds to it is a way to easily attach the value of the expression into the DOM, and to
automatically update the DOM when the expression’s value changes over time.

The word “interpolation” comes from a feature called string interpolation that exists in many programming
languages. It refers to the process of replacing placeholders in strings with actual values. This is essentially
what happens in Angular too.

Interpolation builds on the foundations that we have implemented earlier in the book: Watches,
expressions, and directives. In this chapter we bring all of these things together to provide this
higher-level feature.

Download the code for the starting point of this chapter.

The $interpolate service

Much of the functionality required for interpolation is driven by a specialized Angular service
called $interpolate. It also provides a good place for us to begin exploring this feature.

This service is rarely used by application developers directly, because of the way it is integrated
with $compile. We will see how that integration works in this chapter, but first let’s look at some
of those lower level things you can do with $interpolate alone.

What we need to do first is to bootstrap the $interpolate service, with a pattern that’s familiar
by now. We’ll need a test suite, so let’s start by adding that. The very first test for $interpolate
checks that the service does in fact exist:

src/interpolate_spec.js
'use strict';

var publishExternalAPI = require('../src/angular_public');
var createInjector = require('../src/injector');

describe('$interpolate', function() {

 beforeEach(function() {
 delete window.angular;

https://en.wikipedia.org/wiki/String_interpolation
https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter21-directive-transclusion

The $interpolate service 31

973 Errata© Tero Parviainen 2016

 publishExternalAPI();
 });

 it('should exist', function() {
 var injector = createInjector(['ng']);
 expect(injector.has('$interpolate')).toBe(true);
 });

});

Like all our other core services, $interpolate is created by a Provider. Just like with $compile,
what the Provider returns is actually just a function. For now, let’s return an empty one:

src/interpolate.js
'use strict';

function $InterpolateProvider() {

 this.$get = function() {

 function $interpolate() {
 }

 return $interpolate;
 };

}

module.exports = $InterpolateProvider;

Before the service actually springs to life, we still need to include it into the ng module:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = window.angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));
 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
 ngModule.provider('$httpBackend', require('./http_backend'));
 ngModule.provider('$http', require('./http').$HttpProvider);
 ngModule.provider('$httpParamSerializer',
 require('./http').$HttpParamSerializerProvider);
 ngModule.provider('$httpParamSerializerJQLike',
 require('./http').$HttpParamSerializerJQLikeProvider);
 ngModule.provider('$compile', require('./compile'));
 ngModule.provider('$controller', require('./controller'));

Interpolating Strings 31

974 Errata© Tero Parviainen 2016

 ngModule.provider('$interpolate', require('./interpolate'));
 ngModule.directive('ngController',
 require('./directives/ng_controller'));
 ngModule.directive('ngTransclude',
 require('./directives/ng_transclude'));
}

Interpolating Strings

With the infrastructure in place, we can start talking about what this $interpolate function
actually does.

The general contract of this function is that it takes a string, that may or may not include expres-
sions within curly braces {{ }}. It processes that string and returns a function. That function can
later be called to evaluate all the expressions found in the string and to produce the interpolated
result. The function is given a context object (usually a Scope), in which the expressions will be eval-
uated:

var interpolateFn = $interpolate('{{a}} and {{b}}');
interpolateFn({a: 1, b: 2}); // => '1 and 2'

It is notable that this is very similar to how $parse works: Both $interpolate and $parse take
strings that are first “parsed”. The results are functions that can be evaluated in the context of
some Scope. This similarity is not surprising, since $interpolate is actually a layer on top of
$parse: Each of the expressions inside curly braces is individually processed with $parse.

Before we get there though, the very simplest kind of interpolation for us to start with is one that
doesn’t actually include any expressions. When given a simple string, $interpolate should re-
turn a function that produces that same string:

test/interpolate_spec.js
it('produces an identity function for static content', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('hello');
 expect(interp instanceof Function).toBe(true);
 expect(interp()).toEqual('hello');
});

The simplest way to get this test passing is to return a function that returns the original argument:

src/interpolate.js
this.$get = function() {

 function $interpolate(text) {

Interpolating Strings 31

975 Errata© Tero Parviainen 2016

 return function interpolationFn() {
 return text;
 };

 }

 return $interpolate;
};

Now we can start making things more interesting by actually including an interpolated expression.
We should get back a function that evaluates it:

test/interpolate_spec.js
it('evaluates a single expression', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('{{anAttr}}');
 expect(interp({anAttr: '42'})).toEqual('42');
});

Inside $interpolate we can now check if the given text contains the markers {{ and }}. If it
does, we grab the substring in between into a variable called exp:

src/interpolate.js
function $interpolate(text) {
 var startIndex = text.indexOf('{{');
 var endIndex = text.indexOf('}}');
 var exp;
 if (startIndex !== -1 && endIndex !== -1) {
 exp = text.substring(startIndex + 2, endIndex);
 }

 return function interpolationFn() {
 return text;
 };

}

What should we do with that substring? Well, it’s going to be an Angular expression, so we should
parse it! For that we need the $parse service, which we inject and use to obtain an expression
function:

src/interpolate.js
this.$get = ['$parse', function($parse) {

 function $interpolate(text) {
 var startIndex = text.indexOf('{{');

Interpolating Strings 31

976 Errata© Tero Parviainen 2016

 var endIndex = text.indexOf('}}');
 var exp, expFn;
 if (startIndex !== -1 && endIndex !== -1) {
 exp = text.substring(startIndex + 2, endIndex);
 expFn = $parse(exp);
 }

 return function interpolationFn() {
 return text;
 };

 }

 return $interpolate;
}];

At evaluation time we can now check whether we have an expression function or not. If we do, we
should evaluate it, within the context that we were given. If there was no expression in the text, we
still just return the text itself:

src/interpolate.js
return function interpolationFn(context) {
 if (expFn) {
 return expFn(context);
 } else {
 return text;
 }
};

Now we’re getting somewhere. But our implementation is still highly limited, as it can only under-
stand a single expression or static text. Interpolation strings may contain several expressions with
static parts in between, so we should support that.

test/interpolate_spec.js
it('evaluates many expressions', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('First {{anAttr}}, then {{anotherAttr}}!');
 expect(interp({anAttr: '42', anotherAttr: '43'})).toEqual('First 42, then 43!');
});

This means we need to loop over the text and gather any expressions we find while doing it. We
can make a while loop that keeps going until we reach the end of the string. At each turn of the
loop, we find the next expression starting from the current index, or break the loop if there are no
more expressions to be found:

src/interpolate.js

Interpolating Strings 31

977 Errata© Tero Parviainen 2016

function $interpolate(text) {
 var index = 0;
 var startIndex, endIndex, exp, expFn;
 while (index < text.length) {
 startIndex = text.indexOf('{{', index);
 endIndex = text.indexOf('}}', index);
 if (startIndex !== -1 && endIndex !== -1) {
 exp = text.substring(startIndex + 2, endIndex);
 expFn = $parse(exp);
 index = endIndex + 2;
 } else {
 break;
 }
 }

 return function interpolationFn(context) {
 if (expFn) {
 return expFn(context);
 } else {
 return text;
 }
 };

}

This loop finds all the expressions, but we’re not collecting them yet. For that we can add an array
to put all the parts in - called parts. At each turn of the loop, we append both the static text pre-
ceding the expression we found, and then the expression function. If no expression is found, we
just append all the remaining text:

src/interpolate.js
function $interpolate(text) {
 var index = 0;
 var parts = [];
 var startIndex, endIndex, exp, expFn;
 while (index < text.length) {
 startIndex = text.indexOf('{{', index);
 endIndex = text.indexOf('}}', index);
 if (startIndex !== -1 && endIndex !== -1) {
 if (startIndex !== index) {
 parts.push(text.substring(index, startIndex));
 }
 exp = text.substring(startIndex + 2, endIndex);
 expFn = $parse(exp);
 parts.push(expFn);
 index = endIndex + 2;
 } else {
 parts.push(text.substring(index));
 break;
 }
 }

Interpolating Strings 31

978 Errata© Tero Parviainen 2016

 return function interpolationFn(context) {
 if (expFn) {
 return expFn(context);
 } else {
 return text;
 }
 };

}

This gives us an array of all the parts of the interpolation string. Some of the items will be static
strings, and some will be expression functions. What we can then do is go over the array at evalua-
tion time to produce the result.

We’ll reduce the array into a string, at each step checking if the current part is a function or a
string. Functions are evaluated in the given context, while strings are just concatenated as-is:

src/interpolate.js
function $interpolate(text) {
 var index = 0;
 var parts = [];
 var startIndex, endIndex, exp, expFn;
 while (index < text.length) {
 startIndex = text.indexOf('{{', index);
 endIndex = text.indexOf('}}', index);
 if (startIndex !== -1 && endIndex !== -1) {
 if (startIndex !== index) {
 parts.push(text.substring(index, startIndex));
 }
 exp = text.substring(startIndex + 2, endIndex);
 expFn = $parse(exp);
 parts.push(expFn);
 index = endIndex + 2;
 } else {
 parts.push(text.substring(index));
 break;
 }
 }

 return function interpolationFn(context) {
 return _.reduce(parts, function(result, part) {
 if (_.isFunction(part)) {
 return result + part(context);
 } else {
 return result + part;
 }
 }, '');
 };

}

https://lodash.com/docs#reduce

Value Stringification 31

979 Errata© Tero Parviainen 2016

At this point we need LoDash in interpolate.js:

src/interpolate.js
'use strict';

var _ = require('lodash');

And there we have a simple interpolation evaluator!

There’s still one problem though. If you specify an ill-defined expression where the end marker
precedes the start marker, things don’t end up as you’d expect:

test/interpolate_spec.js
it('passes through ill-defined interpolations', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('why u no }}work{{');
 expect(interp({})).toEqual('why u no }}work{{');
});

We can fix this by always finding the end index of the next expression so that it must come after
the start expression. Otherwise we shouldn’t handle it as an expression at all:

src/interpolate.js
while (index < text.length) {
 startIndex = text.indexOf('{{', index);
 if (startIndex !== -1) {
 endIndex = text.indexOf('}}', startIndex + 2);
 }
 if (startIndex !== -1 && endIndex !== -1) {
 if (startIndex !== index) {
 parts.push(text.substring(index, startIndex));
 }
 exp = text.substring(startIndex + 2, endIndex);
 expFn = $parse(exp);
 parts.push(expFn);
 index = endIndex + 2;
 } else {
 parts.push(text.substring(index));
 break;
 }
}

Value Stringification

Value Stringification 31

980 Errata© Tero Parviainen 2016

The results of interpolation are always strings. The same is not true for Angular expressions - they
can return anything. This means that we may need to do something about non-string expression
values during interpolation, to coerce them into strings.

For instance, values that are null or undefined should just become empty strings. You never see a
”null” or ”undefined” string as a result of a curly brace expression:

test/interpolate_spec.js
it('turns nulls into empty strings', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('{{aNull}}');
 expect(interp({aNull: null})).toEqual('');
});

it('turns undefineds into empty strings', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('{{anUndefined}}');
 expect(interp({})).toEqual('');
});

To handle these cases, we’re going to introduce a function called stringify that takes a value
and coerces it into a string. We’ll call it for each expression value we add to the interpolation re-
sult:

src/interpolate.js
return function interpolationFn(context) {
 return _.reduce(parts, function(result, part) {
 if (_.isFunction(part)) {
 return result + stringify(part(context));
 } else {
 return result + part;
 }
 }, '');
};

The first version of this function returns an empty string for null and undefined, as discussed.
Everything else is just coerced into a string using concatenation:

src/interpolate.js
function stringify(value) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return '';
 } else {
 return '' + value;

Value Stringification 31

981 Errata© Tero Parviainen 2016

 }
}

Numbers and booleans should also be coerced into strings:

test/interpolate_spec.js
it('turns numbers into strings', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('{{aNumber}}');
 expect(interp({aNumber: 42})).toEqual('42');
});

it('turns booleans into strings', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('{{aBoolean}}');
 expect(interp({aBoolean: true})).toEqual('true');
});

These test cases are already passing, and that’s because we’re concatenating them into strings and
when that happens JavaScript does what we want for numbers and booleans. We’ll keep the test
cases anyway, to make sure we don’t break things later.

Compound values - arrays and objects - are more challenging. If a compound value is interpolat-
ed, we’d like to be able to see its contents. Arrays and objects don’t have a useful string representa-
tion when just coerced, so what we want to do is turn them into JSON strings instead:

test/interpolate_spec.js
it('turns arrays into JSON strings', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('{{anArray}}');
 expect(interp({anArray: [1, 2, [3]]})).toEqual('[1,2,[3]]');
});

it('turns objects into JSON strings', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('{{anObject}}');
 expect(interp({anObject: {a: 1, b: '2'}})).toEqual('{"a":1,"b":"2"}');
});

This requires us to check if the value is of type object (which both objects and arrays are), and to
use JSON.stringify when that is the case:

Supporting Escaped Interpolation Symbols 31

982 Errata© Tero Parviainen 2016

src/interpolate.js
function stringify(value) {
 if (_.isNull(value) || _.isUndefined(value)) {
 return '';
 } else if (_.isObject(value)) {
 return JSON.stringify(value);
 } else {
 return '' + value;
 }
}

Rendering objects and arrays in the UI like this is rarely needed for production applications, but it
can be useful during development. You can just interpolate a data structure to the DOM and see
what’s in it.

Supporting Escaped Interpolation Symbols

If you ever want to output the characters {{ or }} themselves into the UI, without having them in-
tepreted as interpolation markers, you can do so by escaping each character with a backslash: \{\
{ or \}\}. What we should do in $interpolate when we see these characters is unescape them,
so that what ends up on the screen is {{ or }}.

The Angular documentation actually recommends that user-supplied data returned from the server always
has these characters escaped. This is essentially an Angular-specific extension to OWASP cross-site script-
ing prevention guidelines.

Here is this requirement as a test case. Note that to represent a single backslash character in the
interpolation string, we need to use two in the test JavaScript code:

test/interpolate_spec.js
it('unescapes escaped sequences', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('\\{\\{expr\\}\\} {{expr}} \\{\\{expr\\}\\}');
 expect(interp({expr: 'value'})).toEqual('{{expr}} value {{expr}}');
});

Each time we insert static content in the parts array, we’re going to run it through a helper func-
tion called unescapeText that processes these escape sequences:

src/interpolate.js
while (index < text.length) {
 startIndex = text.indexOf('{{', index);

https://goo.gl/ehCLbK
https://goo.gl/ehCLbK
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet#RULE_.231_-_HTML_Escape_Before_Inserting_Untrusted_Data_into_HTML_Element_Content
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet#RULE_.231_-_HTML_Escape_Before_Inserting_Untrusted_Data_into_HTML_Element_Content

Skipping Interpolation When There Are No Expressions 31

983 Errata© Tero Parviainen 2016

 if (startIndex !== -1) {
 endIndex = text.indexOf('}}', startIndex + 2);
 }
 if (startIndex !== -1 && endIndex !== -1) {
 if (startIndex !== index) {
 parts.push(unescapeText(text.substring(index, startIndex)));
 }
 exp = text.substring(startIndex + 2, endIndex);
 expFn = $parse(exp);
 parts.push(expFn);
 index = endIndex + 2;
 } else {
 parts.push(unescapeText(text.substring(index)));
 break;
 }
}

This helper function can use a couple of regular expression replacements to turn the escape se-
quences into their unescaped counterparts:

src/interpolate.js
function unescapeText(text) {
 return text.replace(/\\{\\{/g, '{{')
 .replace(/\\}\\}/g, '}}');
}

Skipping Interpolation When There Are No Expressions

The way the $interpolate function currently works is that it always returns a function, whether
there’s actually something to interpolate or not. This makes a nice and consistent API.

For performance reasons though, it can be useful to not make an interpolation function if there’s
nothing to interpolate. Interpolation functions may end up being called a lot since they often end
up in watchers, so it makes sense to think about these kinds of optimizations.

To enable this optimization, you can pass a boolean flag that we’ll call mustHaveExpressions as
the second argument to $interpolate. When it’s set to true, we’ll only return a function if there
were expressions in the string.

test/interpolate_spec.js
it('does not return function when flagged and no expressions', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('static content only', true);
 expect(interp).toBeFalsy();
});

Skipping Interpolation When There Are No Expressions 31

984 Errata© Tero Parviainen 2016

We should probably still make sure a function is returned when there are expressions in the string,
even when the flag is set:

test/interpolate_spec.js
it('returns function when flagged and has expressions', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');

 var interp = $interpolate('has an {{expr}}', true);
 expect(interp).not.toBeFalsy();
});

So, $interpolate should take this mustHaveExpressions flag as an argument. We’ll also in-
troduce an internal flag for marking whether any expressions were found in the text. Then we only
return the interpolation function if there were expressions or if none were required:

src/interpolate.js
function $interpolate(text, mustHaveExpressions) {
 var index = 0;
 var parts = [];
 var hasExpressions = false;
 var startIndex, endIndex, exp, expFn;
 while (index < text.length) {
 startIndex = text.indexOf('{{', index);
 if (startIndex !== -1) {
 endIndex = text.indexOf('}}', startIndex + 2);
 }
 if (startIndex !== -1 && endIndex !== -1) {
 if (startIndex !== index) {
 parts.push(unescapeText(text.substring(index, startIndex)));
 }
 exp = text.substring(startIndex + 2, endIndex);
 expFn = $parse(exp);
 parts.push(expFn);
 hasExpressions = true;
 index = endIndex + 2;
 } else {
 parts.push(unescapeText(text.substring(index)));
 break;
 }
 }

 if (hasExpressions || !mustHaveExpressions) {
 return function interpolationFn(context) {
 return _.reduce(parts, function(result, part) {
 if (_.isFunction(part)) {
 return result + stringify(part(context));
 } else {
 return result + part;

Text Node Interpolation 31

985 Errata© Tero Parviainen 2016

 }
 }, '');
 };
 }

}

We’ll return to the $interpolate service later in the chapter to add a few more features, but this
is all we need for the time being.

Text Node Interpolation

Now that we have a usable implementation of the interpolation service, we can start talking about
how it’s integrated to the rest of the Angular framework.

The most important of the use cases for interpolation is embedding expressions in the DOM,
either on your host HTML page or in template files. The natural place to process these kinds of
interpolations is in $compile, because it has to walk over the DOM for the purpose of processing
directives anyway. That means we’re going to add interpolation support to compile.js.

There are two places in HTML where interpolation expressions can be used. You can have expres-
sions embedded as text in the HTML:

<div>Your username is {{user.username}}</div>

This is called text node interpolation, as these expressions will end up in DOM text nodes, as op-
posed to element or comment nodes.

There is also interpolation inside element attributes:

This is called - unsurprisingly - attribute interpolation.

We’ll start with text node interpolation, since it is easier to implement.

When there is an interpolated expression in some text node, it is replaced by the expression’s val-
ue, as evaluated on the scope surrounding the text node. Furthermore, that expression is watched so
that when its value changes, the text node’s content also updates. Here’s our first test case for this
(in compile_test.js):

src/compile.js
describe('interpolation', function() {

 it('is done for text nodes', function() {

Text Node Interpolation 31

986 Errata© Tero Parviainen 2016

 var injector = makeInjectorWithDirectives({});
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div>My expression: {{myExpr}}</div>');
 $compile(el)($rootScope);

 $rootScope.$apply();
 expect(el.html()).toEqual('My expression: ');

 $rootScope.myExpr = 'Hello';
 $rootScope.$apply();
 expect(el.html()).toEqual('My expression: Hello');
 });
 });

});

The way we’re going to do this is that whenever we encounter a text node during compilation,
we’re going to generate a directive on the fly and add it to the directives of that text node. In the gener-
ated directive we can then execute our interpolation logic.

We haven’t done anything with text nodes before, since the collectDirectives function is only
interested in the node types Node.ELEMENT_NODE and Node.COMMENT_NODE. We aren’t currently
applying any directives to any other node types. Now this is going to change, as we’re adding a
new branch to that function for text nodes:

src/compile.js
function collectDirectives(node, attrs, maxPriority) {
 var directives = [];
 var match;
 if (node.nodeType === Node.ELEMENT_NODE) {
 // ...
 } else if (node.nodeType === Node.COMMENT_NODE) {
 // ...
 } else if (node.nodeType === Node.TEXT_NODE) {

 }
 directives.sort(byPriority);
 return directives;
}

In this branch we’re going to invoke a new function called addTextInterpolateDirective that
will generate and attach the new directive for us. It takes the directive collection and the node’s
text value as arguments:

src/compile.js
} else if (node.nodeType === Node.TEXT_NODE) {
 addTextInterpolateDirective(directives, node.nodeValue);
}

Text Node Interpolation 31

987 Errata© Tero Parviainen 2016

The first thing this new function (which you can add just below the addDirective function) does
is call the $interpolate service to generate the interpolation function. The input for interpola-
tion is just the node’s text value. We’ll enable the mustHaveExpressions flag so that if there is
nothing to interpolate, no function will be returned:

src/compile.js
function addTextInterpolateDirective(directives, text) {
 var interpolateFn = $interpolate(text, true);
}

This requires us to inject the $interpolate service as a new dependency to $compile:

src/compile.js
this.$get = ['$injector', '$parse', '$controller', '$rootScope',
 '$http', '$interpolate',
 function($injector, $parse, $controller, $rootScope, $http, $interpolate) {

If $interpolate does return an interpolation function, we’re going to generate the directive men-
tioned earlier, and add it to the directives collection:

src/compile.js
function addTextInterpolateDirective(directives, text) {
 var interpolateFn = $interpolate(text, true);
 if (interpolateFn) {
 directives.push({
 priority: 0,
 compile: function() {
 return function link(scope, element) {

 };
 }
 });
 }
}

Since we’re creating this directive internally, it doesn’t go through normal directive registration
where default values for priority and compile would be populated. This means we have to de-
fine them here. The priority isn’t really significant since there cannot be any other directives on the
text node, but we add it for consistency anyway.

Now that we’ve added this directive, it will get compiled by applyDirectivesToNode and linked
by the node link function, just like any other directive.

In the link function we’ll start watching the interpolated value on the current scope. Conveniently,
we can just use the interpolation function as the watch function directly, since it fulfills the watch
contract: It takes a Scope as an argument and returns the interpolated value. It is exactly that val-

Text Node Interpolation 31

988 Errata© Tero Parviainen 2016

ue that we want to detect changes on. In the listener function we then replace the text node’s value
with the interpolation result.

src/compile.js
function addTextInterpolateDirective(directives, text) {
 var interpolateFn = $interpolate(text, true);
 if (interpolateFn) {
 directives.push({
 priority: 0,
 compile: function() {
 return function link(scope, element) {
 scope.$watch(interpolateFn, function(newValue) {
 element[0].nodeValue = newValue;
 });
 };
 }
 });
 }
}

And that’s all we need to make {{expressions}} work in text nodes!

Angular does do a couple of additional things to text nodes during this process. They are mostly
done to aid development and introspection tools like Batarang, to make information about inter-
polations available through the DOM. For instance, whenever there is an interpolation in a text
node, an ng-binding CSS class is added to its parent element:

test/compile_spec.js
it('adds binding class to text node parents', function() {
 var injector = makeInjectorWithDirectives({});
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div>My expression: {{myExpr}}</div>');
 $compile(el)($rootScope);

 expect(el.hasClass('ng-binding')).toBe(true);
 });
});

Our generated text interpolation directive can simply add this class to the current element’s parent
during linking:

src/compile.js
return function link(scope, element) {
 element.parent().addClass('ng-binding');
 scope.$watch(interpolateFn, function(newValue) {
 element[0].nodeValue = newValue;
 });
};

https://github.com/angular/angularjs-batarang

Text Node Interpolation 31

989 Errata© Tero Parviainen 2016

Also added to the parent element is a list of all the actual expressions that are being interpolated.
They are attached to a jQuery data attribute called $binding. Its value is an array of all expres-
sions in the text node children of the element:

test/compile_spec.js
it('adds binding data to text node parents', function() {
 var injector = makeInjectorWithDirectives({});
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div>{{myExpr}} and {{myOtherExpr}}</div>');
 $compile(el)($rootScope);

 expect(el.data('$binding')).toEqual(['myExpr', 'myOtherExpr']);
 });
});

We’re going to assume that the expressions used in a given interpolation function will be attached
to an attribute called expressions on the function:

src/compile.js
return function link(scope, element) {
 element.parent().addClass('ng-binding')
 .data('$binding', interpolateFn.expressions);

 scope.$watch(interpolateFn, function(newValue) {
 element[0].nodeValue = newValue;
 });
};

Since that attribute isn’t there yet, we need to add it. Let’s first change things in the $interpolate
function so that the hasExpressions boolean flag is replaced by an actual array in which we
collect all the expressions:

src/interpolate.js
function $interpolate(text, mustHaveExpressions) {
 var index = 0;
 var parts = [];
 var expressions = [];
 var startIndex, endIndex, exp, expFn;
 while (index < text.length) {
 startIndex = text.indexOf('{{', index);
 if (startIndex !== -1) {
 endIndex = text.indexOf('}}', startIndex + 2);
 }
 if (startIndex !== -1 && endIndex !== -1) {
 if (startIndex !== index) {
 parts.push(unescapeText(text.substring(index, startIndex)));
 }
 exp = text.substring(startIndex + 2, endIndex);

Text Node Interpolation 31

990 Errata© Tero Parviainen 2016

 expFn = $parse(exp);
 parts.push(expFn);
 expressions.push(exp);
 index = endIndex + 2;
 } else {
 parts.push(unescapeText(text.substring(index)));
 break;
 }
 }

 if (expressions.length || !mustHaveExpressions) {
 return function interpolationFn(context) {
 return _.reduce(parts, function(result, part) {
 if (_.isFunction(part)) {
 return result + stringify(part(context));
 } else {
 return result + part;
 }
 }, '');
 };
 }

}

Now to fulfill the new requirement we have in $compile, we can just attach this expressions
array to the interpolation function that we return. We’ll use lodash _.extend to attach it:

src/interpolate.js
return _.extend(function interpolationFn(context) {
 return _.reduce(parts, function(result, part) {
 if (_.isFunction(part)) {
 return result + stringify(part(context));
 } else {
 return result + part;
 }
 }, '');
}, {
 expressions: expressions
});

We’ve still got a slight problem with the $binding data attribute, which we can reveal by using
two text nodes separated by an element node under the same parent:

test/compile_spec.js
it('adds binding data to parent from multiple text nodes', function() {
 var injector = makeInjectorWithDirectives({});
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div>{{myExpr}} and {{myOtherExpr}}</div>');
 $compile(el)($rootScope);

https://lodash.com/docs#assign

Attribute Interpolation 31

991 Errata© Tero Parviainen 2016

 expect(el.data('$binding')).toEqual(['myExpr', 'myOtherExpr']);
 });
});

We have two separate text nodes here, both of which have the same parent. We need the parent
node’s $binding data to include all expressions from all text node children, but as the test shows,
it currently only inludes them from the last one. The reason is that we’re replacing the $binding
data each time we link one of the text interpolation directives. We have to assume the data attri-
bute may already exist and keep the previous contents:

src/compile.js
return function link(scope, element) {
 var bindings = element.parent().data('$binding') || [];
 bindings = bindings.concat(interpolateFn.expressions);
 element.parent().data('$binding', bindings);
 element.parent().addClass('ng-binding');

 scope.$watch(interpolateFn, function(newValue) {
 element[0].nodeValue = newValue;
 });
};

Just like the ng-scope class and $scope data attribute we implemented earlier, in the original AngularJS
the ng-binding class and $binding data are only attached when the debugInfoEnabled flag hasn’t
been set to false.

Attribute Interpolation

The second kind of interpolation that can be done in the DOM is inside attributes. While it is
basically very similar to interpolation in text nodes, there are a few complications involved since
attributes may interact with other directives that are present on the element. We’ll need to make
sure our implementation interoperates well with those other directives.

The basic behavior of attribute interpolation is still completely the same as with text nodes. An
interpolation expression in an attribute is replaced during linking and watched for changes:

test/compile_spec.js
it('is done for attributes', function() {
 var injector = makeInjectorWithDirectives({});
 injector.invoke(function($compile, $rootScope) {
 var el = $('');
 $compile(el)($rootScope);

 $rootScope.$apply();
 expect(el.attr('alt')).toEqual('');

Attribute Interpolation 31

992 Errata© Tero Parviainen 2016

 $rootScope.myAltText = 'My favourite photo';
 $rootScope.$apply();
 expect(el.attr('alt')).toEqual('My favourite photo');
 });
});

The implementation is also very similar to text node interpolation: We generate a directive on the
fly. This is done in a function called addAttrInterpolateDirective, which we call for every
attribute on every element in the DOM. We give it the directives collection, as well as the attri-
bute’s value and name:

src/compile.js
function collectDirectives(node, attrs, maxPriority) {
 var directives = [];
 var match;
 if (node.nodeType === Node.ELEMENT_NODE) {
 var normalizedNodeName = directiveNormalize(nodeName(node).toLowerCase());
 addDirective(directives, normalizedNodeName, 'E', maxPriority);
 _.forEach(node.attributes, function(attr) {

 // ...

 addAttrInterpolateDirective(directives, attr.value, normalizedAttrName);
 addDirective(directives, normalizedAttrName, 'A', maxPriority,
 attrStartName, attrEndName);

 // ...

 });

 // ...
 }

 // ...
}

This function’s basic structure is familiar: In tries to make an interpolation function for the attri-
bute value. If one is found, it generates a directive that starts watching that interpolation function
and sets the attribute value in the listener function.

src/compile.js
function addAttrInterpolateDirective(directives, value, name) {
 var interpolateFn = $interpolate(value, true);
 if (interpolateFn) {
 directives.push({
 priority: 100,
 compile: function() {
 return function link(scope, element) {
 scope.$watch(interpolateFn, function(newValue) {
 element.attr(name, newValue);

Attribute Interpolation 31

993 Errata© Tero Parviainen 2016

 });
 };
 }
 });
 }
}

Note that this directive has its priority set to 100, causing it to be compiled before most directives
written by application developers.

That’s the basic behavior of attribute interpolation taken care of. Now we can start talking about
the several special cases caused by the fact that there may be other directives present on the ele-
ment.

First of all, other directives may be observing attributes on this element through Attributes.$ob-
serve. That may be because they have @ bindings on their isolate scope, or because they register
observers explicitly. When an attribute value changes because of interpolation, we want those
observers to be fired:

test/compile_spec.js
it('fires observers on attribute expression changes', function() {
 var observerSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 link: function(scope, element, attrs) {
 attrs.$observe('alt', observerSpy);
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('');
 $compile(el)($rootScope);

 $rootScope.myAltText = 'My favourite photo';
 $rootScope.$apply();
 expect(observerSpy.calls.mostRecent().args[0])
 .toEqual('My favourite photo');
 });
});

The test fails because the observer was never called with the attribute value that got interpolated.
Instead it was just called with the original text before interpolation.

We can fix this by changing the way we set the attribute. Currently we’re just doing it with jQue-
ry’s attr function. What we should use instead is the $set method of the Attributes object,
because it is aware of observers and will call them in addition to actually setting the attribute in the

Attribute Interpolation 31

994 Errata© Tero Parviainen 2016

DOM:

src/compile.js
return function link(scope, element, attrs) {
 scope.$watch(interpolateFn, function(newValue) {
 attrs.$set(name, newValue);
 });
};

Another problem is one we saw already when the previous test was failing: The observer was
getting called before interpolation with the string ’{{myAltText}}’. Getting a value like that pretty
much never makes sense from an application developer’s point of view. We want that observer to
only fire after interpolation has already been applied:

test/compile_spec.js
it('fires observers just once upon registration', function() {
 var observerSpy = jasmine.createSpy();
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 link: function(scope, element, attrs) {
 attrs.$observe('alt', observerSpy);
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('');
 $compile(el)($rootScope);
 $rootScope.$apply();

 expect(observerSpy.calls.count()).toBe(1);
 });
});

In the Attributes chapter we implemented a feature where observers always get called during the
next digest after registration. We now want to skip this feature when observing interpolated at-
tributes. Observers for them will get called on the next digest anyway, because the interpolation
watcher will set the attribute’s value.

Let’s assume that the observers array for a given attribute will contain a marker attribute $$inter
if the attribute is an interpolated one. We’ll skip the initial call of the observer if that marker is set:

src/compile.js
Attributes.prototype.$observe = function(key, fn) {
 var self = this;
 this.$$observers = this.$$observers || Object.create(null);
 this.$$observers[key] = this.$$observers[key] || [];

Attribute Interpolation 31

995 Errata© Tero Parviainen 2016

 this.$$observers[key].push(fn);
 $rootScope.$evalAsync(function() {
 if (!self.$$observers[key].$$inter) {
 fn(self[key]);
 }
 });
 return function() {
 var index = self.$$observers[key].indexOf(fn);
 if (index >= 0) {
 self.$$observers[key].splice(index, 1);
 }
 };
};

While linking the attribute interpolation directive, we can set this flag. We have the Attributes
object, and we can just add the $$inter flag to the observers in it. We do need to make sure the
$$observers data structure exists before doing that, because it is created lazily:

src/compile.js
return function link(scope, element, attrs) {
 attrs.$$observers = attrs.$$observers || {};
 attrs.$$observers[name] = attrs.$$observers[name] || [];
 attrs.$$observers[name].$$inter = true;
 scope.$watch(interpolateFn, function(newValue) {
 attrs.$set(name, newValue);
 });
};

Another concern we have regarding other directives on the same element is that we should take
care of the interpolation before they are linked. Usually when you access attributes from a direc-
tive, you don’t want to have to think about whether they’ve already been interpolated or not. The
framework should just take care that they are. Currently we’re not doing that properly.

test/compile_spec.js
it('is done for attributes by the time other directive is linked', function() {
 var gotMyAttr;
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 link: function(scope, element, attrs) {
 gotMyAttr = attrs.myAttr;
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-attr="{{myExpr}}"></div>');
 $rootScope.myExpr = 'Hello';
 $compile(el)($rootScope);

Attribute Interpolation 31

996 Errata© Tero Parviainen 2016

 expect(gotMyAttr).toEqual('Hello');
 });
});

We’d like that attribute’s value to be Hello when accessed from myDirective, but it is still {{my-
Expr}}. This needs to be fixed.

There are actually a couple of reasons why this happens. One is that the interpolation is only
applied on the first digest after linking, because it is done by the listener function of the watcher.
We should actually do it once already before setting up the watcher, so that we have interpolated
before any digests have actually taken place.

src/compile.js
compile: function() {
 return function link(scope, element, attrs) {
 attrs.$$observers = attrs.$$observers || {};
 attrs.$$observers[name] = attrs.$$observers[name] || [];
 attrs.$$observers[name].$$inter = true;
 attrs[name] = interpolateFn(scope);
 scope.$watch(interpolateFn, function(newValue) {
 attrs.$set(name, newValue);
 });
 };
}

This still doesn’t fix the test though. The other reason for the failure lies in the application order of
the directives. The attribute interpolation directive has a priority of 100, which means it’s com-
piled before our “normal” directive, which has a default priority. However, we set up the interpo-
lation in the post-link function of the directive, and if you recall from the linking chapter, post-link
functions are invoked in reverse priority order. Our normal directive is thus linked before the interpo-
lation directive.

If we change the link function into a pre-link function, things will start working like we want them
to:

src/compile.js
compile: function() {
 return {
 pre: function link(scope, element, attrs) {
 attrs.$$observers = attrs.$$observers || {};
 attrs.$$observers[name] = attrs.$$observers[name] || [];
 attrs.$$observers[name].$$inter = true;
 attrs[name] = interpolateFn(scope);
 scope.$watch(interpolateFn, function(newValue) {
 attrs.$set(name, newValue);
 });
 }
 };

Attribute Interpolation 31

997 Errata© Tero Parviainen 2016

}

Now, what about isolate scope bindings for attributes? We already discussed that the @ attribute
bindings are implemented using observers, and we’ve taken care of observers, haven’t we?

In general, the bindings do work, but there is still an issue with the initial values of those bindings.
During the linking of an isolate scope directive, its attribute bindings are currently pointing to at-
tribute values before interpolation, which is a similar problem as we had with regular attribute access
earlier:

test/compile_spec.js
it('is done for attributes by the time bound to iso scope', function() {
 var gotMyAttr;
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 scope: {myAttr: '@'},
 link: function(scope, element, attrs) {
 gotMyAttr = scope.myAttr;
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-attr="{{myExpr}}"></div>');
 $rootScope.myExpr = 'Hello';
 $compile(el)($rootScope);

 expect(gotMyAttr).toEqual('Hello');
 });
});

The reason for this is in the isolate binding setup for these attributes. We’re setting up an initial val-
ue to the binding destination in initializeDirectiveBindings. That’s before any directives,
including the attribute interpolation one, have been linked:

src/compile.js
case '@':
 attrs.$observe(attrName, function(newAttrValue) {
 destination[scopeName] = newAttrValue;
 });
 if (attrs[attrName]) {
 destination[scopeName] = attrs[attrName];
 }
 break;

If we change this initial value setup so that it goes through interpolation, the issue will be fixed:

Attribute Interpolation 31

998 Errata© Tero Parviainen 2016

src/compile.js
case '@':
 attrs.$observe(attrName, function(newAttrValue) {
 destination[scopeName] = newAttrValue;
 });
 if (attrs[attrName]) {
 destination[scopeName] = $interpolate(attrs[attrName])(scope);
 }
 break;

Here we use the form of $interpolate without the mustHaveExpressions flag so we can just
call the interpolation function whether there actually is anything to interpolate or not.

Another thing that may occur when there are directives on an element is that those directives ma-
nipulate the element’s attributes during compilation. This test case illustrates a situation where a
directive replaces the value of an attribute in its compile function. The problem is that our attri-
bute interpolation function doesn’t pick this up. It still ends up using the attribute value before the
replacement, which is definitely something we don’t want:

test/compile_spec.js
it('is done for attributes so that compile-time changes apply', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 compile: function(element, attrs) {
 attrs.$set('myAttr', '{{myDifferentExpr}}');
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-attr="{{myExpr}}"></div>');
 $rootScope.myExpr = 'Hello';
 $rootScope.myDifferentExpr = 'Other Hello';
 $compile(el)($rootScope);
 $rootScope.$apply();

 expect(el.attr('my-attr')).toEqual('Other Hello');
 });
});

The problem here is that the attribute interpolation function is generated during compilation, and
this directive replaces the attribute later during the compilation.

What we should do is add a check to the link function of the attribute interpolation directive,
which regenerates the interpolation function if the attribute value has changed since compilation:

src/compile.js
pre: function link(scope, element, attrs) {

Attribute Interpolation 31

999 Errata© Tero Parviainen 2016

 var newValue = attrs[name];
 if (newValue !== value) {
 interpolateFn = $interpolate(newValue, true);
 }

 attrs.$$observers = attrs.$$observers || {};
 attrs.$$observers[name] = attrs.$$observers[name] || [];
 attrs.$$observers[name].$$inter = true;

 attrs[name] = interpolateFn(scope);
 scope.$watch(interpolateFn, function(newValue) {
 attrs.$set(name, newValue);
 });
}

What also might happen is a directive may completely remove an attribute during compilation. If it
had interpolation going on before, it shouldn’t anymore:

test/compile_spec.js
it('is done for attributes so that compile-time removals apply', function() {
 var injector = makeInjectorWithDirectives({
 myDirective: function() {
 return {
 compile: function(element, attrs) {
 attrs.$set('myAttr', null);
 }
 };
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive my-attr="{{myExpr}}"></div>');
 $rootScope.myExpr = 'Hello';
 $compile(el)($rootScope);
 $rootScope.$apply();

 expect(el.attr('my-attr')).toBeFalsy();
 });
});

Not only is the interpolation not working correctly, it is now actually throwing an exception during
linking. That’s definitely not something we want to happen.

We should guard the re-generation of the interpolation function so that we don’t try to do it if
there is no new value at all. We should also exit early from the link function before setting up the
watcher.

src/compile.js
pre: function link(scope, element, attrs) {
 var newValue = attrs[name];

Attribute Interpolation 31

1000 Errata© Tero Parviainen 2016

 if (newValue !== value) {
 interpolateFn = newValue && $interpolate(newValue, true);
 }
 if (!interpolateFn) {
 return;
 }

 attrs.$$observers = attrs.$$observers || {};
 attrs.$$observers[name] = attrs.$$observers[name] || [];
 attrs.$$observers[name].$$inter = true;

 attrs[name] = interpolateFn(scope);
 scope.$watch(interpolateFn, function(newValue) {
 attrs.$set(name, newValue);
 });
}

And finally, an additional precaution we should take is to prevent users from doing interpolation
in event handlers like onclick. If a user was to do that, it wouldn’t work as expected, because the
regular event handler would be triggered outside of an Angular digest and without access to any
scope. Because this is not always clear, especially to beginners, Angular explicitly won’t let you do
it and throws an exception if you try. You should use the ng-* event handler directives instead.

test/compile_spec.js
it('cannot be done for event handler attributes', function() {
 var injector = makeInjectorWithDirectives({});
 injector.invoke(function($compile, $rootScope) {
 $rootScope.myFunction = function() { };
 var el = $('<button onclick="{{myFunction()}}"></button>');
 expect(function() {
 $compile(el)($rootScope);
 }).toThrow();
 });
});

We’ll guard the pre-link function of the attribute interpolation directive with a check that sees if
the attribute name begins with on, or equals formaction. This covers all current, and likely all
future standard event attributes:

src/compile.js
pre: function link(scope, element, attrs) {
 if (/^(on[a-z]+|formaction)$/.test(name)) {
 throw 'Interpolations for HTML DOM event attributes not allowed';
 }

 // ...
}

Optimizing Interpolation Watches With A Watch Delegate 31

1001 Errata© Tero Parviainen 2016

Optimizing Interpolation Watches With A Watch Delegate

Interpolation functions end up being executed very often, because of the watchers that $compile
sets up for them. Also, a typical application contains a relatively large number of interpolations,
because they’re convenient and we end up peppering them all over our views.

For these reasons, it makes sense to spend some time trying to make interpolations as fast as pos-
sible. There’s one particular optimization Angular applies here, and that is to try to minimize the
amount of times the interpolation result is constructed. It does this by using watch delegates - a
feature we introduced in Part 2 of the book.

What currently happens with interpolation is we are watching the value of the resulting string after
all the expressions and static parts of the text are combined. This is conceptually exactly what we
want: We want to update the DOM when the text that goes in the DOM changes.

But when can that text actually change? It can only change when at least one of the values of the
expressions in the interpolation changes. We are currently constructing a new string each time the
watch runs, whether the inputs changed or not, causing us to do a lot of unnecessary work and to
add a lot of garbage collection pressure because of all those strings. If we could change this so that
we wouldn’t bother constructing a new string if none of the expression values had changed, we
could go faster. Here’s where watch delegates become useful.

As a reminder, a watch delegate is a special method you can attach to a watch function as the
$$watchDelegate attribute. When you do that, the watcher implementation in Scopes will use
that delegate to detect changes instead of the return value of the watch function itself.

In our case, we can construct a watch delegate that checks for changes in the interpolated expres-
sions without having to form the resulting string.

To begin with, we can test that the interpolation functions returned by $interpolate do in fact
have watch delegates on them:

test/interpolate_spec.js
it('uses a watch delegate', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');
 var interp = $interpolate('has an {{expr}}');
 expect(interp.$$watchDelegate).toBeDefined();
});

We can attach one by adding it to the object extension we already have for the interpolation func-
tion. Recall that a watch delegate takes the Scope where watching should be done, and the listener
function to call when changes are detected:

Optimizing Interpolation Watches With A Watch Delegate 31

1002 Errata© Tero Parviainen 2016

src/interpolate.js
return _.extend(function interpolationFn(context) {
 return _.reduce(parts, function(result, part) {
 if (_.isFunction(part)) {
 return result + stringify(part(context));
 } else {
 return result + part;
 }
 }, '');
}, {
 expressions: expressions,
 $$watchDelegate: function(scope, listener) {

 }
});

This fixes our newest test but breaks a bunch of other ones. That’s because Scope is now picking
up our $$watchDelegate to use, but it doesn’t do anything yet. We’ll use our existing tests as a
guide to tell us when we have a working watch delegate: When they’re back to green, we’re done.

In the watch delegate we should detect any changes to any of the expressions we found in the in-
terpolated text. We don’t yet have a collection of the parsed expression functions, so let’s add one
first:

src/interpolate.js
function $interpolate(text, mustHaveExpressions) {
 var index = 0;
 var parts = [];
 var expressions = [];
 var expressionFns = [];
 var startIndex, endIndex, exp, expFn;
 while (index < text.length) {
 startIndex = text.indexOf('{{', index);
 if (startIndex !== -1) {
 endIndex = text.indexOf('}}', startIndex + 2);
 }
 if (startIndex !== -1 && endIndex !== -1) {
 if (startIndex !== index) {
 parts.push(unescapeText(text.substring(index, startIndex)));
 }
 exp = text.substring(startIndex + 2, endIndex);
 expFn = $parse(exp);
 parts.push(expFn);
 expressions.push(exp);
 expressionFns.push(expFn);
 index = endIndex + 2;
 } else {
 parts.push(unescapeText(text.substring(index)));
 break;
 }
 }

Optimizing Interpolation Watches With A Watch Delegate 31

1003 Errata© Tero Parviainen 2016

 // ...

}

Now we can watch these expression function. We can actually watch them all at once using the
$watchGroup feature of the Scope:

src/interpolate.js
$$watchDelegate: function(scope, listener) {
 return scope.$watchGroup(expressionFns, function() {

 });
}

What we should do inside the watch group’s listener function is to actually construct the result
string and give it to the listener function. We need to repeat pretty much the same reduction code
that we have in the interpolation function itself:

src/interpolate.js
$$watchDelegate: function(scope, listener) {
 return scope.$watchGroup(expressionFns, function() {
 listener(_.reduce(parts, function(result, part) {
 if (_.isFunction(part)) {
 return result + stringify(part(scope));
 } else {
 return result + part;
 }
 }, ''));
 });
}

Because of this repetition, we can introduce a function called compute that wraps the reduction
logic, given a context object:

src/interpolate.js
function compute(context) {
 return _.reduce(parts, function(result, part) {
 if (_.isFunction(part)) {
 return result + stringify(part(context));
 } else {
 return result + part;
 }
 }, '');
}

Then we can just use compute in both the main interpolation function and the watch delegate, so
that we don’t have so much duplicated logic:

Optimizing Interpolation Watches With A Watch Delegate 31

1004 Errata© Tero Parviainen 2016

src/interpolate.js
return _.extend(function interpolationFn(context) {
 return compute(context);
}, {
 expressions: expressions,
 $$watchDelegate: function(scope, listener) {
 return scope.$watchGroup(expressionFns, function() {
 listener(compute(scope));
 });
 }
});

The watch delegate is still a bit haphazard, since it doesn’t actually fulfill the contract of listener
function calls: Listeners should be called with both the new and old values (as well as the scope ob-
ject). We’re calling our listener function with just the new values, which isn’t enough:

test/interpolate_spec.js
it('correctly returns new and old value when watched', function() {
 var injector = createInjector(['ng']);
 var $interpolate = injector.get('$interpolate');
 var $rootScope = injector.get('$rootScope');

 var interp = $interpolate('{{expr}}');
 var listenerSpy = jasmine.createSpy();

 $rootScope.$watch(interp, listenerSpy);
 $rootScope.expr = 42;

 $rootScope.$apply();
 expect(listenerSpy.calls.mostRecent().args[0]).toEqual('42');
 expect(listenerSpy.calls.mostRecent().args[1]).toEqual('42');

 $rootScope.expr++;
 $rootScope.$apply();
 expect(listenerSpy.calls.mostRecent().args[0]).toEqual('43');
 expect(listenerSpy.calls.mostRecent().args[1]).toEqual('42');
});

In the watch delegate we can track the last value we computed, and then give it as the old value
each time. We’ll also pass in the scope to the listener to fulfill the contract:

src/interpolate.js
$$watchDelegate: function(scope, listener) {
 var lastValue;
 return scope.$watchGroup(expressionFns, function() {
 var newValue = compute(scope);
 listener(newValue, lastValue, scope);
 lastValue = newValue;
 });

Optimizing Interpolation Watches With A Watch Delegate 31

1005 Errata© Tero Parviainen 2016

}

The listener contract also says that on the first watch run both the old and new values should be the
same. We should cover that as well. If the watch group gives the same new and old values, we give
the same new and old value to our listener:

src/interpolate.js
$$watchDelegate: function(scope, listener) {
 var lastValue;
 return scope.$watchGroup(expressionFns, function(newValues, oldValues) {
 var newValue = compute(scope);
 listener(
 newValue,
 (newValues === oldValues ? newValue : lastValue),
 scope
);
 lastValue = newValue;
 });
}

There’s an additional optimization trick we could still apply here. We are getting the newValues
array by our watch group, and that array contains the newest computed values of all the expres-
sions from the interpolation. But we don’t really use them for anything, and instead in our listener
function we end up evaluating those expressions again in order to construct the interpolated string.
We should find a way to use those values given to us to eliminate the double calculation. This
requires a bit of refactoring.

What we currently have in the parts array is a mixed array of static strings and expression func-
tions. What we want to do in our watch delegate is to use the pre-supplied expression values in
newValues instead of calling the expression functions in parts.

Before we can do that, we need to know the positions in which to fill in the pre-supplied values.
Let’s collect an array of the position in which each expression resides inside the parts array:

src/interpolate.js
function $interpolate(text, mustHaveExpressions) {
 var index = 0;
 var parts = [];
 var expressions = [];
 var expressionFns = [];
 var expressionPositions = [];
 var startIndex, endIndex, exp, expFn;
 while (index < text.length) {
 startIndex = text.indexOf('{{', index);
 if (startIndex !== -1) {
 endIndex = text.indexOf('}}', startIndex + 2);
 }
 if (startIndex !== -1 && endIndex !== -1) {

Optimizing Interpolation Watches With A Watch Delegate 31

1006 Errata© Tero Parviainen 2016

 if (startIndex !== index) {
 parts.push(unescapeText(text.substring(index, startIndex)));
 }
 exp = text.substring(startIndex + 2, endIndex);
 expFn = $parse(exp);
 expressions.push(exp);
 expressionFns.push(expFn);
 expressionPositions.push(parts.length);
 parts.push(expFn);
 index = endIndex + 2;
 } else {
 parts.push(unescapeText(text.substring(index)));
 break;
 }
 }

 // ...

}

Notice that we need to push to expressionPositions before we push to parts to get the index-
es to line up correctly.

Now we can rewrite the compute function so that instead of evaluating expression functions, it
receives the array of precomputed values. It’ll walk over those values and replace them in the parts
array in the locations determined by expressionPositions. The result is an array of strings
and strings only - some of them static and some the latest results of expressions. The interpolated
string can now be formed by just joining the parts together:

src/interpolate.js
function compute(values) {
 _.forEach(values, function(value, i) {
 parts[expressionPositions[i]] = stringify(value);
 });
 return parts.join('');
}

The contract of compute has now changed. In the interpolation function we need to evaluate all
expression functions to get the values that we can give to compute:

src/interpolate.js
return _.extend(function interpolationFn(context) {
 var values = _.map(expressionFns, function(expressionFn) {
 return expressionFn(context);
 });
 return compute(values);
}, {
 // ..
});

Making Interpolation Symbols Configurable 31

1007 Errata© Tero Parviainen 2016

In the watch delegate - and here’s the payoff of this refactoring - we can just pass in the newVal-
ues array we get from the watch group. No need to evaluate any more expressions:

src/interpolate.js
return _.extend(function interpolationFn(context) {
 var values = _.map(expressionFns, function(expressionFn) {
 return expressionFn(context);
 });
 return compute(values);
}, {
 expressions: expressions,
 $$watchDelegate: function(scope, listener) {
 var lastValue;
 return scope.$watchGroup(expressionFns, function(newValues, oldValues) {
 var newValue = compute(newValues);
 listener(
 newValue,
 (newValues === oldValues ? newValue : lastValue),
 scope
);
 lastValue = newValue;
 });
 }
});

That’s the final, optimized version of the watch delegate!

Making Interpolation Symbols Configurable

There’s one more thing we should add to our implementation of the $interpolate service before
it’s complete. That is the ability to configure the start and end markers - or symbols - of interpola-
tion expressions. You see, Angular lets you change these from the defaults {{ and }} to anything
you want.

The value of using this feature is questionable, mostly because it makes your views look different
from all other Angular applications in the world. But the feature is there, and it’s good to know
how it works.

The start and end symbols can be changed at configuration time by calling the methods start-
Symbol and endSymbol on the $interpolateProvider. At run time you can read (but no lon-
ger change) them from the startSymbol and endSymbol methods of the $interpolate service
itself:

test/interpolate_spec.js
it('allows configuring start and end symbols', function() {
 var injector = createInjector(['ng', function($interpolateProvider) {

Making Interpolation Symbols Configurable 31

1008 Errata© Tero Parviainen 2016

 $interpolateProvider.startSymbol('FOO').endSymbol('OOF');
 }]);
 var $interpolate = injector.get('$interpolate');
 expect($interpolate.startSymbol()).toEqual('FOO');
 expect($interpolate.endSymbol()).toEqual('OOF');
});

In the provider we’ll make the setters, that also double as getters when called with no arguments.
The symbols are stored in variables inside the provider:

src/interpolate.js
function $InterpolateProvider() {
 var startSymbol = '{{';
 var endSymbol = '}}';

 this.startSymbol = function(value) {
 if (value) {
 startSymbol = value;
 return this;
 } else {
 return startSymbol;
 }
 };

 this.endSymbol = function(value) {
 if (value) {
 endSymbol = value;
 return this;
 } else {
 return endSymbol;
 }
 };

 // ...

}

The runtime getters we can attach to the $interpolate function when we have it. The symbols
will be constant at runtime so we can just use _.constant for them:

src/interpolate.js
function $InterpolateProvider() {
 var startSymbol = '{{';
 var endSymbol = '}}';

 // ...

 this.$get = ['$parse', function($parse) {

 function $interpolate(text, mustHaveExpressions) {

https://lodash.com/docs#constant

Making Interpolation Symbols Configurable 31

1009 Errata© Tero Parviainen 2016

 // ...

 }

 $interpolate.startSymbol = _.constant(startSymbol);
 $interpolate.endSymbol = _.constant(endSymbol);

 return $interpolate;
 }];

}

Now we have configurable symbols, so let’s actually make use of them. This test configures the
symbols to FOO and OOF and then checks that they do in fact act as expression markers in interpo-
lation strings:

test/interpolate_spec.js
it('works with start and end symbols that differ from default', function() {
 var injector = createInjector(['ng', function($interpolateProvider) {
 $interpolateProvider.startSymbol('FOO').endSymbol('OOF');
 }]);
 var $interpolate = injector.get('$interpolate');
 var interpFn = $interpolate('FOOmyExprOOF');
 expect(interpFn({myExpr: 42})).toEqual('42');
});

Furthermore, we should check that the default start and end symbols do not work when they have
been changed to something else. They are interpreted as static text:

test/interpolate_spec.js
it('does not work with default symbols when reconfigured', function() {
 var injector = createInjector(['ng', function($interpolateProvider) {
 $interpolateProvider.startSymbol('FOO').endSymbol('OOF');
 }]);
 var $interpolate = injector.get('$interpolate');
 var interpFn = $interpolate('{{myExpr}}');
 expect(interpFn({myExpr: 42})).toEqual('{{myExpr}}');
});

The support for all of this resides in the while loop in $interpolate. Instead of using the hardcoded
{{ and }} strings it should use the startSymbol and endSymbol variables. Furthermore, it can no
longer assume that the length of the symbols will be two, so it has to use the lengths of the variables to
calculate the different points in which to split the string:

src/interpolate.js
while (index < text.length) {
 startIndex = text.indexOf(startSymbol, index);

Making Interpolation Symbols Configurable 31

1010 Errata© Tero Parviainen 2016

 if (startIndex !== -1) {
 endIndex = text.indexOf(endSymbol, startIndex + startSymbol.length);
 }
 if (startIndex !== -1 && endIndex !== -1) {
 if (startIndex !== index) {
 parts.push(unescapeText(text.substring(index, startIndex)));
 }
 exp = text.substring(startIndex + startSymbol.length, endIndex);
 expFn = $parse(exp);
 expressions.push(exp);
 expressionFns.push(expFn);
 expressionPositions.push(parts.length);
 parts.push(expFn);
 index = endIndex + endSymbol.length;
 } else {
 parts.push(unescapeText(text.substring(index)));
 break;
 }
}

These custom start and end symbols should also support the unescaping mechanism we have. If a
user configures the start symbol as FOO, the string \F\O\O in their template should be interpolated
to FOO:

test/interpolate_spec.js
it('supports unescaping for reconfigured symbols', function() {
 var injector = createInjector(['ng', function($interpolateProvider) {
 $interpolateProvider.startSymbol('FOO').endSymbol('OOF');
 }]);
 var $interpolate = injector.get('$interpolate');
 var interpFn = $interpolate('\\F\\O\\OmyExpr\\O\\O\\F');
 expect(interpFn({})).toEqual('FOOmyExprOOF');
});

This is a bit trickier. We’ll no longer be able to use those hardcoded regular expressions for un-
escaping. We need to form regular expressions at runtime based on what has been configured as
the start and end symbols. For both symbols, we’ll make a regular expression using the RegExp
constructor]. The pattern of the regex is based on running each character in the configured symbol
through the escapeChar function (which we’ll introduce in a moment):

src/interpolate.js
this.$get = ['$parse', function($parse) {
 var escapedStartMatcher =
 new RegExp(startSymbol.replace(/./g, escapeChar), 'g');
 var escapedEndMatcher =
 new RegExp(endSymbol.replace(/./g, escapeChar), 'g');

 // ...

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/RegExp
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/RegExp

Making Interpolation Symbols Configurable 31

1011 Errata© Tero Parviainen 2016

}];

The escapeChar function puts not one, nor two, but three backslashes before the character. We
additionally need to escape each of them in the string, so we end up with six backslashes in total:

src/interpolate.js
function escapeChar(char) {
 return '\\\\\\' + char;
}

The first two backslashes end up in the regular expression as the matcher for the backslash charac-
ter itself (/\\/). The third one is to escape the original character as well. Our default start and end
symbols have curly braces which would have a special meaning in regular expressions unless we
escaped them.

This code will dynamically form the following kind of regexp dynamically for the default start
symbol:

/\\\{\\\{/g

And this for the custom start symbol used in our test:

/\\\F\\\O\\\O/g

Now we can change unescapeText to use these generated regexps instead of the hardcoded ones:

src/interpolate.js
this.$get = ['$parse', function($parse) {
 var escapedStartMatcher =
 new RegExp(startSymbol.replace(/./g, escapeChar), 'g');
 var escapedEndMatcher =
 new RegExp(endSymbol.replace(/./g, escapeChar), 'g');

 function unescapeText(text) {
 return text.replace(escapedStartMatcher, startSymbol)
 .replace(escapedEndMatcher, endSymbol);
 }

 // ...
}];

That’s how start and end symbols can be customized. But what happens if you do do that, and
also happen to use third party code from other projects or open source libraries? Do things im-
mediately break because you decided to use interpolation symbols that differ from what the third
party code assumes?

Making Interpolation Symbols Configurable 31

1012 Errata© Tero Parviainen 2016

The answer is that things won’t break and you can still use third party code. That’s because in
$compile we are going to denormalize all directive templates, which means we’ll replace the de-
fault {{ and }} symbols in them with your custom ones. Any templates that don’t follow your
convention will be processed so that they do.

Here’s an example: An application where the start and end symbols have been reconfigured to [[
and]]. It uses a directive whose template still uses {{ and }}. Interpolation should still work inside
the template:

test/compile_spec.js
it('denormalizes directive templates', function() {
 var injector = createInjector(['ng',
 function($interpolateProvider, $compileProvider) {
 $interpolateProvider.startSymbol('[[').endSymbol(']]');
 $compileProvider.directive('myDirective', function() {
 return {
 template: 'Value is {{myExpr}}'
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-directive></div>');
 $rootScope.myExpr = 42;
 $compile(el)($rootScope);
 $rootScope.$apply();

 expect(el.html()).toEqual('Value is 42');
 });
});

What we’ll do is run all directive templates through a function called denormalizeTemplate.
That happens just after we’ve obtained those templates. For template attributes that happens in
applyDirectivesToNode:

src/compile.js
if (directive.template) {
 if (templateDirective) {
 throw 'Multiple directives asking for template';
 }
 templateDirective = directive;
 var template = _.isFunction(directive.template) ?
 directive.template($compileNode, attrs) :
 directive.template;
 template = denormalizeTemplate(template);
 $compileNode.html(template);
}

For templateUrl attributes that happens in compileTemplateUrl after we’ve received the tem-
plate from $http:

Summary 31

1013 Errata© Tero Parviainen 2016

src/compile.js
function compileTemplateUrl(
 directives, $compileNode, attrs, previousCompileContext) {

 // ...

 $http.get(templateUrl).success(function(template) {
 template = denormalizeTemplate(template);

 // ...

 });

 // ...
}

The denormalizeTemplate function is introduced right inside the $get method of the $com-
pile provider.

We first get the start and end symbols from the $interpolate service and compare them to
the default ones. If they haven’t been customized, we’ll initialize denormalizeTemplate to a
function that does nothing. If they have been customized, we’ll make a function that uses regular
expression substitution to replace the default symbols with the custom ones:

src/compile.js
this.$get = ['$injector', '$parse', '$controller', '$rootScope',
 '$http', '$interpolate',
function($injector, $parse, $controller, $rootScope, $http, $interpolate) {

 var startSymbol = $interpolate.startSymbol();
 var endSymbol = $interpolate.endSymbol();
 var denormalizeTemplate = (startSymbol === '{{' && endSymbol === '}}') ?
 _.identity :
 function(template) {
 return template.replace(/\{\{/g, startSymbol)
 .replace(/\}\}/g, endSymbol);
 };

 // ...

}];

Summary

Expression interpolation is a hugely important feature in Angular. It’s pretty much the first thing
taught to new Angular developers, and no Angular application can get very far with it.

Summary 31

1014 Errata© Tero Parviainen 2016

The implementation of the feature itself isn’t hugely complicated, since it builds on the expression
parsing in $parse, the watchers on Scopes, as well as the directive implementation provided by
$compile. For us, it serves as a nice demonstration to how these low-level features can be com-
bined to produce something very useful.

We also learned some tricks on how watch delegates and watch groups can be used to eliminate
work that would otherwise have to be done during change detection. Similar tricks could be ap-
plied in application code as well.

In this chapter you have learned:

• That there is an $interpolate service with which you can turn any string into an interpola-
tion function.

• How the service parses the expressions contained in the string, and evaluates them when the
interpolation function is called.

• How expression results are stringified before they are concatenated into the resulting string.
• That you can escape the start and end symbols if you want to include them literally in your UI:

\{\{ and \}\}.
• That Angular documentation actually recommends doing this escaping for all server-provided

dynamic content, as an additional cross-site scripting forgery prevention measure.
• How you can instruct $interpolate to skip creating an interpolation function if there are no

dynamic expressions in the string, using the mustHaveExpressions flag.
• How interpolation integrates into text nodes: Directives are generated for text nodes on the fly.

The directives watch the interpolation expressions and update the node contents.
• That the ng-binding classes and $binding data is added to the parents of text nodes to aid

in tooling and introspection.
• How interpolation integrates into element attributes: Directives are generated on the fly. The

directives watch the interpolation expressions and update the attribute values.
• How attribute interpolation integrates with attribute observers.
• That Angular does extra work to make sure interpolation is done before other directives for the

element are linked.
• How Angular prevents you from doing interpolation in standard DOM event listeners.
• How interpolation watching is optimized with watch delegates to try to minimise the work

needed to check for changes.
• How you can configure your own custom interpolation start and end symbols to replace {{

and }}.
• That Angular denormalizes directive templates to enable code reuse even when you reconfig-

ure your interpolation symbols.

 32

1015 Errata© Tero Parviainen 2016

Chapter 23

Components

 32

1016 Errata© Tero Parviainen 2016

In the early days of the AngularJS framework, the most common building blocks of Angular
applications were controllers and templates that were constructed using the ng-controller and
ng-include directives. When you needed to plug in a new template, you did it with ng-include.
When you needed some logic, you added a new ng-controller in the template.

This approach is easy to get started with, but in practice often leads to problems. Since ng-con-
troller and ng-include are both inherited scope directives, using them all across the application
means that you have one big prototypal scope inheritance hierarchy, where everything is shared
from parent controllers to children. Such global sharing is not a good idea in terms of modularity
and often causes hard-to-track issues, when many parts of the application are sharing and chang-
ing common state.

Additionally, since ng-controller and ng-include are separate directives, you often end up
with architectures without a direct parity between controllers and templates. A single template
may use many controllers, and a single controller may manage many nested templates. This makes
the code hard to track and you can’t always easily find the template that goes with a given control-
ler or vice versa.

For this reason, many people (including yours truly) gradually drifted towards another kind of
code organization. One that eschews the use of ng-controller and ng-include in favor of
custom directives with the following attributes:

• Each directive has both a template and controller, that make a cohesive pair.
• Inputs and outputs are clearly defined using an isolate scope.
• An element selector (restrict: ‘E’) is used, to clarify that the directive is supposed to own the

element instead of just decorating it.

This pattern is called the component pattern because of the way it combines and encapsulates every-
thing that is needed to build a UI component.

At around the same time, React entered the scene and among many other things, brought forward
a strictly component-based approach to organizing UI code. In React you build everything out of
components that bundle a view together with the logic behind the view. This in turn informed the
design of Angular 2, which is fully based on a component architecture.

From these ingredients, Angular 1.5 finally codified the component pattern as an explicit API that
builds on top of the directive system. It supports application developers in building component
applications by enforcing some rules on one hand, and streamlining some APIs on the other.

In this chapter we implement this new layer on top of the directive compiler. It consists of the com-
ponent definition API itself, as well as some controller lifecycle methods that allow component authors
to hook logic into different points in a component’s lifetime: $onInit, $postLink, $onChanges,
and $onDestroy.

http://teropa.info/blog/2014/10/24/how-ive-improved-my-angular-apps-by-banning-ng-controller.html
https://facebook.github.io/react/docs/thinking-in-react.html

Registering Components 32

1017 Errata© Tero Parviainen 2016

Download the code for the starting point of this chapter.

Registering Components

We begin our journey as we usually do with new features: By extending the module API to allow
registration. What we want to have is a module method called component that takes the name of
a component and a component object, and causes a directive by that name to be registered.

Let’s add a new describe block for all our component test cases to the directive compiler spec:

test/compile_spec.js
describe('components', function() {

 it('can be registered and become directives', function() {
 var myModule = window.angular.module('myModule', []);
 myModule.component('myComponent', {});
 var injector = createInjector(['ng', 'myModule']);
 expect(injector.has('myComponentDirective')).toBe(true);
 });

});

The path to registration begins in the module loader. Its component method queues up an invoca-
tion of the component method of the $compileProvider.

src/loader.js
var moduleInstance = {
 name: name,
 requires: requires,
 constant: invokeLater('$provide', 'constant', 'unshift'),
 provider: invokeLater('$provide', 'provider'),
 factory: invokeLater('$provide', 'factory'),
 value: invokeLater('$provide', 'value'),
 service: invokeLater('$provide', 'service'),
 decorator: invokeLater('$provide', 'decorator'),
 filter: invokeLater('$filterProvider', 'register'),
 directive: invokeLater('$compileProvider', 'directive'),
 controller: invokeLater('$controllerProvider', 'register'),
 component: invokeLater('$compileProvider', 'component'),

 config: invokeLater('$injector', 'invoke', 'push', configBlocks),
 run: function(fn) {
 moduleInstance._runBlocks.push(fn);
 return moduleInstance;
 },
 _invokeQueue: invokeQueue,
 _configBlocks: configBlocks,
 _runBlocks: []

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter22-interpolation

Basic Components 32

1018 Errata© Tero Parviainen 2016

};

This method is introduced in $CompileProvider. You can put it between this.directive and
this.$get:
src/compile.js
this.component = function(name, options) {

};

We wanted the method to cause a directive to be registered. What we can do to make that work is
simply call the directive method. We’ll pass in a directive factory function that we construct on
the fly:

src/compile.js
this.component = function(name, options) {
 function factory() {
 return {

 };
 }

 return this.directive(name, factory);
};

That gives us enough to get started. A component is really just a directive!

Basic Components

So if components are directives, what kind of directives are they exactly? This is what we’ll define
over the following pages.

We’ll be making lots of components in our unit tests, so before we go any further, let’s make a little
helper function that allows propping up an injector with a component easily:
test/compile_spec.js
function makeInjectorWithComponent(name, options) {
 return createInjector(['ng', function($compileProvider) {
 $compileProvider.component(name, options);
 }]);
}

The first thing to know about components is that they are element directives with controllers. We can
define a component that has a controller, and check that it can in fact be compiled and linked
using an element that matches its name. Furthermore, the controller is instantiated and the $ele-
ment argument can be injected into it exactly as you’d expect.

Basic Components 32

1019 Errata© Tero Parviainen 2016

test/compile_spec.js
it('are element directives with controllers', function() {
 var controllerInstantiated = false;
 var componentElement;
 var injector = makeInjectorWithComponent('myComponent', {
 controller: function($element) {
 controllerInstantiated = true;
 componentElement = $element;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 expect(controllerInstantiated).toBe(true);
 expect(el[0]).toBe(componentElement[0]);
 });
});

Notice the slightly simplified registration API we have here when compared to directives. We don’t
need a factory function that returns the component definition. We just give the component defini-
tion directly. This does mean that there is no component factory function to inject dependencies
into, but the idea is that anything you need to inject, you can just inject to the controller.

Furthermore, a component cannot be matched with an attribute, even if we tried to pass in a re-
strict attribute. It really must always be an element.

test/compile_spec.js
it('cannot be applied to an attribute', function() {
 var controllerInstantiated = false;
 var injector = makeInjectorWithComponent('myComponent', {
 restrict: 'A', // Will be ignored
 controller: function() {
 controllerInstantiated = true;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<div my-component></div>');
 $compile(el)($rootScope);
 expect(controllerInstantiated).toBe(false);
 });
});

These tests guide us to allow a controller to be defined in the component options. It’s passed
forward to the directive factory. On the other hand, a restrict attribute is not accepted and is
hardcoded into an E instead.

src/compile.js
this.component = function(name, options) {
 function factory() {

Component Scopes and Bindings 32

1020 Errata© Tero Parviainen 2016

 return {
 restrict: 'E',
 controller: options.controller
 };
 }

 return this.directive(name, factory);
};

Component Scopes and Bindings

Like restrict, scope definition is another case where the component API makes a decision on
the application developer’s behalf: A component always has an isolate scope. There is no way to
change that fact.
test/compile_spec.js
it('has an isolate scope', function() {
 var componentScope;
 var injector = makeInjectorWithComponent('myComponent', {
 controller: function($scope) {
 componentScope = $scope;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 expect(componentScope).not.toBe($rootScope);
 expect(componentScope.$parent).toBe($rootScope);
 expect(Object.getPrototypeOf(componentScope)).not.toBe($rootScope);
 });
});

We do this simply by defining an isolate scope in the component directive factory.
src/compile.js
function factory() {
 return {
 restrict: 'E',
 controller: options.controller,
 scope: {}
 };
}

Components can certainly have bindings though. All the binding types we have for directives (attri-
bute, one-way, two-way, expression) also work with components. It’s just that instead of defining
them with the scope attribute, we define an attribute called bindings. Also, these bindings always
end up on the controller, never directly on the scope.
test/compile_spec.js
it('may have bindings which are attached to controller', function() {
 var controllerInstance;

Component Scopes and Bindings 32

1021 Errata© Tero Parviainen 2016

 var injector = makeInjectorWithComponent('myComponent', {
 bindings: {
 attr: '@',
 oneWay: '<',
 twoWay: '='
 },
 controller: function() {
 controllerInstance = this;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 $rootScope.b = 42;
 $rootScope.c = 43;
 var el = $('<my-component attr="a", one-way="b", two-way="c"></my-component>');
 $compile(el)($rootScope);

 expect(controllerInstance.attr).toEqual('a');
 expect(controllerInstance.oneWay).toEqual(42);
 expect(controllerInstance.twoWay).toEqual(43);
 });
});

To implement this we can make use of a shortcut we built in the Controllers chapter, whereby we
can pass an object as the value of bindToController to define controller bindings. We’ll just put
the incoming bindings attribute there:

src/compile.js
function factory() {
 return {
 restrict: 'E',
 controller: options.controller,
 scope: {},
 bindToController: options.bindings || {}
 };
}

Another thing we can do with a component scope is alias the component controller on it. This
works exactly the same way as it does with regular directives - by using the controllerAs attri-
bute.
test/compile_spec.js
it('may use a controller alias with controllerAs', function() {
 var componentScope;
 var controllerInstance;
 var injector = makeInjectorWithComponent('myComponent', {
 controller: function($scope) {
 componentScope = $scope;
 controllerInstance = this;
 },
 controllerAs: 'myComponentController'
 });

Component Scopes and Bindings 32

1022 Errata© Tero Parviainen 2016

 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 expect(componentScope.myComponentController).toBe(controllerInstance);
 });
});

In the implementation we simply pass the controllerAs along to the directive factory.
src/compile.js
function factory() {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs,
 scope: {},
 bindToController: options.bindings || {}
 };
}

The controller alias can also be embedded inside the value of the controller attribute, when
using a string reference to an existing controller:
test/compile_spec.js
it('may use a controller alias with "controller as" syntax', function() {
 var componentScope;
 var controllerInstance;
 var injector = createInjector(['ng', function($controllerProvider,
 $compileProvider) {
 $controllerProvider.register('MyController', function($scope) {
 componentScope = $scope;
 controllerInstance = this;
 });
 $compileProvider.component('myComponent', {
 controller: 'MyController as myComponentController'
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component');
 $compile(el)($rootScope);
 expect(componentScope.myComponentController).toBe(controllerInstance);
 });
});

This works without us having to make any changes, because it builds directly on top of directive
controllers and they support this feature.

There is one thing about component controller aliasing that’s different from regular directives
though. Component controllers are always aliased. If you don’t define an alias yourself, a default
value of $ctrl is assigned.
test/compile_spec.js

Component Scopes and Bindings 32

1023 Errata© Tero Parviainen 2016

it('has a default controller alias of $ctrl', function() {
 var componentScope;
 var controllerInstance;
 var injector = makeInjectorWithComponent('myComponent', {
 controller: function($scope) {
 componentScope = $scope;
 controllerInstance = this;
 },
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 expect(componentScope.$ctrl).toBe(controllerInstance);
 });
});

We can assign the default value in the directive factory.
src/compile.js
function factory() {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs || '$ctrl',
 scope: {},
 bindToController: options.bindings || {}
 };
}

This makes the latest test pass but breaks the one before it. Using the controller: ‘MyCon-
troller as ctrl’ aliasing style no longer works!

The reason is that while we check for such aliasing in the $controller service, we never get to
that point because now we’re putting a $ctrl alias as the value of controllerAs and it takes
precedence. We should only use $ctrl when there is no alias in the value of the controller
attribute.

So how do we know if there’s an alias there or not? We have existing code for checking this in
controller.js, but it’s not exposed for us to call from compile.js. Let’s change that.

First, we should extract the regular expression used for alias checking from inside the $control-
ler function to the top level of controller.js, so that we don’t have to write it twice:
src/controller.js
var CNTRL_REG = /^(\S+)(\s+as\s+(\w+))?/;

Inside the $controller function we’ll now just use the new “constant”:
src/controller.js
var match = ctrl.match(CNTRL_REG);

Component Scopes and Bindings 32

1024 Errata© Tero Parviainen 2016

Then we’ll define a new function in controller.js that also uses this regular expression. It re-
turns the extracted identifier alias from a controller string, if it finds one.
src/controller.js
function identifierForController(ctrl) {
 if (_.isString(ctrl)) {
 var match = CNTRL_REG.exec(ctrl);
 if (match) {
 return match[3];
 }
 }
}

We’ll now export this new function from controller.js along with the $ControllerProvider
itself:
src/controller.js
module.exports = {
 $ControllerProvider: $ControllerProvider,
 identifierForController: identifierForController
};

Now that we’ve changed the exports though, we’ll have to go back to angular_public.js and
change the way it pulls in $ControllerProvider. It is no longer the default export, but wrapped
in an object:
src/angular_public.js
ngModule.provider('$controller', require('./controller').$ControllerProvider);

And now - and this is the reason we did this work - we can pull in the new identifierForCon-
troller function on the top level of compile.js.
src/compile.js
var identifierForController = require('./controller').identifierForController;

We’ll try to use this function’s return value as the alias of the component controller, and only use
the default $ctrl if that doesn’t return anything.
src/compile.js
function factory() {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs ||
 identifierForController(options.controller) ||
 '$ctrl',
 scope: {},
 bindToController: options.bindings || {}
 };
}

Component Templates 32

1025 Errata© Tero Parviainen 2016

This restores the “controller as” behavior. We now support all the controller aliasing styles one
might expect!

Component Templates

As discussed in the beginning of the chapter, one of the key ideas behind the component pattern
is to bundle templates and controllers together. It would be reasonable to assume that components
would support templates. This is indeed the correct assumption: A component may define a tem-
plate string.
test/compile_spec.js
it('may have a template', function() {
 var injector = makeInjectorWithComponent('myComponent', {
 controller: function() {
 this.message = 'Hello from component';
 },
 template: '{{ $ctrl.message }}'
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 $rootScope.$apply();
 expect(el.text()).toEqual('Hello from component');
 });
});

The template attribute of a component definition can be simply passed over to the directive fac-
tory.
src/compile.js
function factory() {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs ||
 identifierForController(options.controller) ||
 '$ctrl',
 scope: {},
 bindToController: options.bindings || {},
 template: options.template
 };
}

The same goes for template URLs. A component may define a templateUrl, which causes a
template to be fetched over HTTP:
test/compile_spec.js
it('may have a templateUrl', function() {
 var injector = makeInjectorWithComponent('myComponent', {
 controller: function() {
 this.message = 'Hello from component';

Component Templates 32

1026 Errata© Tero Parviainen 2016

 },
 templateUrl: '/my_component.html'
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 $rootScope.$apply();
 requests[0].respond(200, {}, '{{ $ctrl.message }}');
 $rootScope.$apply();
 expect(el.text()).toEqual('Hello from component');
 });
});

To support this test case, we need to enable Sinon’s HTTP request mocking in the de-
scribe(‘components’) test block:

test/compile_spec.js
describe('components', function() {

 var xhr, requests;

 beforeEach(function() {
 xhr = sinon.useFakeXMLHttpRequest();
 requests = [];
 xhr.onCreate = function(req) {
 requests.push(req);
 };
 });
 afterEach(function() {
 xhr.restore();
 });

 // ...
});

In this case too we just pass templateUrl over to the directive factory.

src/compile.js
function factory() {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs ||
 identifierForController(options.controller) ||
 '$ctrl',
 scope: {},
 bindToController: options.bindings || {},
 template: options.template,
 templateUrl: options.templateUrl
 };

Component Templates 32

1027 Errata© Tero Parviainen 2016

}

When we implemented templates, we also saw an alternative way to define them for directives,
which is to give a function instead of a string as the value of template or templateUrl. That
function is then called, passing the element and the Attributes as arguments, and it’s expected
to return the template or template URL string. This can be used to dynamically form the template
or its URL at runtime.

The same can also be done for components, but in this case it’s a bit different. The template (or
templateUrl) function is called with dependency injection support, and thus can have any injections
applied to it. This is something you cannot do with regular directives.
test/compile_spec.js
it('may have a template function with DI support', function() {
 var injector = createInjector(['ng', function($provide, $compileProvider) {
 $provide.constant('myConstant', 42);
 $compileProvider.component('myComponent', {
 template: function(myConstant) {
 return '' + myConstant;
 }
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 expect(el.text()).toEqual('42');
 });
});

The function may also be wrapped in an array to support that style of dependency annotation.
test/compile_spec.js
it('may have a template function with array-wrapped DI', function() {
 var injector = createInjector(['ng', function($provide, $compileProvider) {
 $provide.constant('myConstant', 42);
 $compileProvider.component('myComponent', {
 template: ['myConstant', function(c) {
 return '' + c;
 }]
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 expect(el.text()).toEqual('42');
 });
});

We’ll start building this by passing the value of the template attribute to a new makeInjectable
helper function, where we’ll be doing the necessary preprocessing.

Component Templates 32

1028 Errata© Tero Parviainen 2016

src/compile.js
function factory() {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs ||
 identifierForController(options.controller) ||
 '$ctrl',
 scope: {},
 bindToController: options.bindings || {},
 template: makeInjectable(options.template),
 templateUrl: options.templateUrl
 };
}

In this function (which we can define on the top level of compile.js), we check if the template is
a function or an array, in which case we should do something about it:

src/compile.js
function makeInjectable(template) {
 if (_.isFunction(template) || _.isArray(template)) {

 } else {
 return template;
 }
}

So what can we do? Well, you may recall from our dependency injection chapters that on the $in-
jector service we have a function called invoke, which can be used to call arbitrary functions
with DI support. That is exactly what we need here. But first we need to grab $injector itself,
since we don’t have it handy in the component method. Since we’re defining a directive factory
though, and those support DI, we’ll inject $injector into it and pass it on to makeInjectable.
src/compile.js
function factory($injector) {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs ||
 identifierForController(options.controller) ||
 '$ctrl',
 scope: {},
 bindToController: options.bindings || {},
 template: makeInjectable(options.template, $injector),
 templateUrl: options.templateUrl
 };
}
factory.$inject = ['$injector'];

We’ll then make a directive template function on the fly. It calls $injector.invoke with the orig-

Component Templates 32

1029 Errata© Tero Parviainen 2016

inal component template function:
compile_spec.js
function makeInjectable(template, $injector) {
 if (_.isFunction(template) || _.isArray(template)) {
 return function() {
 return $injector.invoke(template, this);
 };
 } else {
 return template;
 }
}

But there’s something still missing here. Plain directive template functions have the directive ele-
ment and attributes given to them as arguments, because they may contain information you need
to dynamically construct the template. Our component template functions don’t have them avail-
able because they’re not injectable by the $injector. If we try to use them, we get a DI failure
message:
test/compile_spec.js
it('may inject $element and $attrs to template function', function() {
 var injector = createInjector(['ng', function($provide, $compileProvider) {
 $compileProvider.component('myComponent', {
 template: function($element, $attrs) {
 return $element.attr('copiedAttr', $attrs.myAttr);
 }
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component my-attr="42"></my-component>');
 $compile(el)($rootScope);
 expect(el.attr('copiedAttr')).toEqual('42');
 });
});

Fixing this is easy, thanks to the fact that we also implemented a support for local injections into
$injector.invoke. If we take the arguments given to the directive template function wrapper,
and pass them go the component template function as DI locals, well have what we need.
src/compile.js
function makeInjectable(template, $injector) {
 if (_.isFunction(template) || _.isArray(template)) {
 return function(element, attrs) {
 return $injector.invoke(template, this, {
 $element: element,
 $attrs: attrs
 });
 };
 } else {
 return template;
 }
}

Component Transclusion 32

1030 Errata© Tero Parviainen 2016

Finally, this dependency injection support is available for templateUrl in exactly the same way
as it is for template:
test/compile_spec.js
it('may have a template function with DI support', function() {
 var injector = createInjector(['ng', function($provide, $compileProvider) {
 $provide.constant('myConstant', 42);
 $compileProvider.component('myComponent', {
 templateUrl: function(myConstant) {
 return '/template' + myConstant + ".html";
 }
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 $rootScope.$apply();
 expect(requests[0].url).toBe('/template42.html');
 });
});

The templateUrl attribute is simply passed through the same makeInjectable function and
everything just works.
src/compile.js
function factory($injector) {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs ||
 identifierForController(options.controller) ||
 '$ctrl',
 scope: {},
 bindToController: options.bindings || {},
 template: makeInjectable(options.template, $injector),
 templateUrl: makeInjectable(options.templateUrl, $injector)
 };
}

Component Transclusion

Transclusion - the act of passing a piece of DOM to a directive so that it can internally render it in
some suitable location - is fully supported by components. It is, in fact, an important feature when
building component-style applications.

There’s nothing surprising about how this works. We enable transclusion for a component using
the transclude attribute, and then we can use transclusion inside it. The easiest way to do that is

Requiring from Components 32

1031 Errata© Tero Parviainen 2016

to apply the ng-transclude directive somewhere in the component’s template.
test/compile_spec.js
it('may use transclusion', function() {
 var injector = makeInjectorWithComponent('myComponent', {
 transclude: true,
 template: '<div ng-transclude></div>'
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component>Transclude me</my-component>');
 $compile(el)($rootScope);
 expect(el.find('div').text()).toEqual('Transclude me');
 });
});

This is implemented in a very straightforward manner, by just passing the transclude attribute
on to the directive factory. Component transclusion is just directive transclusion, plain and simple.

function factory($injector) {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs ||
 identifierForController(options.controller) ||
 '$ctrl',
 scope: {},
 bindToController: options.bindings || {},
 template: makeInjectable(options.template, $injector),
 templateUrl: makeInjectable(options.templateUrl, $injector),
 transclude: options.transclude
 };
}

Requiring from Components

The final feature that components have - and one that also builds directly on directives - is re-
quire. It is used to pull in controllers from other directives from the same element or from ances-
tors, and enables cross-directive (or cross-component!) communication.

it('may require other directive controllers', function() {
 var secondControllerInstance;
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.component('first', {
 controller: function() { }
 });
 $compileProvider.component('second', {
 require: {first: '^'},
 controller: function() {
 secondControllerInstance = this;

The $onInit Lifecycle Hook 32

1032 Errata© Tero Parviainen 2016

 }
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<first><second></second></first>');
 $compile(el)($rootScope);
 expect(secondControllerInstance.first).toBeDefined();
 });
});

This is also nothing but the directive require feature in action. We simply pass through the re-
quire configuration attribute:
src/compile.js
function factory($injector) {
 return {
 restrict: 'E',
 controller: options.controller,
 controllerAs: options.controllerAs ||
 identifierForController(options.controller) ||
 '$ctrl',
 scope: {},
 bindToController: options.bindings || {},
 template: makeInjectable(options.template, $injector),
 templateUrl: makeInjectable(options.templateUrl, $injector),
 transclude: options.transclude,
 require: options.require
 };
}

This completes our coverage of the component definition API. We now know exactly how it
works: How it builds on top of the directive API and how it differs from it.

The $onInit Lifecycle Hook

The second half of this chapter is all about defining controller lifecycle hooks. These are methods that
controllers may implement, which get invoked at certain well-defined points during a component’s
lifetime. They give the application developer a chance to hook in custom functionality to these
points in time.

This is something that has not existed in Angular prior to version 1.5. All we had before that were
directive pre- and postlink functions and the controller constructor. These have proven to be limit-
ed in their usefulness, not to mention challenging to figure out in terms of the order in which they
get called relative to each other.

Both React and Angular 2 have a well-defined component lifecycle, and the one in Angular 1.5 has
been largely shaped by those frameworks. It really helps in making controller code easier to man-
age and understand, and we will now see exactly how it works.

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html

The $onInit Lifecycle Hook 32

1033 Errata© Tero Parviainen 2016

The first lifecycle hook we’ll look at is called $onInit, and it is invoked right after the component
element has been fully initialized. It is useful for at least two purposes:

• When it is invoked, all directives on the element have been initialized, which means that
everything we’ve required will be available. It is safe to do initialization work that may need
required controllers.

• We can put controller initialization logic here instead of the constructor, to make controllers
easier to unit test. We no longer need to use the “partially constructed controller” hack for
defining controller bindings that are needed during initialization.

Let’s flesh out the order in which things happen when we have a component as well as a regular
directive on the same element. What we want to happen is that both controllers are constructed
first, and only then are the $onInit methods called. After that’s all done, the link functions of the
directive are invoked:
test/compile_spec.js
describe('lifecycle', function() {

 it('calls $onInit after all ctrls created before linking', function() {
 var invocations = [];
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.component('first', {
 controller: function() {
 invocations.push('first controller created');
 this.$onInit = function() {
 invocations.push('first controller $onInit');
 };
 }
 });
 $compileProvider.directive('second', function() {
 return {
 controller: function() {
 invocations.push('second controller created');
 this.$onInit = function() {
 invocations.push('second controller $onInit');
 };
 },
 link: {
 pre: function() { invocations.push('second prelink'); },
 post: function() { invocations.push('second postlink'); }
 }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<first second></first>');
 $compile(el)($rootScope);
 expect(invocations).toEqual([
 'first controller created',
 'second controller created',

The $onDestroy Lifecycle Hook 32

1034 Errata© Tero Parviainen 2016

 'first controller $onInit',
 'second controller $onInit',
 'second prelink',
 'second postlink'
]);
 });
 });

});

What we’ll do to implement this is loop over all the controllers of an element in the node link
function. We’ll do this after processing the requires of all the directives on the element. For every
controller that has an $onInit method, we invoke it:
src/compile.js
_.forEach(controllerDirectives, function(controllerDirective, name) {
 var require = controllerDirective.require;
 if (_.isObject(require) && !_.isArray(require) &&
 controllerDirective.bindToController) {
 var controller = controllers[controllerDirective.name].instance;
 var requiredControllers = getControllers(require, $element);
 _.assign(controller, requiredControllers);
 }
});

_.forEach(controllers, function(controller) {
 var controllerInstance = controller.instance;
 if (controllerInstance.$onInit) {
 controllerInstance.$onInit();
 }
});

And that’s $onInit! It’s quite simple, but surprisingly useful.

You may have noticed that $onInit, as implemented here, has nothing to do with components per se. It
applies to regular non-component directives all the same.

This is generally through for all the lifecycle hooks. They are a feature of all directives, not just components.
They’re just usually used in conjunction with the component API and were introduced to the framework at
around the same time, which is why we cover them in this chapter.

The $onDestroy Lifecycle Hook

The second lifecycle we’ll look at is $onDestroy. As the name implies, it is invoked when the
controller is about to get destroyed. This in turn happens when the scope of the directive is getting
destroyed.

Hooking on to this has always been possible: We can just listen to the $destroy event on the

The $postLink Lifecycle Hook 32

1035 Errata© Tero Parviainen 2016

scope. This is something we implemented all the way back in the first part of the book.

That doesn’t make for a very nice API though. The new $onDestroy hook is much more conve-
nient, since you don’t need to think about the scope at all.
test/compile_spec.js
it('calls $onDestroy when the scope is destroyed', function() {
 var destroySpy = jasmine.createSpy();
 var injector = makeInjectorWithComponent('myComponent', {
 controller: function() {
 this.$onDestroy = destroySpy;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component></my-component>');
 $compile(el)($rootScope);
 $rootScope.$destroy();
 expect(destroySpy).toHaveBeenCalled();
 });
});

In the loop where we go over the $onInit calls, we’ll also check for each controller whether it has
an $onDestroy hook or not. For all the ones that do, we attach an event listener on the scope for
the $destroy event. We’re basically just hooking up this event so that the application developer
doesn’t have to:
src/compile.js
_.forEach(controllers, function(controller) {
 var controllerInstance = controller.instance;
 if (controllerInstance.$onInit) {
 controllerInstance.$onInit();
 }
 if (controllerInstance.$onDestroy) {
 (newIsolateScopeDirective ? isolateScope : scope).$on('$destroy', function() {
 controllerInstance.$onDestroy();
 });
 }
});

The $postLink Lifecycle Hook

Occasionally you need to execute some logic at a point in time when you know all the child el-
ements have been initialized and linked as well. This may be, for example, because you need to
access the DOM of the child elements.

With directives we can do this in the postlink function, which is easy and straighforward. But for
components we can’t do that because we can’t define link functions through the component API.
Instead we can use $postLink hooks. They’re the only way we can tap into this part of the lifecy-
cle from components.

The $postLink Lifecycle Hook 32

1036 Errata© Tero Parviainen 2016

test/compile_spec.js
it('calls $postLink after all linking is done', function() {
 var invocations = [];
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.component('first', {
 controller: function() {
 this.$postLink = function() {
 invocations.push('first controller $postLink');
 };
 }
 });
 $compileProvider.directive('second', function() {
 return {
 controller: function() {
 this.$postLink = function() {
 invocations.push('second controller $postLink');
 };
 },
 link: function() { invocations.push('second postlink'); }
 };
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var el = $('<first><second></second></first>');
 $compile(el)($rootScope);
 expect(invocations).toEqual([
 'second postlink',
 'second controller $postLink',
 'first controller $postLink'
]);
 });
});

Here we see that the $postLink hooks are called after the postlink functions themselves, and also
that the hooks are called while coming back up the DOM tree. This is what we expect to happen
with post-linking.

The invocation of these hooks happens in yet another controller loop. This one goes after the
postlink loop right at the end of the node link function.
src/compile.js
_.forEachRight(postLinkFns, function(linkFn) {
 linkFn(
 linkFn.isolateScope ? isolateScope : scope,
 $element,
 attrs,
 linkFn.require && getControllers(linkFn.require, $element),
 scopeBoundTranscludeFn
);
});

_.forEach(controllers, function(controller) {

The $onChanges Hook 32

1037 Errata© Tero Parviainen 2016

 var controllerInstance = controller.instance;
 if (controllerInstance.$postLink) {
 controllerInstance.$postLink();
 }
});

The $onChanges Hook

The final lifecycle hook we’ll talk about is $onChanges. This is perhaps the most useful of all the
hooks but it is almost by far the most complicated one to implement.

The big idea is to get notified when changes in the component’s bindings occur. That is, when one
or more of a component’s inputs have changed. The application developer can then execute logic
based on the changes, to calculate derived values or do whatever else needs to be done.

This is also something for which there hasn’t been a great solution before. The way we’ve been
able to do it prior to Angular 1.5 is to attach a $watch inside the directive controller and then do
work in its listener function:

$scope.$watch('ctrl.someInput', function(newValue) {
 ctrl.derivedValue = deriveValue(newValue);
});

This is not only an inconvenient API, but also comes with a performance penalty. We’re adding
another watcher to something that’s already being watched by the directive compiler, which really
should be unnecessary. With $onChanges it in fact is unnecessary, because now the framework
can just tell us about changes.

The first time $onChanges gets called is right after the component has initialized. It is given the
initial values of all the attribute and one-way bindings of the component.

test/compile_spec.js
it('calls $onChanges with all bindings during init', function() {
 var changesSpy = jasmine.createSpy();
 var injector = makeInjectorWithComponent('myComponent', {
 bindings: {
 myBinding: '<',
 myAttr: '@'
 },
 controller: function() {
 this.$onChanges = changesSpy;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component my-binding="42" my-attr="43"></my-component>');
 $compile(el)($rootScope);
 expect(changesSpy).toHaveBeenCalled();

The $onChanges Hook 32

1038 Errata© Tero Parviainen 2016

 var changes = changesSpy.calls.mostRecent().args[0];
 expect(changes.myBinding.currentValue).toBe(42);
 expect(changes.myBinding.isFirstChange()).toBe(true);
 expect(changes.myAttr.currentValue).toBe('43');
 expect(changes.myAttr.isFirstChange()).toBe(true);
 });
});

Notice the structure of the changes argument that’s passed to $onChanges: It has keys matching
the binding names. For each binding it contains an object with a currentValue key and an is-
FirstValue() method that returns true.

There’s one very notable thing about $onChanges: No changes are available for two-way bindings. To
use this feature, the application developer needs to get used to using one-way bindings:
test/compile_spec.js
it('does not call $onChanges for two-way bindings', function() {
 var changesSpy = jasmine.createSpy();
 var injector = makeInjectorWithComponent('myComponent', {
 bindings: {
 myBinding: '=',
 },
 controller: function() {
 this.$onChanges = changesSpy;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component my-binding="42"></my-component>');
 $compile(el)($rootScope);
 expect(changesSpy).toHaveBeenCalled();
 expect(changesSpy.calls.mostRecent().args[0].myBinding).toBeUndefined();
 });
});

We’ll collect these initial change values in the initializeDirectiveBindings function and
then return them:
src/compile.js
function initializeDirectiveBindings(scope, attrs, destination, bindings, newScope)
{
 var initialChanges = {};
 _.forEach(bindings, function(definition, scopeName) {
 // ...
 });
 return initialChanges;
}

But what should we put in those values? Well, we partially saw the shape of the change objects in
the test case already: They hold the current and previous values and an isFirstChange() meth-
od. They’re actually constructed by a little constructor function inside compile.js, called Sim-
pleChange. We can define it on the top level of that file:

The $onChanges Hook 32

1039 Errata© Tero Parviainen 2016

src/compile.js
function SimpleChange(previous, current) {
 this.previousValue = previous;
 this.currentValue = current;
}

The constructor prototype defines the isFirstChange() method. It compares the previous value
to a special constant called _UNINITIALIZED_VALUE.
src/compile.js
function SimpleChange(previous, current) {
 this.previousValue = previous;
 this.currentValue = current;
}
SimpleChange.prototype.isFirstChange = function() {
 return this.previousValue === _UNINITIALIZED_VALUE;
};

This constant is also defined on the top level of compile.js. Its exact value is not important since
it’s only used to check if a change record is the first one or not. The only important thing is that it’s
not equal to anything else than itself.
src/compile.js
function UNINITIALIZED_VALUE() { }
var _UNINITIALIZED_VALUE = new UNINITIALIZED_VALUE();

We can now populate the initial changes in initializeDirectiveBindings. We do it for attri-
bute bindings and one-way bindings, but not two-way bindings:
src/compile.js
case '@':
 attrs.$observe(attrName, function(newAttrValue) {
 destination[scopeName] = newAttrValue;
 });
 if (attrs[attrName]) {
 destination[scopeName] = $interpolate(attrs[attrName])(scope);
 }
 initialChanges[scopeName] =
 new SimpleChange(_UNINITIALIZED_VALUE, destination[scopeName]);
 break;
case '<':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 destination[scopeName] = parentGet(scope);
 unwatch = scope.$watch(parentGet, function(newValue) {
 destination[scopeName] = newValue;
 });
 newScope.$on('$destroy', unwatch);
 initialChanges[scopeName] =
 new SimpleChange(_UNINITIALIZED_VALUE, destination[scopeName]);

The $onChanges Hook 32

1040 Errata© Tero Parviainen 2016

 break;

Now, as we call initializeDirectiveBindings for each controller, we should grab the return
value, which will contain the initial changes. We’ll attach it to the internal controller object so that
we can use it later.
src/compile.js
var scopeDirective = newIsolateScopeDirective || newScopeDirective;
if (scopeDirective && controllers[scopeDirective.name]) {
 controllers[scopeDirective.name].initialChanges = initializeDirectiveBindings(
 scope,
 attrs,
 controllers[scopeDirective.name].instance,
 scopeDirective.$$bindings.bindToController,
 isolateScope
);
}

We then use those initial changes right after we’ve called $onInit. If a controller also has an
$onChanges hook, it is invoked for the first time at this point, with the initial changes object:
src/compile.js
_.forEach(controllers, function(controller) {
 var controllerInstance = controller.instance;
 if (controllerInstance.$onInit) {
 controllerInstance.$onInit();
 }
 if (controllerInstance.$onChanges) {
 controllerInstance.$onChanges(controller.initialChanges);
 }
 if (controllerInstance.$onDestroy) {
 (newIsolateScopeDirective ? isolateScope : scope).$on('$destroy', function() {
 controllerInstance.$onDestroy();
 });
 }
});

Now, or course the real point of $onChanges is to call it whenever changes occur, not just when
the component initializes. If we change the value of a bound one-way input of a component, we
should expect the component’s $onChanges() to be invoked on the next digest.
test/compile_spec.js
it('calls $onChanges when binding changes', function() {
 var changesSpy = jasmine.createSpy();
 var injector = makeInjectorWithComponent('myComponent', {
 bindings: {
 myBinding: '<'
 },
 controller: function() {
 this.$onChanges = changesSpy;
 }
 });

The $onChanges Hook 32

1041 Errata© Tero Parviainen 2016

 injector.invoke(function($compile, $rootScope) {
 $rootScope.aValue = 42;
 var el = $('<my-component my-binding="aValue"></my-component>');
 $compile(el)($rootScope);
 $rootScope.$apply();

 expect(changesSpy.calls.count()).toBe(1);

 $rootScope.aValue = 43;
 $rootScope.$apply();
 expect(changesSpy.calls.count()).toBe(2);

 var lastChanges = changesSpy.calls.mostRecent().args[0];
 expect(lastChanges.myBinding.currentValue).toBe(43);
 expect(lastChanges.myBinding.previousValue).toBe(42);
 expect(lastChanges.myBinding.isFirstChange()).toBe(false);
 });
});

Note that this time the change record has both a previous and a current value, and is not consid-
ered to be the first change anymore - isFirstChange() returns false.

Inside initializeDirectiveBindings we’ve set up a watcher for the one-way binding. This
is the place where we know when changes occur. What we’ll do here is call a new helper function
called recordChanges. Well give it the binding name, and both the old and new values of the
binding. With that information we’ll be able to construct what we need for $onChanges.
src/compile.js
case '<':
 if (definition.optional && !attrs[attrName]) {
 break;
 }
 parentGet = $parse(attrs[attrName]);
 destination[scopeName] = parentGet(scope);
 unwatch = scope.$watch(parentGet, function(newValue) {
 var oldValue = destination[scopeName];
 destination[scopeName] = newValue;
 recordChanges(scopeName, destination[scopeName], oldValue);
 });
 newScope.$on('$destroy', unwatch);
 initialChanges[scopeName] =
 new SimpleChange(_UNINITIALIZED_VALUE, destination[scopeName]);
 break;

We’ll define the recordChanges function inside the initializeDirectiveBindings closure:
src/compile.js
function initializeDirectiveBindings(scope, attrs, destination, bindings, newScope)
{
 var initialChanges = {};

 function recordChanges(key, currentValue, previousValue) {

The $onChanges Hook 32

1042 Errata© Tero Parviainen 2016

 }

 _.forEach(bindings, function(definition, scopeName) {
 var attrName = definition.attrName;
 var parentGet, unwatch;
 switch (definition.mode) {
 // ...
 }
 });
 return initialChanges;
}

The simplest reasonable thing to do here might be to just check if the controller (accessible here
through the destination variable) has an $onChanges method and if the value has actually
changed. If both of those conditions hold, we could make a changes object and call $onChanges
right away. This will actually satisfy our test case:
src/compile.js
function recordChanges(key, currentValue, previousValue) {
 if (destination.$onChanges && currentValue !== previousValue) {
 var changes = {};
 changes[key] = new SimpleChange(previousValue, currentValue);
 destination.$onChanges(changes);
 }
}

Let’s see how this approach will work with attribute bindings. When we $set an attribute that has
a binding for it, we can again expect $onChanges to be called on the following digest.
test/compile_spec.js
it('calls $onChanges when attribute changes', function() {
 var changesSpy = jasmine.createSpy();
 var attrs;
 var injector = makeInjectorWithComponent('myComponent', {
 bindings: {
 myAttr: '@'
 },
 controller: function($attrs) {
 this.$onChanges = changesSpy;
 attrs = $attrs;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 var el = $('<my-component my-attr="42"></my-component>');
 $compile(el)($rootScope);
 $rootScope.$apply();

 expect(changesSpy.calls.count()).toBe(1);

 attrs.$set('myAttr', '43');
 $rootScope.$apply();

The $onChanges Hook 32

1043 Errata© Tero Parviainen 2016

 expect(changesSpy.calls.count()).toBe(2);

 var lastChanges = changesSpy.calls.mostRecent().args[0];
 expect(lastChanges.myAttr.currentValue).toBe('43');
 expect(lastChanges.myAttr.previousValue).toBe('42');
 expect(lastChanges.myAttr.isFirstChange()).toBe(false);
 });
});

If we call recordChanges from the attribute observer that we have inside initializeDirec-
tiveBindings, this test case will be satisfied as well:
src/compile.js
case '@':
 attrs.$observe(attrName, function(newAttrValue) {
 var oldValue = destination[scopeName];
 destination[scopeName] = newAttrValue;
 recordChanges(scopeName, destination[scopeName], oldValue);
 });
 if (attrs[attrName]) {
 destination[scopeName] = $interpolate(attrs[attrName])(scope);
 }
 initialChanges[scopeName] =
 new SimpleChange(_UNINITIALIZED_VALUE, destination[scopeName]);
 break;

But what if we have two bindings on the same component: A one-way binding and an attribute
binding. We expect the component’s $onChanges to be called with an object that contains two
changes:
test/compile_spec.js
it('calls $onChanges once with multiple changes', function() {
 var changesSpy = jasmine.createSpy();
 var attrs;
 var injector = makeInjectorWithComponent('myComponent', {
 bindings: {
 myBinding: '<',
 myAttr: '@'
 },
 controller: function($attrs) {
 this.$onChanges = changesSpy;
 attrs = $attrs;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 $rootScope.aValue = 42;
 var el = $(
 '<my-component my-binding="aValue" my-attr="fourtyTwo"></my-component>'
);
 $compile(el)($rootScope);
 $rootScope.$apply();

The $onChanges Hook 32

1044 Errata© Tero Parviainen 2016

 expect(changesSpy.calls.count()).toBe(1);

 $rootScope.aValue = 43;
 attrs.$set('myAttr', 'fourtyThree');
 $rootScope.$apply();
 expect(changesSpy.calls.count()).toBe(2);

 var lastChanges = changesSpy.calls.mostRecent().args[0];
 expect(lastChanges.myBinding.currentValue).toBe(43);
 expect(lastChanges.myBinding.previousValue).toBe(42);
 expect(lastChanges.myAttr.currentValue).toBe('fourtyThree');
 expect(lastChanges.myAttr.previousValue).toBe('fourtyTwo');
 });
});

This isn’t working. The reason is that we’re actually calling $onChanges twice, each time with just
one change. That’s because we immediately invoke $onChanges from recordChanges instead
of waiting to bundle multiple changes together. What we want to do is call $onChanges just once,
with all the changes that occured within a single digest turn.

Let’s first pull out the changes object to outside the recordChanges function, so that it survives
beyond just a single invocation of that function.
src/compile.js
function initializeDirectiveBindings(scope, attrs, destination, bindings, newScope)
{
 var initialChanges = {};
 var changes;

 function recordChanges(key, currentValue, previousValue) {
 if (destination.$onChanges && currentValue !== previousValue) {
 changes = changes || {};
 changes[key] = new SimpleChange(previousValue, currentValue);
 destination.$onChanges(changes);
 }
 }

 // ...

}

Then, let’s introduce a new helper function called flushOnChanges that calls $onChanges with
the collected changes, and then clears the collection.
src/compile.js
function flushOnChanges() {
 try {
 destination.$onChanges(changes);
 } finally {
 changes = null;
 }
}

The $onChanges Hook 32

1045 Errata© Tero Parviainen 2016

Now we can schedule flushOnChanges to be called later. We do it whenever we record a change,
but only when we haven’t done so already. This we can track with a helper variable called will-
flushOnChanges. For the scheduling itself we can use $rootScope.$$postDigest. That means
$onChanges gets called after the next (or current) digest.
src/compile.js
function initializeDirectiveBindings(scope, attrs, destination, bindings, newScope)
{
 var initialChanges = {};
 var changes;
 var willFlushOnChanges = false;

 function recordChanges(key, currentValue, previousValue) {
 if (destination.$onChanges && currentValue !== previousValue) {
 changes = changes || {};
 changes[key] = new SimpleChange(previousValue, currentValue);
 if (!willFlushOnChanges) {
 $rootScope.$$postDigest(flushOnChanges);
 willFlushOnChanges = true;
 }
 }
 }

 function flushOnChanges() {
 try {
 destination.$onChanges(changes);
 } finally {
 changes = null;
 }
 }

 // ...

}

The flushOnChanges function should also put the willFlushOnChanges flag back so that we
schedule another flush the next time.
src/compile.js
function flushOnChanges() {
 try {
 destination.$onChanges(changes);
 } finally {
 changes = null;
 willFlushOnChanges = false;
 }
}

This is working pretty well and the current test suite is happy, but there are still some problems.
For one thing, if we have code inside a controller’s $onChanges method that itself changes bound
properties, those changes are not being picked up. We see in this test case that the component tem-

The $onChanges Hook 32

1046 Errata© Tero Parviainen 2016

plate doesn’t have the content we expect it to have:
test/compile_spec.js
it('runs $onChanges in a digest', function() {
 var changesSpy = jasmine.createSpy();
 var injector = makeInjectorWithComponent('myComponent', {
 bindings: {
 myBinding: '<'
 },
 controller: function() {
 this.$onChanges = function() {
 this.innerValue = 'myBinding is ' + this.myBinding;
 };
 },
 template: '{{ $ctrl.innerValue }}'
 });
 injector.invoke(function($compile, $rootScope) {
 $rootScope.aValue = 42;
 var el = $('<my-component my-binding="aValue"></my-component>');
 $compile(el)($rootScope);
 $rootScope.$apply();

 $rootScope.aValue = 43;
 $rootScope.$apply();

 expect(el.text()).toEqual('myBinding is 43');
 });
});

The reason for this is that we’re using $$postDigest, and $$postDigest executes outside of
a digest. Any changes we make there won’t be applied until the next digest, and we have no idea
when that’s going to be. As application developers we expect all controller code, including $on-
Changes, to be executed within a digest so that we don’t need to call $scope.$apply(). So, what
we need to do is kick off another digest for the invocation of $onChanges.
src/compile.js
function flushOnChanges() {
 try {
 $rootScope.$apply(function() {
 destination.$onChanges(changes);
 });
 } finally {
 changes = null;
 willFlushOnChanges = false;
 }
}

Another issue we have is with multiple changes happening to the same binding within a single di-
gest. The change gets recorded just fine, but we lose track of the original previous value the bind-
ing had before the digest begun. That’s because each change record overwrites the last.

The $onChanges Hook 32

1047 Errata© Tero Parviainen 2016

test/compile_spec.js
it('keeps first value as previous for $onChanges when multiple changes', function()
{
 var changesSpy = jasmine.createSpy();
 var injector = makeInjectorWithComponent('myComponent', {
 bindings: {
 myBinding: '<'
 },
 controller: function() {
 this.$onChanges = changesSpy;
 }
 });
 injector.invoke(function($compile, $rootScope) {
 $rootScope.aValue = 42;
 var el = $('<my-component my-binding="aValue"></my-component>');
 $compile(el)($rootScope);
 $rootScope.$apply();

 $rootScope.aValue = 43;
 $rootScope.$watch('aValue', function() {
 if ($rootScope.aValue !== 44) {
 $rootScope.aValue = 44;
 }
 });
 $rootScope.$apply();
 expect(changesSpy.calls.count()).toBe(2);

 var lastChanges = changesSpy.calls.mostRecent().args[0];
 expect(lastChanges.myBinding.currentValue).toBe(44);
 expect(lastChanges.myBinding.previousValue).toBe(42);
 });
});

Inside recordChanges we need to check if we already have a change object for the current key.
If we do, we grab its previous value for our new change record and discard the intermediate val-
ue. What $onChanges will see are the first of the previous values and the last of the new values,
regardless of how many times the binding changed during the digest.
src/compile.js
function recordChanges(key, currentValue, previousValue) {
 if (destination.$onChanges && currentValue !== previousValue) {
 changes = changes || {};
 if (changes[key]) {
 previousValue = changes[key].previousValue;
 }
 changes[key] = new SimpleChange(previousValue, currentValue);
 if (!willFlushOnChanges) {
 $rootScope.$$postDigest(flushOnChanges);
 willFlushOnChanges = true;
 }
 }
}

The $onChanges Hook 32

1048 Errata© Tero Parviainen 2016

The next problem we’ll address is possibly the most serious one, and it is related to performance.
Notice how we’re calling $scope.$apply() whenever we flush the changes queue. That happens
once per every component that is tracking changes with $onChanges. Now consider an applica-
tion that has 50 such components on the screen - which a real-world application may easily have.
In such an application we’re kicking off up to 50 additional digests from just a single one. And as
we’ve learned, every $apply runs all the change detection code in the whole application. We’ve
got a serious performance problem on our hands.

What we’d like to do is kick off just one digest regardless of how many components there happen to
be. We can invoke $onChanges for all components in that same digest.
test/compile_spec.js
it('runs $onChanges for all components in the same digest', function() {
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.component('first', {
 bindings: {myBinding: '<'},
 controller: function() {
 this.$onChanges = function() { };
 }
 });
 $compileProvider.component('second', {
 bindings: {myBinding: '<'},
 controller: function() {
 this.$onChanges = function() { };
 }
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var watchSpy = jasmine.createSpy();
 $rootScope.$watch(watchSpy);

 $rootScope.aValue = 42;
 var el = $('<div>' +
 '<first my-binding="aValue"></first>' +
 '<second my-binding="aValue"></second>' +
 '</div>');
 $compile(el)($rootScope);
 $rootScope.$apply();
 // Dirty watches always cause a second digest, hence 2
 expect(watchSpy.calls.count()).toBe(2);

 $rootScope.aValue = 43;
 $rootScope.$apply();
 // Two more because of dirty watches,
 // plus *one* more for onchanges
 expect(watchSpy.calls.count()).toBe(5);
 });
});

What we’ll do next is essentially lift some of the change tracking code to an outer level inside

The $onChanges Hook 32

1049 Errata© Tero Parviainen 2016

compile.js so that we can flush things all at once. But first, let’s tease out the actual invocation
of $onChanges from flushOnChanges to a separate function, triggerOnChanges.
src/compile.js
function triggerOnChanges() {
 try {
 destination.$onChanges(changes);
 } finally {
 changes = null;
 }
}

function flushOnChanges() {
 $rootScope.$apply(function() {
 triggerOnChanges();
 willFlushOnChanges = false;
 });
}

Then, let’s turn the willFlushOnChanges boolean flag into an array called onChangesQueue.
The idea is to collect multiple $onChanges triggers to a single invocation queue. Whenever we
record a change, we initialize the queue to an empty array if it’s not already initialized. We also
schedule the queue to be flushed later.
src/compile.js
function initializeDirectiveBindings(scope, attrs, destination, bindings, newScope)
{
 var initialChanges = {};
 var changes;
 var onChangesQueue;

 function recordChanges(key, currentValue, previousValue) {
 if (destination.$onChanges && currentValue !== previousValue) {
 if (!onChangesQueue) {
 onChangesQueue = [];
 $rootScope.$$postDigest(flushOnChanges);
 }
 changes = changes || {};
 if (changes[key]) {
 previousValue = changes[key].previousValue;
 }
 changes[key] = new SimpleChange(previousValue, currentValue);
 }
 }

 // ...

}

We then separately queue up the triggering of the changes by adding the trigger function to the
queue:

The $onChanges Hook 32

1050 Errata© Tero Parviainen 2016

src/compile.js
function recordChanges(key, currentValue, previousValue) {
 if (destination.$onChanges && currentValue !== previousValue) {
 if (!onChangesQueue) {
 onChangesQueue = [];
 $rootScope.$$postDigest(flushOnChanges);
 }
 if (!changes) {
 changes = {};
 onChangesQueue.push(triggerOnChanges);
 }
 if (changes[key]) {
 previousValue = changes[key].previousValue;
 }
 changes[key] = new SimpleChange(previousValue, currentValue);
 }
}

So, the onChangesQueue becomes an collection of functions to call. That is exatly what we then
do in flushOnChanges:
src/compile.js
function flushOnChanges() {
 $rootScope.$apply(function() {
 _.forEach(onChangesQueue, function(onChangesHook) {
 onChangesHook();
 });
 onChangesQueue = null;
 });
}

The last thing to do then is to take the onChangesQueue variable and the flushOnChanges func-
tion out of the initializeDirectiveBindings function and place them on an outer level, just
inside the $get method of $CompileProvider, where they will be shared by the whole applica-
tion.
src/compile.js
this.$get = ['$injector', '$parse', '$controller', '$rootScope', '$http',
 '$interpolate',
 function($injector, $parse, $controller, $rootScope, $http, $interpolate) {

 var onChangesQueue;

 function flushOnChanges() {
 $rootScope.$apply(function() {
 _.forEach(onChangesQueue, function(onChangesHook) {
 onChangesHook();
 });
 onChangesQueue = null;
 });
 }

The $onChanges Hook 32

1051 Errata© Tero Parviainen 2016

 // ...

}];

The changes object and triggerOnChanges stay where they are, because they are specific to
each component.

So, what’s happening now is that when any component anywhere in the application needs to call
$onChanges, it initializes the onChangesQueue and puts its own triggerOnChanges function in
it. Then, all other components that need to do the same will add their triggerOnChanges func-
tions to the same queue. Finally, after the digest, all those triggers are executed in one big batch
when the queue is flushed.

But there’s one more thing. What if we have an $onChanges method that causes some other com-
ponent’s binding to change? That by itself is fine, but if we manage to combine such components
in a circular manner where they keep causing changes in one another, we run into problems. The
following test case causes an infinite loop.
test/compile_spec.js
it('has a TTL for $onChanges', function() {
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.component('myComponent', {
 bindings: {
 input: '<',
 increment: '='
 },
 controller: function() {
 this.$onChanges = function() {
 if (this.increment) {
 this.increment = this.increment + 1;
 }
 };
 }
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var watchSpy = jasmine.createSpy();
 $rootScope.$watch(watchSpy);

 var el = $('<div>' +
 '<my-component input="valueOne" increment="valueTwo"></my-component>' +
 '<my-component input="valueTwo" increment="valueOne"></my-component>' +
 '</div>');
 $compile(el)($rootScope);
 $rootScope.$apply();

 $rootScope.valueOne = 42;
 $rootScope.valueTwo = 42;
 $rootScope.$apply();
 expect($rootScope.valueOne).toBe(51);

The $onChanges Hook 32

1052 Errata© Tero Parviainen 2016

 expect($rootScope.valueTwo).toBe(51);
 });
});

We have two instances of the same component, with the $onChanges method on one causing an
input property to change on other, and vice versa, ad infinitum.

You may recall from the very first chaper of the book that we implemented a safety measure for
exactly this kind of problem on scopes: The TTL. It stops the digest forcibly after 10 iterations if it
fails to stabilize. But with $onChanges the scope TTL safety measure never kicks in. It’s because
at each turn we’re actually escaping the digest and starting a new one with $$postDigest, so the
TTL counter starts from the beginning again.

Angular implements a second TTL system for $onChanges. It is very similar to the one on scopes,
and its’s implemented in compile.js. Let’s cap off the chapter by implementing that TTL.

Outside of the flushOnChanges function we have a variable called onChangesTtl, which we dec-
rement whenever we enter flushOnChanges and increment again when we exit:
src/compile.js
var onChangesQueue;
var onChangesTtl = 10;

function flushOnChanges() {
 try {
 onChangesTtl--;
 $rootScope.$apply(function() {
 _.forEach(onChangesQueue, function(onChangesHook) {
 onChangesHook();
 });
 onChangesQueue = null;
 });
 } finally {
 onChangesTtl++;
 }
}

When that variable reaches zero, we then throw an exception. The $onChanges cycle has failed to
stabilize:
src/compile.js
function flushOnChanges() {
 try {
 onChangesTtl--;
 if (!onChangesTtl) {
 onChangesQueue = null;
 throw '10 $onChanges() iterations reached. Aborting!';
 }
 $rootScope.$apply(function() {
 _.forEach(onChangesQueue, function(onChangesHook) {

The $onChanges Hook 32

1053 Errata© Tero Parviainen 2016

 onChangesHook();
 });
 onChangesQueue = null;
 });
 } finally {
 onChangesTtl++;
 }
}

This fixes the problem. When, through the cyclic $onChanges calls, we reach the tenth recursive
invocation of flushOnChanges, we give up and tell the app developer to fix their code.

In addition to that, we do give the application developer a chance to tweak the TTL if they really
have an architecture where that’s necessary. It can be done through the $CompileProvider, and
is exactly symmetric with the digestTtl method of the $rootScope provider.
test/compile_spec.js
it('allows configuring $onChanges TTL', function() {
 var injector = createInjector(['ng', function($compileProvider) {
 $compileProvider.onChangesTtl(50);
 $compileProvider.component('myComponent', {
 bindings: {
 input: '<',
 increment: '='
 },
 controller: function() {
 this.$onChanges = function() {
 if (this.increment) {
 this.increment = this.increment + 1;
 }
 };
 }
 });
 }]);
 injector.invoke(function($compile, $rootScope) {
 var watchSpy = jasmine.createSpy();
 $rootScope.$watch(watchSpy);

 var el = $('<div>' +
 '<my-component input="valueOne" increment="valueTwo"></my-component>' +
 '<my-component input="valueTwo" increment="valueOne"></my-component>' +
 '</div>');
 $compile(el)($rootScope);
 $rootScope.$apply();

 $rootScope.valueOne = 42;
 $rootScope.valueTwo = 42;
 $rootScope.$apply();
 expect($rootScope.valueOne).toBe(91);
 expect($rootScope.valueTwo).toBe(91);
 });
});

Summary 32

1054 Errata© Tero Parviainen 2016

This is the same test case as before, but this time we allow the TTL to reach 50 before giving up, by
calling an onChangesTtl method on the provider at configuration time.

The onChangesTtl method is defined on $CompileProvider and maintains a TTL variable. It
allows both reading and writing it:
src/compile.js
function $CompileProvider($provide) {

 var hasDirectives = {};

 var TTL = 10;

 this.onChangesTtl = function(value) {
 if (arguments.length) {
 TTL = value;
 return this;
 }
 return TTL;
 };

 // ...

}

That TTL variable is then used instead of the hard-coded 10:
src/compile.js
var onChangesQueue;
var onChangesTtl = TTL;

function flushOnChanges() {
 try {
 onChangesTtl--;
 if (!onChangesTtl) {
 onChangesQueue = null;
 throw TTL + ' $onChanges() iterations reached. Aborting!';
 }
 $rootScope.$apply(function() {
 _.forEach(onChangesQueue, function(onChangesHook) {
 onChangesHook();
 });
 onChangesQueue = null;
 });
 } finally {
 onChangesTtl++;
 }
}

Summary

Summary 32

1055 Errata© Tero Parviainen 2016

Angular 1.5 is easily the best version of Angular 1 that has ever existed. The component API
introduced in that version solidifies best practice patterns, streamlines APIs, and allows for more
performant code to be written through hooks such as $onChanges. It also architecturally aligns
Angular 1 more closely with Angular 2, paving the way for an upgrade path to those who are look-
ing for one.

And yet, as we’ve seen in this chapter, everything in the component API is really just a relatively
thin layer on top of existing directive and controller code. It’s the same Angular as it always was,
just more pleasant to use. And now you know exactly how those new APIs are constructed.

In this chapter you have learned:

• About the reasons behind the introduction of the component API.
• How components can be registered in modules.
• That components are really just directives under the hood.
• How components are restricted so they can only be applied to elements, not attributes or class-

es.
• That a component always has an isolate scope.
• How component bindings are defined through the bindings object, and that they are always

bound to the controller.
• That controller aliasing works for components just like it does for regular directives.
• That component controllers always have an alias, and how it is assigned to $ctrl by default.
• That components may have templates and template URLs.
• That the component template or template URL can be defined using a dependency-injected

function.
• How the $element and $attrs injection locals are made available to the component template

or template URL function.
• That components support transclusion like regular directives.
• That components support require like regular directives.
• That all component lifecycle hooks also work on regular directives.
• How the $onInit lifecycle hook works: By being called after the whole element has initialised,

before linking.
• How the $onDestroy lifecycle hook works: By tapping into the $destroy event of the scope.
• How the $postLink lifecycle hook works: By being called after the element and all children

have been linked and all postlink functions have been invoked.
• How the $onChanges lifecycle hook works: By being called with change record when changes

occur.
• That the $onChanges hook is first called when the controller bindings are initialized.
• That the change records given to $onChanges are actually instances of a SimpleChange con-

structor, and have an isFirstChange() method available.
• How $onChanges is invoked in a separate digest after changes have been processed.
• How all the changes from a single digest are batched together using an internal queue inside

the compiler.

Summary 32

1056 Errata© Tero Parviainen 2016

• How cycles between $onChanges and bindings are protected against with a TTL, which is
separate from the scope TTL.

• How the $onChanges TTL can be configured.

 33

1057 Errata© Tero Parviainen 2016

Chapter 24

Bootstrapping

The ngClick Directive 33

1058 Errata© Tero Parviainen 2016

At this point we’ve implemented all the core concepts of the AngularJS framework. Now comes
the time to pull everything together and use our newfangled framework to bootstrap an actual ap-
plication. As we do that, we’ll see how all the features we’ve implemented work in concert.

In this chapter we’re going create one high-level directive that will come in useful when we take
our framework for a test drive: ngClick. We’ll then implement the two bootstrap mechanisms
Angular provides for starting up applications. Finally, we’ll write a little sample app in which we’ll
use our own AngularJS.

Download the code for the starting point of this chapter.

The ngClick Directive

Angular ships with a large collection of built-in directives for various purposes. If you have a par-
ticular interest in any of them, at this point you are well-equipped to crack open the source code
and study what it’s doing. Most of the built-in directives use the core features we have built and
combine them to the DOM in one way or another.

What we’ll do now is implement one specific directive. That’s the ngClick directive, which can
be used to attach expressions to click events. It will serve as an example of how Angular’s built-in
event directives work. It’ll also come in useful as we write our example app, because with it we can
easily add some interaction to the UI.

As always, let’s begin with a unit test. Create a new unit test file for ngClick, and add the follow-
ing familiar DI boilerplate to it:

test/directives/ng_click_spec.js
'use strict';

var $ = require('jquery');
var publishExternalAPI = require('../../src/angular_public');
var createInjector = require('../../src/injector');

describe('ngClick', function() {

 var $compile, $rootScope;

 beforeEach(function() {
 delete window.angular;
 publishExternalAPI();
 var injector = createInjector(['ng']);
 $compile = injector.get('$compile');
 $rootScope = injector.get('$rootScope');
 });

});

https://github.com/teropa/build-your-own-angularjs/releases/tag/chapter23-components

The ngClick Directive 33

1059 Errata© Tero Parviainen 2016

One of the things ngClick does, and the first thing we’ll implement, is the launch of an Angular
digest whenever a click event occurs. We can test this by attaching a spy as a $watch on the root
scope. We want the watch to be invoked when we click on an element with an ng-click:

test/directives/ng_click_spec.js
it('starts a digest on click', function() {
 var watchSpy = jasmine.createSpy();
 $rootScope.$watch(watchSpy);

 var button = $('<button ng-click="doSomething()"></button>');
 $compile(button)($rootScope);

 button.click();
 expect(watchSpy).toHaveBeenCalled();
});

We haven’t defined doSomething() so the expression doesn’t actually do anything. Recall from the ex-
pression parser implementation that it’s fine to call non-existing functions in expressions. The calls just fail
silently.

This test can be fulfilled with a simple implementation of ngClick. It is restricted to attributes
only. When linked, it attaches a click handler to the element. When a click occurs, it starts a digest:

src/directives/ng_click.js
'use strict';

function ngClickDirective() {
 return {
 restrict: 'A',
 link: function(scope, element) {
 element.on('click', function() {
 scope.$apply();
 });
 }
 };
}

module.exports = ngClickDirective;

We still need to register this directive to the ng module before the compiler can find it:

src/angular_public.js
function publishExternalAPI() {
 setupModuleLoader(window);

 var ngModule = window.angular.module('ng', []);
 ngModule.provider('$filter', require('./filter'));
 ngModule.provider('$parse', require('./parse'));

The ngClick Directive 33

1060 Errata© Tero Parviainen 2016

 ngModule.provider('$rootScope', require('./scope'));
 ngModule.provider('$q', require('./q').$QProvider);
 ngModule.provider('$$q', require('./q').$$QProvider);
 ngModule.provider('$httpBackend', require('./http_backend'));
 ngModule.provider('$http', require('./http').$HttpProvider);
 ngModule.provider('$httpParamSerializer',
 require('./http').$HttpParamSerializerProvider);
 ngModule.provider('$httpParamSerializerJQLike',
 require('./http').$HttpParamSerializerJQLikeProvider);
 ngModule.provider('$compile', require('./compile'));
 ngModule.provider('$controller', require('./controller').$ControllerProvider);
 ngModule.provider('$interpolate', require('./interpolate'));
 ngModule.directive('ngController',
 require('./directives/ng_controller'));
 ngModule.directive('ngTransclude',
 require('./directives/ng_transclude'));
 ngModule.directive('ngClick',
 require('./directives/ng_click'));
}

At this point, the first test case passes!

ngClick is pretty much always used for evaluating an expression when a click occurs, presumably
to cause some kind of effect in the application code. We can verify that when used with a function
call expression, ngClick will actually invoke that function on click:

test/directives/ng_click_spec.js
it('evaluates given expression on click', function() {
 $rootScope.doSomething = jasmine.createSpy();
 var button = $('<button ng-click="doSomething()"></button>');
 $compile(button)($rootScope);

 button.click();
 expect($rootScope.doSomething).toHaveBeenCalled();
});

Implementing this is pretty straightforward. Recall from the first part of the book that
scope.$apply() optionally accepts an expression as an argument. If given, it will evaluate that
expression on the scope. In ngClick we have an expression in the value of the ng-click attribute
on the current element. We can easily grab it from the Attributes object and pass it to $apply:

src/directives/ng_click.js
function ngClickDirective() {
 return {
 restrict: 'A',
 link: function(scope, element, attrs) {
 element.on('click', function() {
 scope.$apply(attrs.ngClick);
 });

The ngClick Directive 33

1061 Errata© Tero Parviainen 2016

 }
 };
}

We’re almost done with ngClick, but there’s one more thing it does that our implementation cur-
rently doesn’t. That is to make the click event object available to the expression, with the $event
alias. This allows application code to inspect it or to stop its propagation:

test/directives/ng_click_spec.js
it('passes $event to expression', function() {
 $rootScope.doSomething = jasmine.createSpy();
 var button = $('<button ng-click="doSomething($event)"></button>');
 $compile(button)($rootScope);

 button.click();
 var evt = $rootScope.doSomething.calls.mostRecent().args[0];
 expect(evt).toBeDefined();
 expect(evt.type).toBe('click');
 expect(evt.target).toBeDefined();
});

We can make this work by using the expression locals feature that we have implemented into the
expression parser. We can pass in the DOM event as a local called $event. While scope.$ap-
ply() does not allow passing locals, scope.$eval() does, so we’ll add a separate call to it before
we $apply:

src/directives/ng_click_spec.js
function ngClickDirective() {
 return {
 restrict: 'A',
 link: function(scope, element, attrs) {
 element.on('click', function(evt) {
 scope.$eval(attrs.ngClick, {$event: evt});
 scope.$apply();
 });
 }
 };
}

And that’s it for ngClick! It’s actually pretty simple, since it merely pulls together many of the
features we’ve built into the core: It’s implemented as a directive, and uses the scope and expres-
sion parser features to fulfill its duties.

AngularJS itself does one further optimization here: Our code parses the expression string into a func-
tion on each click. AngularJS parses it manually at compile time using the $parse service, and then just
invokes the parsed function on each click. Feel free to try applying this optimization to your version of
ngClick!

Bootstrapping Angular Applications Manually 33

1062 Errata© Tero Parviainen 2016

Bootstrapping Angular Applications Manually

Now, let’s turn our attention to how AngularJS applications are actually bootstrapped: What needs
to happen for an Angular application to become alive on a webpage?

There are two pathways to this:

• Manual bootstrapping involves the application user calling Angular’s bootstrap JavaScript APIs
manually.

• Automatic bootstrapping happens when there’s an ng-app attribute somewhere in the DOM.
Angular finds it automatically and bootstraps itself.

Automatic bootstrapping is built on top of manual bootstrapping, so we’ll look at the manual case
first.

We’ll do this in a new file, and that also means we’ll test it in a new test file. Add the following
boilerplate to it:

test/bootstrap_spec.js
'use strict';

var $ = require('jquery');
var bootstrap = require('../src/bootstrap');

describe('bootstrap', function() {

});

Manual bootstrapping can be done by invoking the angular.bootstrap() function. Let’s first
test that such a function exists in the angular global:

test/bootstrap_spec.js
describe('manual', function() {

 it('is available', function() {
 expect(window.angular.bootstrap).toBeDefined();
 });

});

Note that we don’t do any setup here. The mere act of requiring the bootstrap module should
cause the window.angular global to become defined, and the bootstrap method to be attached
to it.

We can make this work in a new bootstrap.js file by first requiring and invoking the
publishExternalAPI function, which we implemented back when we were building the dependency

Bootstrapping Angular Applications Manually 33

1063 Errata© Tero Parviainen 2016

injection features. That function introduces window.angular. After that, we can just attach the
bootstrap method to it:

src/bootstrap.js
'use strict';

var $ = require('jquery');
var publishExternalAPI = require('./angular_public');

publishExternalAPI();

window.angular.bootstrap = function() {
};

So, what should the bootstrap method actually do? It has several duties, as we’ll soon see. One of
those duties is that an injector should be created for the new application. That injector is actually
also the return value of bootstrap:

test/bootstrap_spec.js
it('creates and returns an injector', function() {
 var element = $('<div></div>');
 var injector = window.angular.bootstrap(element);
 expect(injector).toBeDefined();
 expect(injector.invoke).toBeDefined();
});

To create an injector, we’ll pull in another one of the functions we’ve already implemented - cre-
ateInjector:

src/bootstrap.js
'use strict';

var $ = require('jquery');
var publishExternalAPI = require('./angular_public');
var createInjector = require('./injector');

publishExternalAPI();

window.angular.bootstrap = function() {
 var injector = createInjector();
 return injector;
};

When you bootstrap an Angular application, you always do it for some HTML element, which
will become the root element of the application. Often it’s the HTML <body> element, but it can
also be any other element on the page. Whatever it is, you need to give it to the bootstrap meth-
od when issuing a manual bootstrap. One of the things the method then does is attach the injector
to that element as jQuery data:

Bootstrapping Angular Applications Manually 33

1064 Errata© Tero Parviainen 2016

test/bootstrap_spec.js
it('attaches the injector to the bootstrapped element', function() {
 var element = $('<div></div>');
 var injector = window.angular.bootstrap(element);
 expect(element.data('$injector')).toBe(injector);
});

Angular itself doesn’t actually need this data attribute for anything but it makes it available for
tooling and debugging purposes.

We’ll make sure the given element is a jQuery object and then attach the data attribute to it:

src/bootstrap.js
window.angular.bootstrap = function(element) {
 var $element = $(element);
 var injector = createInjector();
 $element.data('$injector', injector);
 return injector;
};

Our injector is currently totally empty, and you can’t make very useful applications with nothing
but a dependency injector! What we should do at the very least is load all the built-in services of
the Angular framework, such as $compile and $rootScope:

test/bootstrap_spec.js
it('loads built-ins into the injector', function() {
 var element = $('<div></div>');
 var injector = window.angular.bootstrap(element);

 expect(injector.has('$compile')).toBe(true);
 expect(injector.has('$rootScope')).toBe(true);
});

This is accomplished by making sure the ng module is loaded by the injector. That is the module
into which we have registered all the built-in services in angular_public.js:

src/bootstrap.js
window.angular.bootstrap = function(element) {
 var $element = $(element);
 var injector = createInjector(['ng']);
 $element.data('$injector', injector);
 return injector;
};

This still isn’t quite enough though. What the user wants to bootstrap is their own application, which
will be in some user-defined modules. Those additional modules are given as the second argument

Bootstrapping Angular Applications Manually 33

1065 Errata© Tero Parviainen 2016

to the bootstrap method. That argument is an array of module names, which we expect to have
been previously registered using angular.module:

test/bootstrap_spec.js
it('loads other specified modules into the injector', function() {
 var element = $('<div></div>');

 window.angular.module('myModule', [])
 .constant('aValue', 42);
 window.angular.module('mySecondModule', [])
 .constant('aSecondValue', 43);
 window.angular.bootstrap(element, ['myModule', 'mySecondModule']);

 var injector = element.data('$injector');
 expect(injector.get('aValue')).toBe(42);
 expect(injector.get('aSecondValue')).toBe(43);
});

In the implementation we’ll just use the given array, but prepend the built-in ng module to it so
that the built-in stuff is always loaded first:

src/bootstrap.js
window.angular.bootstrap = function(element, modules) {
 var $element = $(element);
 modules = modules || [];
 modules.unshift('ng');
 var injector = createInjector(modules);
 $element.data('$injector', injector);
 return injector;
};

In addition to all the dependencies that are defined in modules, bootstrap also makes one special
dependency called $rootElement available for injection. It gives the application developer access
to the root DOM element of the app:

test/bootstrap_spec.js
it('makes root element available for injection', function() {
 var element = $('<div></div>');

 window.angular.bootstrap(element);

 var injector = element.data('$injector');
 expect(injector.has('$rootElement')).toBe(true);
 expect(injector.get('$rootElement')[0]).toBe(element[0]);
});

This is done by registering a function module. We can make one and prepend it to the modules
array. The module registers $rootElement as a Value. It just points to the jQuery object we are

Bootstrapping Angular Applications Manually 33

1066 Errata© Tero Parviainen 2016

bootstrapping:

src/bootstrap.js
window.angular.bootstrap = function(element, modules) {
 var $element = $(element);
 modules = modules || [];
 modules.unshift(['$provide', function($provide) {
 $provide.value('$rootElement', $element);
 }]);
 modules.unshift('ng');
 var injector = createInjector(modules);
 $element.data('$injector', injector);
 return injector;
};

That takes care of the dependency injection setup. The second, very important duty of the boot-
strap method is to compile the DOM that the bootstrapped element contains. This means that any
directives within that DOM should get compiled:

test/bootstrap_spec.js
it('compiles the element', function() {
 var element = $('<div><div my-directive></div></div>');
 var compileSpy = jasmine.createSpy();

 window.angular.module('myModule', [])
 .directive('myDirective', function() {
 return {compile: compileSpy};
 });
 window.angular.bootstrap(element, ['myModule']);

 expect(compileSpy).toHaveBeenCalled();
});

What we’ll do is obtain the $compile service from the injector and call it for the element that
we are bootstrapping. We can use an $injector.invoke() call to inject $compile and run the
compilation:

src/bootstrap.js
window.angular.bootstrap = function(element, modules) {
 var $element = $(element);
 modules = modules || [];
 modules.unshift(['$provide', function($provide) {
 $provide.value('$rootElement', $element);
 }]);
 modules.unshift('ng');
 var injector = createInjector(modules);
 $element.data('$injector', injector);
 injector.invoke(['$compile', function($compile) {
 $compile($element);

Bootstrapping Angular Applications Manually 33

1067 Errata© Tero Parviainen 2016

 }]);
 return injector;
};

During bootstrap, the DOM is actually not only compiled but also linked to the application root
scope:

test/bootstrap_spec.js
it('links the element', function() {
 var element = $('<div><div my-directive></div></div>');
 var linkSpy = jasmine.createSpy();

 window.angular.module('myModule', [])
 .directive('myDirective', function() {
 return {link: linkSpy};
 });
 window.angular.bootstrap(element, ['myModule']);

 expect(linkSpy).toHaveBeenCalled();
 expect(linkSpy.calls.mostRecent().args[0]).toEqual(
 element.data('$injector').get('$rootScope')
);
});

We can also inject $rootScope to our invoke function, and run the public link function immedi-
ately after compilation:

src/bootstrap.js
window.angular.bootstrap = function(element, modules) {
 var $element = $(element);
 modules = modules || [];
 modules.unshift(['$provide', function($provide) {
 $provide.value('$rootElement', $element);
 }]);
 modules.unshift('ng');
 var injector = createInjector(modules);
 $element.data('$injector', injector);
 injector.invoke(['$compile', '$rootScope', function($compile, $rootScope) {
 $compile($element)($rootScope);
 }]);
 return injector;
};

This also means that at this point the initial scope hierarchy of the application is constructed: Any
directives that use inherited or isolate scopes will cause new scopes to be created and linked. All of
that is handled by the compiler, and there’s nothing special we need to do in bootstrap.

The third and final crucial duty of bootstrap is to run the very first digest. That happens after the
initial DOM has been compiled and linked. This also means that any interpolation expressions in

Bootstrapping Angular Applications Manually 33

1068 Errata© Tero Parviainen 2016

the initial DOM will be replaced with their values:

test/bootstrap_spec.js
it('runs a digest', function() {
 var element = $('<div><div my-directive>{{expr}}</div></div>');
 var linkSpy = jasmine.createSpy();

 window.angular.module('myModule', [])
 .directive('myDirective', function() {
 return {
 link: function(scope) {
 scope.expr = '42';
 }
 };
 });
 window.angular.bootstrap(element, ['myModule']);

 expect(element.find('div').text()).toBe('42');
});

What we can do is wrap our compilation and linking into a $rootScope.$apply() invocation,
which ensures that a digest happens right after we’re done linking:

src/bootstrap.js
window.angular.bootstrap = function(element, modules) {
 var $element = $(element);
 modules = modules || [];
 modules.unshift(['$provide', function($provide) {
 $provide.value('$rootElement', $element);
 }]);
 modules.unshift('ng');
 var injector = createInjector(modules);
 $element.data('$injector', injector);
 injector.invoke(['$compile', '$rootScope', function($compile, $rootScope) {
 $rootScope.$apply(function() {
 $compile($element)($rootScope);
 });
 }]);
 return injector;
};

There’s one more feature that the bootstrap supports, which is enabling strict dependency injection
mode, which we implemented in the DI part of the book. It causes injections that aren’t wrapped
in arrays or annotated with $inject to throw exceptions. When we have such an injection in a
directive, and enable strict DI by passing a third argument to bootstrap, it should fail:

test/bootstrap_spec.js
it('supports enabling strictDi mode', function() {
 var element = $('<div><div my-directive></div></div>');

Bootstrapping Angular Applications Automatically 33

1069 Errata© Tero Parviainen 2016

 var compileSpy = jasmine.createSpy();

 window.angular.module('myModule', [])
 .constant('aValue', 42)
 .directive('myDirective', function(aValue) {
 return {};
 });

 expect(function() {
 window.angular.bootstrap(element, ['myModule'], {strictDi: true});
 }).toThrow();
});

The third argument to bootstrap is a config object, which actually only supports one key: strict-
Di. We’ll pass that value from the object to createInjector, which takes a strictDi flag as a
second argument:

src/bootstrap.js
window.angular.bootstrap = function(element, modules, config) {
 var $element = $(element);
 modules = modules || [];
 config = config || {};
 modules.unshift(['$provide', function($provide) {
 $provide.value('$rootElement', $element);
 }]);
 modules.unshift('ng');
 var injector = createInjector(modules, config.strictDi);
 $element.data('$injector', injector);
 injector.invoke(['$compile', '$rootScope', function($compile, $rootScope) {
 $rootScope.$apply(function() {
 $compile($element)($rootScope);
 });
 }]);
 return injector;
};

And there we have the entire Angular application bootstrap process. It:

1. Creates a dependency injector from the built-in and user-provided modules.
2. Compiles and links the element given to it.
3. Runs the first digest.

After that, whatever happens in the application is all dependent on what directives, controllers,
and services the modules contain.

Bootstrapping Angular Applications Automatically

Manual bootstrapping isn’t very difficult for the application developer to do: You just need to

Bootstrapping Angular Applications Automatically 33

1070 Errata© Tero Parviainen 2016

call one function. But it still isn’t the way Angular apps are usually bootstrapped. There’s an even
easier way to do it, which is to just decorate your HTML with an ng-app attribute. When the page
loads, Angular will automatically find the element with that attribute, and run the bootstrap pro-
cess for it. This is called auto-bootstrapping.

As we implement this, we’re going to depart from our usual test-first approach and just write the
code directly without writing unit tests. This is because auto-bootstrapping is tied to the page load
event, and it’s a bit hard to tap into it from unit tests. We would need to set up some special test
infrastructure to do it properly.

What we’ll do instead is defer the testing to the next section, in which we’ll build a full-blown
test app for our framework. We’ll use auto-bootstrapping to launch it, and thus verify that we got
everything working.

Auto-bootstrap begins with a regular old jQuery DOM ready callback. We’ll put it in bootstrap.js:

src/bootstrap.js
'use strict';

var $ = require('jquery');
var publishExternalAPI = require('./angular_public');
var createInjector = require('./injector');

publishExternalAPI();

window.angular.bootstrap = function(element, modules, config) {
 var $element = $(element);
 modules = modules || [];
 config = config || {};
 modules.unshift(['$provide', function($provide) {
 $provide.value('$rootElement', $element);
 }]);
 modules.unshift('ng');
 var injector = createInjector(modules, config.strictDi);
 $element.data('$injector', injector);
 injector.invoke(['$compile', '$rootScope', function($compile, $rootScope) {
 $rootScope.$apply(function() {
 $compile($element)($rootScope);
 });
 }]);
 return injector;
};

$(document).ready(function() {

});

What we should do here is find the element with the ng-app attribute, if there is one. Actually,

https://api.jquery.com/ready/

Bootstrapping Angular Applications Automatically 33

1071 Errata© Tero Parviainen 2016

there are a few alternative syntaxes for this, though ng-app is the one most people use:

• ng-app
• data-ng-app
• ng:app
• x-ng-app

Let’s put the alternative prefixes in an array and loop over them in our document ready handler:

src/bootstrap.js
var ngAttrPrefixes = ['ng-', 'data-ng-', 'ng:', 'x-ng-'];
$(document).ready(function() {
 _.forEach(ngAttrPrefixes, function(prefix) {

 });
});

We need to pull in LoDash at this point:

src/bootstrap.js
'use strict';

var $ = require('jquery');
var _ = require('lodash');
var publishExternalAPI = require('./angular_public');
var createInjector = require('./injector');

// ...

For each prefix, we’ll construct a CSS attribute selector that can locate elements with the corre-
sponding attribute:

src/bootstrap.js
var ngAttrPrefixes = ['ng-', 'data-ng-', 'ng:', 'x-ng-'];
$(document).ready(function() {
 _.forEach(ngAttrPrefixes, function(prefix) {
 var attrName = prefix + 'app';
 var selector = '[' + attrName.replace(':', '\\:') + ']';
 });
});

Note that for the ng: prefix to work, we need to escape the : character so that it isn’t interpreted
as a CSS pseudo-class selector.

Now we can try to find elements with these selectors. We’ll use the standard DOM querySelector
API, which returns the first element it finds that matches the selector. We only want one element,
so we skip the selection if we’ve already found something for another prefix:

https://developer.mozilla.org/en/docs/Web/CSS/Attribute_selectors
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector

Bootstrapping Angular Applications Automatically 33

1072 Errata© Tero Parviainen 2016

src/bootstrap.js
var ngAttrPrefixes = ['ng-', 'data-ng-', 'ng:', 'x-ng-'];
$(document).ready(function() {
 var foundAppElement;
 _.forEach(ngAttrPrefixes, function(prefix) {
 var attrName = prefix + 'app';
 var selector = '[' + attrName.replace(':', '\\:') + ']';
 var element;
 if (!foundAppElement &&
 (element = document.querySelector(selector))) {
 foundAppElement = element;
 }
 });
});

When you use an ng-app attribute in the DOM, you may also specify a module name as the value
of the attribute. That controls which user-defined module gets loaded. We should grab that mod-
ule name from the element as well:

src/bootstrap.js
$(document).ready(function() {
 var foundAppElement, foundModule;
 _.forEach(ngAttrPrefixes, function(prefix) {
 var attrName = prefix + 'app';
 var selector = '[' + attrName.replace(':', '\\:') + ']';
 var element;
 if (!foundAppElement && (element = document.querySelector(selector))) {
 foundAppElement = element;
 foundModule = element.getAttribute(attrName);
 }
 });
});

It is notable that, unlike with manual bootstrapping, you can only define one module name in
auto-bootstrapping. Any additional modules must be defined as module dependencies of the main
module.

If we do in fact find an element with an auto-bootstrap attribute, we should run the bootstrap for
it. We can just call the manual bootstrap function, giving it the element we’ve found, as well as the
module name if one was given:

src/bootstrap.js
var ngAttrPrefixes = ['ng-', 'data-ng-', 'ng:', 'x-ng-'];
$(document).ready(function() {
 var foundAppElement;
 _.forEach(ngAttrPrefixes, function(prefix) {
 var attrName = prefix + 'app';
 var selector = '[' + attrName.replace(':', '\\:') + ']';

Bootstrapping Angular Applications Automatically 33

1073 Errata© Tero Parviainen 2016

 var element;
 if (!foundAppElement &&
 (element = document.querySelector(selector))) {
 foundAppElement = element;
 }
 });
 if (foundAppElement) {
 window.angular.bootstrap(
 foundAppElement,
 foundModule ? [foundModule] : []
);
 }
});

Finally, strict dependency injection mode can also be enabled via an additional attribute while au-
to-bootstrapping. We should, first of all, support passing the third config argument to the manual
bootstrap function:

src/bootstrap.js
var ngAttrPrefixes = ['ng-', 'data-ng-', 'ng:', 'x-ng-'];
$(document).ready(function() {
 var foundAppElement, foundModule, config = {};
 _.forEach(ngAttrPrefixes, function(prefix) {
 var attrName = prefix + 'app';
 var selector = '[' + attrName.replace(':', '\\:') + ']';
 var element;
 if (!foundAppElement &&
 (element = document.querySelector(selector))) {
 foundAppElement = element;
 foundModule = element.getAttribute(attrName);
 }
 });
 if (foundAppElement) {
 window.angular.bootstrap(
 foundAppElement,
 foundModule ? [foundModule] : [],
 config
);
 }
});

When we find an element, we can then populate the strictDi attribute on the config, based on
whether there is an ng-strict-di attribute present on the element. We also support the other
attribute prefixes here:

• ng-strict-di
• data-ng-strict-di
• ng:strict-di
• x-ng-strict-di

Building The Production Bundle 33

1074 Errata© Tero Parviainen 2016

src/boostrap.js
var ngAttrPrefixes = ['ng-', 'data-ng-', 'ng:', 'x-ng-'];
$(document).ready(function() {
 var foundAppElement, foundModule, config = {};
 _.forEach(ngAttrPrefixes, function(prefix) {
 var attrName = prefix + 'app';
 var selector = '[' + attrName.replace(':', '\\:') + ']';
 var element;
 if (!foundAppElement &&
 (element = document.querySelector(selector))) {
 foundAppElement = element;
 foundModule = element.getAttribute(attrName);
 }
 });
 if (foundAppElement) {
 config.strictDi = _.some(ngAttrPrefixes, function(prefix) {
 var attrName = prefix + 'strict-di';
 return foundAppElement.hasAttribute(attrName);
 });
 window.angular.bootstrap(
 foundAppElement,
 foundModule ? [foundModule] : [],
 config
);
 }
});

And that completes the auto-bootstrap implementation! It mostly concerns finding the correct
DOM element and inspecting it, while the rest of the bootstrap code is shared with the manual
bootstrap that we implemented earlier.

Building The Production Bundle

We now have a framework that we can take for a test run! Before we do that though, we need to
bundle it up into a file that we can load to a webpage.

We already have Browserify integrated to our project, but we’ve only been using it during unit
tests. What we don’t yet have is a way to produce a production bundle.

Fixing this is easy enough. All you need to do to produce the production bundle is run Browserify
and give it the bootstrap file as an argument:

./node_modules/browserify/bin/cmd.js src/bootstrap.js

Note that when you run this, it will print the whole bundle to STDOUT, so there will be a lot of
output!

Building The Production Bundle 33

1075 Errata© Tero Parviainen 2016

The way this works is that Browserify reads the bootstrap file and follows the required dependen-
cies from it, so that all of them get included to the final bundle. Since bootstrap.js requires an-
gular_public.js, and angular_public.js requires all the Angular framework features we’ve
implemented, we end up with a complete bundle. The bundle also includes LoDash and jQuery
because our application code requires them. So it is truly a batteries-includes library.

If we redirect the Browserify output into a file, we’ll end up with something we can put on a web-
page:

./node_modules/browserify/bin/cmd.js src/bootstrap.js > myangular.js

It will be a lot more convenient to run this command through NPM, so let’s add a “build” run
script to our package.json:

package.json
"scripts": {
 "lint": "jshint src test",
 "test": "karma start",
 "build": "browserify src/bootstrap.js > myangular.js"
}

Now we can just invoke this script to produce the bundle:

npm run build

The bundle is quite large since all the code we’ve written, combined with jQuery and LoDash,
sums up to a hefty amount. It would be nice to be able to also produce a smaller, minified version
of it.

We can easily do that by adding the UglifyJS minifier to the project:

npm install --save-dev uglifyjs

We can then introduce another run script that again runs Browserify, but then also pipes the
output to UglifyJS in order to minify it. The final output is redirected to a file called myangular.
min.js:

package.json
"scripts": {
 "lint": "jshint src test",
 "test": "karma start",
 "build": "browserify src/bootstrap.js > myangular.js",
 "build:minified": "browserify src/bootstrap.js | uglifyjs -mc > myangular.min.js"
}

https://github.com/mishoo/UglifyJS

Running An Example App 33

1076 Errata© Tero Parviainen 2016

Note that as you now run npm run build:minified, you will see some warnings about things
UglifyJS doesn’t like in our code. This is normal and doesn’t affect the actual functionality in the
final JS file.

Running An Example App

Now that we have an application bundle, we can see how it works by writing a little test app. This
is pretty exciting, as it will exercise everything we’ve done during the course of the book, and will
concretely show that we can in fact do the same kinds of things AngularJS itself can!

You can put the example app anywhere on your machine - you’ll just need to have copies of the
myangular.js and/or myangular.min.js files there. It may be easiest to put the app in a subdi-
rectory of the main project. That way you can refer to the bundle files directly and you don’t need
to keep copying them if you need to make changes and rebuild.

Let’s first create an index.html document. It loads in two scripts: The myangular.js frame-
work, and an app.js application file:

example-app/index.html
<!DOCTYPE html>
<html>
<head>
</head>
<body>
 <script src="../myangular.js"></script>
 <script src="app.js"></script>
</body>
</html>

Also create an empty app.js file to the same directory.

If you now open this page in a browser, it should load without any errors. You don’t need an
HTTP server, it’s fine to just open it from the file system.

Now, add an auto-bootstrap attribute to the page:

example-app/index.html
<body ng-app="myExampleApp">
 <script src="../myangular.js"></script>
 <script src="app.js"></script>
</body>

Reloading the page will now cause an error about a missing module. That’s exactly what we ex-
pect!

Running An Example App 33

1077 Errata© Tero Parviainen 2016

If we introduce the module in app.js, the error will go away:

example-app/app.js
angular.module('myExampleApp', []);

Next, let’s try using a controller with the ngController directive:

example-app/index.html
<body ng-app="myExampleApp">
 <div ng-controller="ExampleController as ctrl">
 </div>
 <script src="../myangular.js"></script>
 <script src="app.js"></script>
</body>

This causes an error again, though this time it isn’t a very helpful one. Unlike the AngularJS team,
we haven’t paid much attention to error handling in our implementation.

In any case, the error goes away when we introduce the controller:

example-app/app.js
angular.module('myExampleApp', [])
 .controller('ExampleController', function() {

 });

Let’s also try using an expression in the DOM:

example-app/index.html
<div ng-controller="ExampleController as ctrl">
 {{ctrl.counter}}
</div>

The expression disappears when the application loads, as is expected. There is currently no value
for the expression.

If we introduce a value in the controller, it appears on the page:

example-app/app.js
angular.module('myExampleApp', [])
 .controller('ExampleController', function() {
 this.counter = 1;
 });

We can add some interactivity by adding a couple of buttons to the page: One for incrementing

Summary 33

1078 Errata© Tero Parviainen 2016

the counter and the other for decrementing it. We’ll use the ngClick directive that we implement-
ed earlier in this chapter:

example-app/index.html
<div ng-controller="ExampleController as ctrl">
 {{ctrl.counter}}
 <button ng-click="ctrl.increment()">+</button>
 <button ng-click="ctrl.decrement()">-</button>
</div>

If we introduce those increment and decrement methods in the controller, we can start to see
the counter updating:

example-app/app.js
angular.module('myExampleApp', [])
 .controller('ExampleController', function() {
 this.counter = 1;
 this.increment = function() {
 this.counter++;
 };
 this.decrement = function() {
 this.counter--;
 };
 });

We have a simple but fully functional application, running on a version of AngularJS that we have
implemented from scratch! Everything from the DOM processing, to the expression parsing, to
the digests that happen on each click are based on features we have written. It feels pretty magical,
doesn’t it!

Go ahead and try using some of the other features we have written. Here are some things to try:

• Define some factories or services and inject them to the controller
• Enable strict DI
• Use filters in expressions
• Try the minified framework bundle
• Define some custom directives
• Define some external templates using templateUrl (note that you’ll need a HTTP server for

this, as templates can’t be loaded from file:// URLs)

If you get stuck at any point, use the web browser’s debugger to add breakpoints to the code. All
the code should be familiar, as we’ve written all of it - apart from jQuery and LoDash.

Summary

Summary 33

1079 Errata© Tero Parviainen 2016

We have come a long way! Out of thin air, we have implemented our own version of AngularJS,
which has all the core features the Angular framework itself has.

Even more importantly, you now have a deep and rich mental model of what the Angular frame-
work does and how it works. You know everything about change detection, expressions, de-
pendency injection, directives, controllers, transclusion, templates, interpolation, promises, and
$http. You are a true Angular expert!

In this chapter you have learned:

• How the ngClick directive works.
• What the manual bootstrap process entails: Setting up an injector, compiling and linking the

DOM, and running a digest.
• How automatic bootstrapping finds the ng-app DOM element automatically and then runs

the bootstrap function automatically.
• How production bundles of the framework can be generated.
• How everything ties together and how all the code we’ve written supports actual “Angular lite”

applications.

	How To Read This Book
	Source Code
	Contributors
	Errata & Contributing
	Contact
	Version History

	Setting up
	Install Node and NPM
	Create The Project Directories
	Create package.json for NPM
	“Hello, World!”
	Enable Static Analysis With JSHint
	Enable Unit Testing With Jasmine, Sinon, and Karma
	Integrate Browserify
	Include Lo-Dash And jQuery
	Summary

	Scopes
	Scopes and Dirty-Checking
	Scope Objects
	Watching Object Properties: $watch And $digest
	Checking for Dirty Values
	Initializing Watch Values
	Getting Notified Of Digests
	Keeping The Digest Going While It Stays Dirty
	Giving Up On An Unstable Digest
	Short-Circuiting The Digest When The Last Watch Is Clean
	Value-Based Dirty-Checking
	NaNs
	Handling Exceptions
	Destroying A Watch
	Summary

	Scope Methods
	$eval - Evaluating Code In The Context of A Scope
	$apply - Integrating External Code With The Digest Cycle
	$evalAsync - Deferred Execution
	Scheduling $evalAsync from Watch Functions
	Scope Phases
	Coalescing $apply Invocations - $applyAsync
	Running Code After A Digest - $$postDigest
	Handling Exceptions
	Watching Several Changes With One Listener: $watchGroup
	Summary

	Scope Inheritance
	The Root Scope
	Making A Child Scope
	Attribute Shadowing
	Separated Watches
	Recursive Digestion
	Digesting The Whole Tree from $apply, $evalAsync, and $applyAsync
	Isolated Scopes
	Substituting The Parent Scope
	Destroying Scopes
	Summary

	Watching Collections
	Setting Up The Infrastructure
	Detecting Non-Collection Changes
	Detecting New Arrays
	Detecting New Or Removed Items in Arrays
	Detecting Replaced or Reordered Items in Arrays
	Array-Like Objects
	Detecting New Objects
	Detecting New Or Replaced Attributes in Objects
	Detecting Removed Attributes in Objects
	Preventing Unnecessary Object Iteration
	Dealing with Objects that Have A length
	Handing The Old Collection Value To Listeners
	Summary

	Scope Events
	Publish-Subscribe Messaging
	Setup
	Registering Event Listeners: $on
	The basics of $emit and $broadcast
	Dealing with Duplication
	Event Objects
	Additional Listener Arguments
	Returning The Event Object
	Deregistering Event Listeners
	Emitting Up The Scope Hierarchy
	Broadcasting Down The Scope Hierarchy
	Including The Current And Target Scopes in The Event Object
	Stopping Event Propagation
	Preventing Default Event Behavior
	Broadcasting Scope Removal
	Disabling Listeners On Destroyed Scopes
	Handling Exceptions
	Summary

	Expressions and Filters
	A Whole New Language
	What We Will Skip

	Literal Expressions
	Setup
	Parsing Integers
	Parsing Floating Point Numbers
	Parsing Scientific Notation
	Parsing Strings
	Parsing true, false, and null
	Parsing Whitespace
	Parsing Arrays
	Parsing Objects
	Summary

	Lookup and Function Call Expressions
	Simple Attribute Lookup
	Parsing this
	Non-Computed Attribute Lookup
	Locals
	Computed Attribute Lookup
	Function Calls
	Method Calls
	Assigning Values
	Ensuring Safety In Member Access
	Ensuring Safe Objects
	Ensuring Safe Functions
	Summary

	Operator Expressions
	Unary Operators
	Multiplicative Operators
	Additive Operators
	Relational And Equality Operators
	Logical Operators AND and OR
	The Ternary Operator
	Altering The Precedence Order with Parentheses
	Statements
	Summary

	Filters
	Filter Registration
	Filter Expressions
	Filter Chain Expressions
	Additional Filter Arguments
	The Filter Filter
	Filtering With Predicate Functions
	Filtering With Strings
	Filtering With Other Primitives
	Negated Filtering With Strings
	Filtering With Object Criteria
	Filtering With Object Wildcards
	Filtering With Custom Comparators
	Summary

	Watching Expressions
	Integrating Expressions to Scopes
	Literal And Constant Expressions
	Optimizing Constant Expression Watching
	One-Time Expressions
	Input Tracking
	Stateful Filters
	External Assignment
	Summary

	Modules and Dependency Injection
	Modules and The Injector
	The angular Global
	Initializing The Global Just Once
	The module Method
	Registering A Module
	Getting A Registered Module
	The Injector
	Registering A Constant
	Requiring Other Modules
	Dependency Injection
	Rejecting Non-String DI Tokens
	Binding this in Injected Functions
	Providing Locals to Injected Functions
	Array-Style Dependency Annotation
	Dependency Annotation from Function Arguments
	Strict Mode
	Integrating Annotation with Invocation
	Instantiating Objects with Dependency Injection
	Summary

	Providers
	The Simplest Possible Provider: An Object with A $get Method
	Injecting Dependencies To The $get Method
	Lazy Instantiation of Dependencies
	Making Sure Everything Is A Singleton
	Circular Dependencies
	Provider Constructors
	Two Injectors: The Provider Injector and The Instance Injector
	Unshifting Constants in The Invoke Queue
	Summary

	High-Level Dependency Injection Features
	Injecting The $injectors
	Injecting $provide
	Config Blocks
	Run Blocks
	Function Modules
	Hash Keys And Hash Maps
	Function Modules Redux
	Factories
	Values
	Services
	Decorators
	Integrating Scopes, Expressions, and Filters with The Injector
	Making a Configurable Provider: Digest TTL
	Summary

	Utilities
	Promises
	Promises
	Promise Implementations
	Promises in AngularJS
	Further Reading
	The $q Provider
	Creating Deferreds
	Accessing The Promise of A Deferred
	Resolving A Deferred
	Preventing Multiple Resolutions
	Ensuring that Callbacks Get Invoked
	Registering Multiple Promise Callbacks
	Rejecting Deferreds And Catching Rejections
	Cleaning Up At The End: finally
	Promise Chaining
	Exception Handling
	Callbacks Returning Promises
	Chaining Handlers on finally
	Notifying Progress
	Immediate Rejection - $q.reject
	Immediate Resolution - $q.when
	Working with Promise Collections - $q.all
	ES2015-Style Promises
	Promises Without $digest Integration: $$q
	Summary

	HTTP
	What We Will Skip
	The Providers
	Sending HTTP Requests
	Default Request Configuration
	Request Headers
	Response Headers
	Allow CORS Authorization: withCredentials
	Request Transforms
	Response Transforms
	JSON Serialization And Parsing
	URL Parameters
	Shorthand Methods
	Interceptors
	Promise Extensions
	Request Timeouts
	Pending Requests
	Integrating $http and $applyAsync
	Summary

	Directives
	DOM Compilation and Basic Directives
	Creating The $compile Provider
	Registering Directives
	Compiling The DOM with Element Directives
	Recursing to Child Elements
	Using Prefixes with Element Directives
	Applying Directives to Attributes
	Applying Directives to Classes
	Applying Directives to Comments
	Restricting Directive Application
	Prioritizing Directives
	Terminating Compilation
	Applying Directives Across Multiple Nodes
	Summary

	Directive Attributes
	Passing Attributes to the compile Function
	Introducing A Test Helper
	Handling Boolean Attributes
	Overriding attributes with ng-attr
	Setting Attributes
	Setting Boolean Properties
	Denormalizing Attribute Names for The DOM
	Observing Attributes
	Providing Class Directives As Attributes
	Adding Comment Directives As Attributes
	Manipulating Classes
	Summary

	Directive Linking and Scopes
	The Public Link Function
	Directive Link Functions
	Plain Directive Link Functions
	Linking Child Nodes
	Pre- And Post-Linking
	Keeping The Node List Stable for Linking
	Linking Directives Across Multiple Nodes
	Linking And Scope Inheritance
	Isolate Scopes
	Isolate Attribute Bindings
	One-Way Data Binding
	Two-Way Data Binding
	Expression Binding
	Summary

	Controllers
	The $controller provider
	Controller Instantiation
	Controller Registration
	Global Controller Lookup
	Directive Controllers
	Locals in Directive Controllers
	Attaching Directive Controllers on The Scope
	Controllers on Isolate Scope Directives
	Requiring Controllers
	Requiring Multiple Controllers
	Requiring Multiple Controllers as an Object
	Self-Requiring Directives
	Requiring Controllers in Multi-Element Directives
	Requiring Controllers from Parent Elements
	Accessing Required Controllers from The Directive Controller
	The ngController Directive
	Attaching Controllers on The Scope
	Looking Up A Controller Constructor from The Scope
	Summary

	Directive Templates
	What We Will Skip
	Basic Templating
	Disallowing More Than One Template Directive Per Element
	Template Functions
	Isolate Scope Directives with Templates
	Asynchronous Templates: templateUrl
	Template URL Functions
	Disallowing More Than One Template URL Directive Per Element
	Linking Asynchronous Directives
	Linking Directives that Were Compiled Earlier
	Preserving The Isolate Scope Directive
	Preserving Controller Directives
	Summary

	Directive Transclusion
	Basic Transclusion
	Transclusion And Scopes
	Transclusion from Descendant Nodes
	Transclusion in Controllers
	The Clone Attach Function
	Transclusion with Template URLs
	Transclusion with Multi-Element Directives
	The ngTransclude Directive
	Full Element Transclusion
	Requiring Controllers from Transcluded Directives
	Summary

	Interpolation
	The $interpolate service
	Interpolating Strings
	Value Stringification
	Supporting Escaped Interpolation Symbols
	Skipping Interpolation When There Are No Expressions
	Text Node Interpolation
	Attribute Interpolation
	Optimizing Interpolation Watches With A Watch Delegate
	Making Interpolation Symbols Configurable
	Summary

	Components
	Registering Components
	Basic Components
	Component Scopes and Bindings
	Component Templates
	Component Transclusion
	Requiring from Components
	The $onInit Lifecycle Hook
	The $onDestroy Lifecycle Hook
	The $postLink Lifecycle Hook
	The $onChanges Hook
	Summary

	Bootstrapping
	The ngClick Directive
	Bootstrapping Angular Applications Manually
	Bootstrapping Angular Applications Automatically
	Building The Production Bundle
	Running An Example App
	Summary

